用户名: 密码: 验证码:
脐橙螟蛾对植物源挥发气味物质的感受机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脐橙螟蛾Amyelois transitella (Walker)是美国加利福尼亚州开心果、杏仁、核桃的重要经济害虫,以幼虫蛀食坚果果肉,在生产和储藏过程中均可危害,常造成严重的经济损失。由于其隐蔽的取食特性,该害虫难以防治,目前的防治手段仅限于果园内农事操作及喷洒化学药剂进行虫口压制。研究A. transitella的化学感受机制,阐明其与寄主植物之间的相互关系,探索新的化学生态学防治手段,对于A. transitella的控制有着重要的理论和实践意义。
     本文首先表达并纯化了A. transitella两种普通气味结合蛋白AtraGOBP1和AtraGOBP2,研究了这两种蛋白与植物源挥发物的作用机制。同时,利用电生理手段(触角电位仪技术)测定了A. transitella化学感受的电生理反应,并对A. transitella化学感受机制进行了探讨。在此基础上,在室内和田间检测了由这些挥发气味物质制成的诱捕器对该害虫产卵行为的影响,为利用这些化学挥发气味物质进行害虫的检测和防治进行了基础性研究。主要结果如下:
     1.利用LB培养基在转入AtraGOBP1和AtraGOBP2基因的大肠杆菌Escherichia coli中成功的表达了AtraGOBP1和AtraGOBP2蛋白。LB培养基中的大肠杆菌细胞经过高速离心后并在液氮中经三次冻融裂解细胞,利用Tris-HC1缓冲液提取目标蛋白,高速离心去除细胞残体,在蛋白快速纯化仪(FPLC)上用DEAE, Q-Seph, MONO Q, gel filtration等柱子成功纯化到这两种蛋白的高纯度(>98%)蛋白晶体。
     2.用高效液相色谱-电喷雾串联质谱(LC-ESI-MS)检测方法对AtraGOBP1和AtraGOBP2的结构研究表明:AtraGOBP1分子量为16897 Da(理论计算值为16903 Da), AtraGOBP2分子量为16161 Da(理论计算值为16166 Da)。这两种蛋白分别失去6个氢原子,使实际检测到的分子量比由氨基酸序列计算得到的理论值减小6 Da,说明这两种蛋白都进行了正确的折叠,分别合成了3对二硫键结构。利用圆二色谱仪(Circular Dichroism)检测发现AtraGOBP1和AtraGOBP2在193、209、223 nm处各出现一个波峰(谷),证明这两种蛋白与其它气味结合蛋白一样,都富含α螺旋结构;同时发现在pH7和pH 5.5的缓冲液中蛋白构象存在差异。
     3.利用cold binding assay法检测发现:在pH 7情况下,两种普通气味结合蛋白AtraGOBP1及AtraGOBP2均能与植物源挥发物decanal和nonanal结合;而在pH 5和缓冲液对照中均没有发生结合。但对于linalool、1-phenylethanol、PAPE、IBAPE等化合物,由于在pH 5和对照中存在较高的背景,难以得出明确结论。为确定这些化合物能否与AtraGOBP1和AtraGOBP2结合,我们采用了fluorescence binding assay检测,结果表明,AtraGOBP1及AtraGOBP2能与decanal、nonanal发生明显的结合,而与linalool、1-phenylethanol、PAPE、IBAPE则没有明显的结合。
     4.利用触角电位仪检测成虫触角发现:decanal、nonanal、linalool、1-phenylethanol、PAPE、IBAPE均能引发A. transitella雌、雄成虫的触角电生理反应,反应强度随着化合物浓度的升高而增大。对不同龄期的成虫触角对所测定的植物源挥发物的敏感度观察表明:在第0到4天中成虫触角对所测定的植物源挥发物均有较高的敏感度,而在第5天触角敏感度则明显降低。与气味结合蛋白与植物源挥发物结合试验比较表明,有其它气味结合蛋白参与信息素从外界环境到昆虫体内受体的转运。
     5.为检测各种植物源挥发物质对成虫产卵行为的影响,将不同剂量(10μl x 10μg/μl,50μl x 10μg/μl,100μl xμl的待测植物源挥发物质的己烷溶液滴在滤纸上制成诱饵,并用湿润卫生纸保湿;然后将诱饵及交配后的15头雄成虫及10头雌成虫放入(60×60×60cm)的尼龙网中观测成虫产卵行为,结果表明linalool和1-phenylethanol在3种剂量下均能引诱A. transitella产卵,其余植物源气味挥发物质对产卵没有明显的诱集效果。大田生测结果表明:在50μl x 10μg/μl,100μl x 10μg/μl两个剂量下,linalool和1-phenylethanol在能引诱A. transitella产卵,而10μl x 10μg/μl剂量下,则不能诱发脐橙螟蛾产卵;而其它的植物源挥发物在所测定的剂量条件下,也不能诱发该害虫产卵。
The navel orangeworm, Amyelois transitella (Walker), is an important pest on pistachio, almonds, and walnuts in California, USA. It bores into and feeds the nuts both in the orchard and in the process of producing and store, frequently causing serious damage. It is difficult to control because of the bore-feeding characteristic. Now, the population control method is only by orchard cleaning after harvest and insecticide spraying when the insect population is high. Therefore, it is important to study the semiochemical detection mechanism, to identify the relationship between the insect and its hosts, to explore insect chemical ecological method for successful A. transitella population management.
     Here, two general odorant binding proteins from A. transitella, AtraGOBP1 and AtraGOBP2, were expressed and purified, and the interactions between these two GOBPs and plant volatile chemicals were also studied. At the same time, the electrical response of A. transitella antennae elicited by plant volatile chemicals was examined with electroantennography, and the perception mechanism was also discussed. Based on these researches, the effect of traps made with plant volatile chemicals on oviposition behavior was tested in both room and field to use these chemicals to monitor and control this pest. The main results are shown as follows:
     1. AtraGOBP1 and AtraGOBP2 protein were expressed and purified successfully in the transformed bacteria, Escherichia coli, which contains the project protein DNA (AtraGOBPl or AtraGOBP2 gene) and incubated in LB medium. The bacteria was harvested by centrifuging at 4500×g, followed by three times of freeze and thaw performance to cause lesion in the bacterial membrane. The protein was extracted with Tris-HCl buffer which followed by high speed centrifuge to remove the cell debris. High purity protein was got after the proteins solution passing through FPLC equipped with DEAE, Q-Seph, MONO Q, and gel filtration columns.
     2. The results from LC-ESI-MS analysis show that AtraGOBPl gave a molecular mass of 16,897 Da consistent with the calculated molecular mass of 16,903 Da given the formation of three disulfide bridges (expected 16,897 Da). Deconvolution of the mass spectrum from AtraGOBP2 gave a molecular mass of 16,161 Da in close agreement with the calculated molecular mass of 16,166 Da considering the formation of three disulfide linkages (expected, 16,160 Da). Far-ultraviolet circular dichroism spectra from both proteins resembled that of the pheromone-binding protein AtraPBP1, with maximum at ca.193 nm and two minima at 209 and 223 nm. Therefore, both AtraGOBP1 and AtraGOBP2 areα-helical-rich proteins, which is a common feature of moth OBPs. And they experienced a pH-dependence structure conformation change from pH 5.5 to pH 7.
     3. With cold binding assay method, it was found that both AtraGOBP1 and AtraGOBP2 were able to bind with decanal and nonanal at pH 7, while no obvious binding was detected at pH 5 or in control. For the rest plant volatile chemical, linalool,1-phenylethanol, PAPE and IBAPE, it is difficult to draw conclusion because the high background levels at pH 5 and the control. Competitive fluorescence binding with NPN as a reporter was performed to examine the binding ability of these chemical with these to GOBPs. The results showed that decanal and nonanal displaced NPN at pH 7, in contrast no displacement was found at pH 5 or in the control. None of the rest tested ligands displaced NPN, which means these two GOBPs were unable to bind with these chemicals.
     4. EAG recordings from live moths showed that both male and female antennae responded to these plant volatile chemicals in a dose-dependent manner. Experiments were also conducted to determine the effect of age on EAG response of female and female to plant volatile chemicals. The result showed that 0 to 4 days old male and female were sensitive to the tested plant volatile chemicals, and there were an obvious sensitivity decrease on day-5 in contrast with previous stages. Combined the information from interaction of the tested ligands and the GOBPs, we got the conclusion that there should be more odorant binding proteins were involved in the semiochemicals transport from environment to odor receptors.
     5. With the trap made with plant volatile chemical on filter papers with soaked paper towel to keep humidity, the effect of these chemicals on A. transitella oviposition behavior was examined at three different doses (10μl×10μg/μl,50μl×10μg/μl,100μl×10μg/μl). Then 15 males and 10 females were pun inside the nylon cage (60×60×60 cm) to examine the oviposition behavior. The result showed that both linalool and 1-phenylethanol attracted the female to lay egg on the trap. No eggs were found on the trap of other plant volatile chemicals. The bioassay in the field showed that:eggs of A. transitella were found on the trap made with linalool and 1-phenylethanol at dose of 50μl×10μg/μl,100μl×10μg/μl. However, no eggs were found on the trap with dose 10μl×10μg/μl. At the same condition, no eggs were found on the trap of other plant volatile chemicals at all the tested doses.
引文
Altner H, Prillinger L.1980. Ulrastructure of invertebrate chemo-, thermo-, and hygroreceptors and its functional significance. International Review of Cytology 67:69-139.
    Angeli S, Ceron F, Scaloni A, Monti M, Monteforti G, Minnocci A, Petacchi R, Pelosi P.1999. Purification, structural characterization, cloning and immunocytochemical localization of chemoreception proteins from schistocerca gregaria. European Journal of Biochemistry 262:745-754.
    Ban L, Scaloni A, Brandazza A, Angeli S, Zhang L, Yan Y, Pelosi P.2003a. Chemosensory proteins of locusta migratoria. Insect Molecular Biology 12:125-134.
    Ban L, Scaloni A, D'Ambrosio C, Zhang L, Yan Y, Pelosi P.2003b. Biochemical characterization and bacterial expression of an odorant-binding protein from locusta migratoria. Cellular and Molecular Life Sciences 60:390-400.
    Ban L, Zhang L, Yan Y, Pelosi P.2002. Binding properties of a locust's chemosensory protein. Biochemical and Biophysical Research Communications 293:50-54.
    Beck J J, Merrill G B, Higbee B S, Light D M, Gee W S.2009a. In situ seasonal study of the volatile production of almonds (prunus dulcis) var.'Nonpareil'and relationship to navel orangeworm. Journal of Agricultural and Food Chemistry 57:3749-3753.
    Bentley W J, Beede R H, Daane K M, Haviland D R, Michailedes T J.2009. Uc ipm pest management guidelines:Pistachio. Publication 3461. University of California Agriculture and Natural Resources, Oakland, CA, USA. Available at http://www.ipm.ucdavis.edu/PDF/PMG/pmgpistachio.pdf.
    Benton R.2009. Molecular basis of odor detection in insects. In International symposium on olfaction and taste, Finger T E (ed); 478-481.
    Benton R, Sachse S, Michnick S W, Vosshall L B.2006. Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biology 4:e20.
    Birkett M A, Bruce T J A, Martin J L, Smart L E, Oakley J, Wadhams L J.2004. Responses of female orange wheat blossom midge, sitodiplosis mosellana, to wheat panicle volatiles. Journal of Chemical Ecology 30:1319-1328.
    Blight M M, Metayer M L, Delegue M H P, Pickett J A, Marion-Poll F, Wadhams L J.1997. Identification of floral volatiles involved in recognition of oilseed rape flowers, Brassica napus by honeybees, Apis mellifera. Journal of Chemical Ecology 23:1715-1727.
    Briand L, Huet J C, Perez V, Lenoir C, Nespoulous C, Boucher Y, Trotier D, Pernollet J C.2000. Odorant and pheromone binding by aphrodisin, a hamster aphrodisiac protein. Febs Letters 476:179-185.
    Briand L, Nespoulous C, Huet J-C, Takahashi M, Pernollet J-C.2001. Ligand binding and physico-chemical properties of ASP2, a recombinant odorant-binding protein from honeybee(Apis mellifera L.). European Journal of Biochemistry 268:752-760.
    Burks C S, Higbee B S, Brandl D G, Mackey B E.2008. Sampling and pheromone trapping for comparison of abundance of amyelois transitella in almonds and pistachios. Entomologia Experimentalis et Applicata 129:66-76.
    Burks C S, Higbee B S, Kuenen L P S, Brandl D G.2009. Monitoring Amyelois transitella males and females with phenyl propionate traps in almonds and pistachios. Entomologia Experimentalis et Applicata 133:283-291.
    Buttery R G, Soderstrom E L, Seifert R M, Ling L C, Haddon W F.1980. Components of almond hulls: Possible navel orangeworm attractants and growth inhibitors. Journal of Agricultural and Food Chemistry 28:353-356.
    Callahan F E, Vogt R G, Tucker M L, Dickens J C, Mattoo A K.2000. High level expression of "male specific" pheromone binding proteins (PBPs) in the antennae of female noctuiid moths. Insect Biochemistry and Molecular Biology 30:507-514.
    Calvello M, Brandazza A, Navarrini A, Dani F, Turillazzi S, Felicioli A, Pelosi P.2005. Expression of odorant-binding proteins and chemosensory proteins in some Hymenoptera. Insect Biochemistry and Molecular Biology 35:297-307.
    Calvello M, Guerra N, Brandazza A, D'Ambrosio C, Scaloni A, Dani F R, Turillazzi S, Pelosi P.2003. Soluble proteins of chemical communication in the social wasp polistes dominulus. Cellular and Molecular Life Sciences 60:1933-1943.
    Campanacci V, Krieger J, Bette S, Sturgis J N, Lartigue A, Cambillau C, Breer H, Tegoni M.2001. Revisiting the specificity of Mamestra brassicae and Antheraea polyphemus pheromone-binding proteins with a fluorescence binding assay. Journal of Biological Chemistry 276:20078-20084.
    Campanacci V, Lartigue A, Hallberg B M, Jones T A, Giudici-Orticoni M T, Tegoni M, Cambillau C.2003. Moth chemosensory protein exhibits drastic conformational changes and cooperativity on ligand binding. Proceedings of the National Academy of Sciences of the United States of America 100: 5069-5074.
    Coffelt J A, Vick K W, Sonnet P E, Doolittle R E.1979. Isolation, identification, and synthesis of a female sex-pheromone of the navel orangeworm, Amyelois transitella (Lepidoptera:Pyralidae). Journal of Chemical Ecology 5:955-966.
    Cornet B, Bonmatin J-M, Hetru C, Hoffmann J A, Ptak M, Vovelle F.1995. Refined three-dimensional solution structure of insect defensin A. Structure 3:435-448.
    Curtis C E, Clark J D.1979. Responses of navel orangeworm (Lepidoptera:Pyralidae) moths to attractants evaluated as oviposition stimulants in an almond orchard. Environmental Entomology 8:330-333.
    Damberger F, Nikonova L, Horst R, Peng G, Leal W, Wuthrich K.2000. NMR characterization of a pH-dependent equilibrium between two folded solution conformations of the pheromone-binding protein from Bombyx mori. Protein Science 9:1038-1041.
    Danty E, Michard-Vanhee C, Huet J C, Genecque E, Pernollet J C, Masson C.1997. Biochemical characterization, molecular cloning and localization of a putative odorant-binding protein in the honey bee Apis mellifera L. (Hymenoptera:Apidea). Febs Letters 414:595-598.
    de Bruyne M, Baker T.2008. Odor detection in insects:Volatile codes. Journal of Chemical Ecology 34: 882-897.
    Doster M A, Michailides T J.1994. Aspergillus molds and aflatoxins in pistachio nuts in California. Phytopathology 84:583-590.
    Feng L, Prestwich G D.1997. Expression and characterization of a lepidopteran general odorant binding protein. Insect Biochemistry and Molecular Biology 27:405-412.
    Galindo K, Smith D.2001. A large family of divergent Drosophila odorant-binding proteins expressed in gustatory and olfactory sensilla. Genetics 159:1059.
    Getchell T, Margolis F, Getchell M.1984. Perireceptor and receptor events in vertebrate olfaction. Progress in Neurobiology 23:317.
    Ginzel M D, Hanks L M.2005. Role of host plant volatiles in mate location for three species of longhorned beetles. Journal of Chemical Ecology 31:213-217.
    Gong D P, Zhang H J, Zhao P, Xia Q Y, Xiang Z H.2009. The odorant binding protein gene family from the genome of silkworm, Bombyx mori. BMC Genomics 10:332.
    Gong Z J, Zhou W W, Yu H Z, Mao C G, Zhang C X, Cheng J A, Zhu Z R.2009. Cloning, expression and functional analysis of a general odorant-binding protein 2 gene of the rice striped stem borer, Chilo suppressalis (walker) (Lepidoptera:Pyralidae). Insect Molecular Biology 18:405-417.
    Gripenberg S, Morrien E, Cudmore A, Salminen J-P, Roslin T.2007. Resource selection by female moths in a heterogeneous environment:What is a poor girl to do? Journal of Animal Ecology 76:854-865.
    Guerin P M, Visser J H.1980. Electroantennogram responses of the carrot fly, Psila rosae, to volatile plant components. Physiological Entomology 5:111-119.
    Gyorgyi T, Roby-Shemkovitz A, Lerner M.1988. Characterization and cDNA cloning of the pheromone-binding protein from the tobacco hornworm, Manduca sexta:A tissue-specific developmentally regulated protein. Proceedings of the National Academy of Sciences 85:9851-9855.
    H. Breer, J. Kerieger, Raming K.1990. A novel class of binding proteins in the antennae of the silk moth Antheraea pernyi. Insect Biochemistry 20:735-740.
    Ha T, Smith D.2006. A pheromone receptor mediates 11-cis-vaccenyl acetate-induced responses in Drosophila. Journal of Neuroscience 26:8727-8733.
    HaT S, Smith D P.2008. Insect odorant receptors:Channeling scent. Cell 133:761-763.
    Hallberg E, Hansson B S, Lofstedt C.2003. Sensilla and proprioceptors In Handbook of zoology lepidoptera, moths, and butterflies vol.2 morphology, physiology, and develpment, Kristensen N P (ed). Walter de Gruyter:Berlin; 267-288.
    Hanks L M.1999. Influence of the larval host plant on reproductive strategies of cerambycid beetles. Annual Review of Entomology 44:483-505.
    He X, Tzotzos G, Woodcock C, Pickett J A, Hooper T, Field L M, Zhou J J.2010. Binding of the general odorant binding protein of Bombyx mori BmorGOBP2 to the moth sex pheromone components. Journal of Chemical Ecology 36(12):1293-305.
    Horst R, Damberger F, Luginbuhl P, Guntert P, Peng G, Nikonova L, Leal W S, Wuthrich K.2001. NMR structure reveals intramolecular regulation mechanism for pheromone binding and release. Proceedings of the National Academy of Sciences 98:14374-14379.
    Husseiny M M, Madsen H F.1964. Sterilization of the navel orange-worm, Paramyelois transitella (walker), by gamma radiation (Lepidoptera:Phycitidae). Hilgardia 36:113-137.
    Jacquin-Joly E, Bohbot J, Francois M C, Cain A H, Nagnan-Le Meillour P.2000. Characterization of the general odorant-binding protein 2 in the molecular coding of odorants in Mamestra brassicae. European Journal of Biochemistry 267:6708-6714.
    Jacquin-Joly E, Vogt R G, Francois M C, Nagnan-Le Meillour P.2001. Functional and expression pattern analysis of chemosensory proteins expressed in antennae and pheromonal gland of Mamestra brassicae. Chemical Senses 26:833-844.
    Jin F L, Dong X L, Xu X X, Ren S X.2009. cDNA cloning and recombinant expression of the general odorant binding protein ii from Spodoptera litura. Science in China Series C-Life Sciences 52:80-87.
    Jin X, Brandazza A, Navarrini A, Ban L, Zhang S, Steinbrecht R A, Zhang L, Pelosi P.2005. Expression and immunolocalisation of odorant-binding and chemosensory proteins in locusts. Cellular and Molecular Life Sciences 62:1156-1166.
    Kaisslin K-E, Priesner E.1970. Die riechschwelle des seidenspinners. Naturwissenschaften 57:23-28.
    Keil T.1997. Comparative morphogenesis of sensilla:A review. International Journal of Insect Morphology and Embryology 26:151-160.
    Keil T A.1984. Surface coats of pore tubules and olfactory sensory dendrites of a silkmoth revealed by cationic markers. Tissue & Cell 16:705-717.
    Keil T A.1987. Lectin-binding sites in olfactory sensilla of the silkmoth, Antheraea polyphemus. Annals of the New York Academy of Sciences 510:403-405.
    Keil T A.1992. Fine structure of a developing insect olfactory organ:Morphogenesis of the silkmoth antenna. Microscopy Research and Technique 22:351-371.
    Klusak V, Havlas Z, Rulisek L, Vondrasek J, Svatos A.2003. Sexual attraction in the silkworm moth: Nature of binding of bombykol in pheromone binding protein--an ab initio study. Chemistry & Biology 10:331-340.
    Koehl M.2006. The fluid mechanics of arthropod sniffing in turbulent odor plumes. Chemical Senses 31: 93-105.
    Koganezawa M, Shimada I.2002. Novel odorant-binding proteins expressed in the taste tissue of the fly. Chemical Senses 27:319.
    Krieger J, G nssle H, Raming K, Breer H.1993. Odorant binding proteins of Heliothis virescens. Insect Biochemistry and Molecular Biology 23:449-456.
    Krieger J, von Nickisch-Rosenegk E, Mameli M, Pelosi P, Breer H.1996. Binding proteins from the antennae of Bombyx mori. Insect Biochemistry and Molecular Biology 26:297-307.
    Kriger J, Raming K, Prestwich G D, Frith D, Stabel S, Breer H.1992. Expression of a pheromone-binding protein in insect cells using a baculovirus vector. European Journal of Biochemistry 203:161-166.
    Kurtovic A, Widmer A, Dickson B.2007. A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature 446:542-546.
    Lartigue A, Campanacci V, Roussel A, Larsson A M, Jones T A, Tegoni M, Cambillau C.2002. X-ray structure and ligand binding study of a moth chemosensory protein. Journal of Biological Chemistry 277:32094-32098.
    Laue M, Steinbrecht R A, Ziegelberger G.1994. Immunocytochemical localization of general odorant-binding protein in olfactory sensilla of the silkmoth Antheraea polyphemus. Naturwissenschaften 81:178-180.
    Lautenschlager C, Leal W S, Clardy J.2005. Coil-to-helix transition and ligand release of Bombyx mori pheromone-binding protein. Biochemical and Biophysical Research Communications 335:1044-1050.
    Leal W S.2000. Duality monomer-dimer of the pheromone-binding protein from Bombyx mori. Biochemical and Biophysical Research Communications 268:521-529.
    Leal W S.2005. Pheromone reception. In Topics in current chemistry. Springer:Berlin 1-36.
    Leal W S, Barbosa R M R, Xu W, Ishida Y, Syed Z, Latte N, Chen A M, Morgan T I, Cornel A J, Furtado A. 2008. Reverse and conventional chemical ecology approaches for the development of oviposition attractants for culex mosquitoes. PLoS One 3:e3045.
    Leal W S, Chen A M, Ishida Y, Chiang V P, Erickson M L, Morgan T I, Tsuruda J M.2005. Kinetics and molecular properties of pheromone binding and release. Proceedings of the National Academy of Sciences of the United States of America 102:5386-5391.
    Leal W S, Ishida Y, Pelletier J, Xu W, Rayo J, Xu X, Ames J B.2009. Olfactory proteins mediating chemical communication in the navel orangeworm moth, amyelois transitella. PLoS One 4:e7235.
    Leal W S, Nikonova L, Peng G.1999. Disulfide structure of the pheromone binding protein from the silkworm moth, Bombyx mori. Febs Letters 464:85-90.
    Leal W S, Parra-Pedrazzoli A L, Kaissling K. E, Morgan T I, Zalom F G, Pesak D J, Dundulis E A, Burks C S, Higbee B S.2005. Unusual pheromone chemistry in the navel orangeworm:Novel sex attractants and a behavioral antagonist. Naturwissenschaften 92:139-146.
    Leite N R, Krogh R, Xu W, Ishida Y, lulek J, Leal W S, Oliva G.2009. Structure of an odorant-binding protein from the mosquito Aedes aegypti suggests a binding pocket covered by a ph-sensitive "lid". PLoS One 4:e8006.
    Lescop E, Briand L, Pernollet J C, Guittet E.2009. Structural basis of the broad specificity of a general odorant-binding protein from honeybee. Biochemistry 48:2431-2441.
    Li H L, Zhang Y L, Gao Q K, Cheng J A, Lou B G.2008. Molecular identification of cDNA, immunolocalization, and expression of a putative odorant-binding protein from an asian honey bee, Apis cerana. Journal of Chemical Ecology 34:1593-1601.
    Li Z X, Pickett J A, Field L M, Zhou J J.2005. Identification and expression of odorant-binding proteins of the malaria-carrying mosquitoes Anopheles gambiae and Anopheles arabiensis. Archives of Insect Biochemistry and Physiology 58:175.
    Light D M, Jang E B, Flath R A.1992. Electroantennogram responses of the mediterranean fruitfly, Ceratitis capitata, to the volatile constituents of nectarines. Entomologia Experimentalis et Applicata 63:13-26.
    Liu Z, Vidal D, Syed Z, Ishida Y, Leal W.2010. Pheromone binding to general odorant-binding proteins from the navel orangeworm. Journal of Chemical Ecology 36:477-484.
    Maibeche-Coisne M, Longhi S, Jacquin-Joly E, Brunei C, Egloff M P, Gastinel L, Cambillau C, Tegoni M, Nagnan-Le Meillour P.1998. Molecular cloning and bacterial expression of a general odorant-binding protein from the cabbage armyworm Mamestra brassicae. European Journal of Biochemistry 258: 768-774.
    Maida R, Steinbrecht A, Ziegelberger G, Pelosi P.1993. The pheromone binding protein of Bombyx mori: Purification, characterization and immunocytochemical localization. Insect Biochemistry and Molecular Biology 23:243-253.
    Maleszka J, Foret S, Saint R, Maleszka R.2007. RNAi-induced phenotypes suggest a novel role for a chemosensory protein CSP5 in the development of embryonic integument in the honeybee(Apis mellifera). Development Genes and Evolution 217:189-196.
    Maleszka R, Stange G.1997. Molecular cloning, by a novel approach, of a cDNA encoding a putative olfactory protein in the labial palps of the moth Cactoblastis cactorum. Gene 202:39-43.
    Marchese S, Angeli S, Andolfo A, Scaloni A, Brandazza A, Mazza M, Picimbon J-F, Leal W S, Pelosi P. 2000. Soluble proteins from chemosensory organs of Eurycantha calcarata (Insects, Phasmatodea). Insect Biochemistry and Molecular Biology 30:1091-1098.
    Matsuo T, Sugaya S, Yasukawa J, Aigaki T, Fuyama Y.2007. Odorant-binding proteins OBP57d and OBP57e affect taste perception and host-plant preference in Drosophila sechellia. PLoS Biolology 5: e118.
    McKenna M P, Hekmatscafe D S, Gaines P, Carlson J R.1994. Putative Drosophila pheromone-binding proteins expressed in a subregion of the olfactory system. Journal of Biological Chemistry 269: 16340-16347.
    Merritt T, LaForest S, Prestwich G, Quattro J, Vogt R.1998. Patterns of gene duplication in lepidopteran pheromone binding proteins. Journal of Molecular Evolution 46:272-276.
    Mohl C, Breer H, Krieger J.2002. Species-specific pheromonal compounds induce distinct conformational changes of pheromone binding protein subtypes from Antheraea polyphemus. Invertebrate Neuroscience 4:165-174.
    Monteforti G, Angeli S, Petacchi R, Minnocci A.2002. Ultrastructural characterization of antennal sensilla and immunocytochemical localization of a chemosensory protein in Carausius morosus brunner (Phasmida:Phasmatidae). Arthropod Structure & Development 30:195-205.
    Mosbah A, Campanacci V, Lartigue A, Tegoni M, Cambillau C, Darbon H.2003. Solution structure of a chemosensory protein from the moth Mamestra brassicae. Biochemical Journal 369:39-44.
    Nagnan-Le Meillour P, Cain A, Jacquin-Joly E, Francois M, Ramachandran S, Maida R, Steinbrecht R. 2000. Chemosensory proteins from the proboscis of Mamestra brassicae. Chemical Senses 25:541.
    Nojima S, Linn C J, Morris B, Zhang A J, Roelofs W.2003. Identification of host fruit volatiles from hawthorn (Crataegus spp.) attractive to hawthorn-origin Rhagoletis pomonella flies. Journal of Chemical Ecology 29:321-336.
    Parra-Pedrazzoli A L, Leal W S.2006. Sexual behavior of the navel orangeworm, Amyelois transitella (walker) (Lepidoptera:Pyralidae). Neotropical Entomology 35:769-774.
    Pelletier J, Guidolin A, Syed Z, Cornel A J, Leal W S.2010. Knockdown of a mosquito odorant-binding protein involved in the sensitive detection of oviposition attractants. Journal of Chemical Ecology 36: 245-248.
    Pelosi P, Baldaccini N, Pisanelli A.1982. Identification of a specific olfactory receptor for 2-isobutyl-3-methoxypyrazine. Biochemical Journal 201:245-248.
    Pelosi P, Calvello M, Ban L P.2005. Diversity of odorant-binding proteins and chemosensory proteins in insects. Chemical Senses 30:1291-i292.
    Pelosi P, Zhou J J, Ban L P, Calvello M.2006. Soluble proteins in insect chemical communication. Cellular and Molecular Life Sciences 63:1658-1676.
    Pickel C, Grant J A, Bentely W J, Hasey J K, Coates W W.2009. UC IPM pest management guidelines: Walnut. Publication 3471. University of California Agriculture and Natural Resources, Oakland, CA, USA. Available at http://www.ipm.ucdavis.edu/PDF/PMG/pmgwalnut.pdf.
    Pikielny C W, Hasan G, Rouyer F, Rosbash M.1994. Members of a family of Drosophila putative odorant-binding proteins are expressed in different subsets of olfactory hairs. Neuron 12:35-49.
    Prestwich G D.1993. Bacterial expression and photoaffinity-labeling of a pheromone binding-protein. Protein Science 2:420-428.
    Price D W, Mazrimas J A, Summers F M.1967. Chemical attractants for navel orangeworm. California Agriculture 21:10-11.
    Raming K, Krieger J, Breer H.1989. Molecular cloning of an insect pheromone-binding protein. Febs Letters 256:215-218.
    Raming K, Krieger J, Breer H.1990. Primary structure of a pheromone-binding protein from Antheraea pernyi:Homologies with other ligand-carrying proteins. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology 160:503-509.
    Rice R E, Johnson T W, Profita J C, Jones R A.1984. Improved attractant for navel orangewrom (Lepidoptera:Pyralidae) egg traps in almonds. Journal of Economic Entomology 77:1352-1353.
    Rice R E, Lieu F Y, Jennings W G, Sadler L L.1979. A laboratory bioassay for ovipostion by navel orangeworm moths (Lepidoptera:Pyralidae). Canadian Entomologist 111:97-100.
    Rice R E, Sadler L L.1977. Egg traps monitor navel orangewrom. California Agriculture 31:21-22.
    Rice R E, Sadler L L, Hoffmann M L, Jones R A.1976. Egg traps for navel orangeworm, Paramyelois transitella (walker) (Lepidoptera:Pyralidae). Environmental Entomology 5:697-701.
    Robertson H M, Martos R, Sears C R, Todres E Z, Walden K K O, Nardi J B.1999. Diversity of odourant binding proteins revealed by an expressed sequence tag project on male Manduca sexta moth antennae. Insect Molecular Biology 8:501-518.
    Romani R, Stacconi M.2009. Mapping and ultrastructure of antennal chemosensilla of the wheat bug Eurygaster maura. Insect Science 16:193-203.
    Sandier B H, Nikonova L, Leal W S, Clardy J.2000. Sexual attraction in the silkworm moth:Structure of the pheromone-binding-protein-bombykol complex. BMC Chemical Biology 7; 143-151.
    Sato K, Pellegrino M, Nakagawa T, Vosshall L, Touhara K.2008. Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452:1002-1006.
    Scaloni A, Monti M, Angeli S, Pelosi P.1999. Structural analysis and disulfide-bridge pairing of two odorant-binding proteins from Bombyx mori. Biochemical and Biophysical Research Communications 266:386-391.
    Shanbhag S, Hekmat-Scafe D, Kim M S, Park S K, Carlson J, Pikielny C, Smith D, Steinbrecht R.2001. Expression mosaic of odorant-binding proteins in Drosophila olfactory organs. Microscopy Research and Technique 55:297-306.
    Sidney M, Gries R, Danci A, Judd G J R, Gries G.2006. Almond volatiles attract neonate larvae of Anarsia lineatella (zeller) (Lepidoptera:Gelechiidae). Journal of the Entomological Society of British Columbia 103:3-9.
    Siegel J P, Kuenen L, Higbee B S, Noble P, Gill R, Yokota G Y, Krugner R, Daane K M.2008. Postharvest survival of navel orangeworm assessed in pistachios. California Agriculture 62:30-35.
    Steinbrecht R A.1997. Pore structures in insect olfactory sensilla:A review of data and concepts. International Journal of Insect Morphology and Embryology 26:229-245.
    Steinbrecht R A, Laue M, Ziegelberger G.1995. Immunolocalization of pheromone-binding protein and general odorant-binding protein in olfactory sensilla of the silk moths Antheraea and Bombyx. Cell and Tissue Research 282:203-217.
    Steinbrecht R A, Ozaki M, Ziegelberger G.1992. Immunocytochemical localization of pheromone-binding protein in moth antennae Cell and Tissue Research 270:287-302.
    Tasin M, Backman A-C, Coracini M, Casado D, Ioriatti C, Witzgall P.2007. Synergism and redundancy in a plant volatile blend attracting grapevine moth females. Phytochemistry 68:203-209.
    Vogt R, Lerner M.1989. Two groups of odorant binding proteins in insects suggest specific and general olfactory pathways. Society for Neuroscience 15:290-291.
    Vogt R, Rogers M, Franco M, Sun M.2002. A comparative study of odorant binding protein genes: Differential expression of the PBP1-GOBP2 gene cluster in Manduca sexta (Lepidoptera) and the organization of Obp genes in Drosophila melanogaster (Diptera). Journal of Experimental Biology 205:719.
    Vogt R G, Kohne A C, Dubnau J T, Prestwich G D.1989. Expression of pheromone binding-proteins during antennal development in the gypsy-moth Lymantria dispar. Journal of Neuroscience 9:3332-3346.
    Vogt R G, Prestwich G D, Lerner MR.1991. Odorant-binding-protein subfamilies associate with distinct classes of olfactory receptor neurons in insects. Journal of Neurobiology 22:74-84.
    Vogt R G, Riddiford L M.1981. Pheromone binding and inactivition by moth antennae. Nature 293: 161-163.
    Vogt R G, Rybczynski R, Lerner M R.1991b. Molecular cloning and sequencing of general odorant-binding proteins GOBP1 and GOBP2 from the tobacco hawk moth Manduca sexta: Comparisons with other insect obps and their signal peptides. Journal of Neuroscience 11:2972-2984.
    Wade W H.1961. Biology of the navel orangeworm, Paramyelois transitella (walker), on almonds and walnuts in northern california. Hilgardia 31:129-171.
    Wang G R, Wu K M, Guo Y Y.2003. Cloning, expression and immunocytochemical localization of a general odorant-binding protein gene from Helicoverpa armigera (hubner). Insect Biochemistry and Molecular Biology 33:115-124.
    Wicher D, Schafer R, Bauernfeind R, Stensmyr M C, Heller R, Heinemann S H, Hansson B S.2008. Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452:1007-1010.
    Wojtasek H, Leal W S.1999. Conformational change in the pheromone-binding protein from Bombyx mori induced by pH and by interaction with membranes. Journal of Biological Chemistry 274: 30950-30956.
    Wojtasek N, Picimbon J F, Leal W S.1999. Identification and cloning of odorant binding proteins from the scarab beetle phyllopertha diversa. Biochemical and Biophysical Research Communications 263: 832-837.
    Xu W, Leal W S.2008. Molecular switches for pheromone release from a moth pheromone-binding protein. Biochemical and Biophysical Research Communications 372:559-564.
    Xu X, Xu W, Rayo J, Ishida Y, Leal W S, Ames J B.2010. NMR structure of navel orangeworm moth pheromone-binding protein (AtraPBPl):Implications for pH-sensitive pheromone detection. Biochemistry 49:1469-1476.
    Yu Y, Zhang S, Zhang L, Zhao X.2009. Developmental expression of odorant-binding proteins and chemosensory proteins in the embryos of Locusta migratoria. Archives of Insect Biochemistry and Physiology 71:105-115.
    Zalom F G, Barnett W W, Weakley C V.1984. Efficacy of winter sanitation for managing the navel orangeworm, Paramyelois transitella (walker), in California almond orchards. Protection Ecology 7: 37-41.
    Zalom F G, Pickel C, Bentley W J, Coviello R L, Van Steenwyk R A.2009. UC IPM pest management guidelines:Almond. Publication 3431. University of California Agriculture and Natural Resources, Oakland, CA, USA. Available at http://www.ipm.ucdavis.edu/PDF/PMG/pmgalmond.pdf.
    Zhang S, Maida R, Steinbrecht R.2001. Immunolocalization of odorant-binding proteins in noctuid moths (Insecta, Lepidoptera). Chemical Senses 26:885.
    Zhou J J, Robertson G, He X, Dufour S, Hooper A M, Pickett J A, Keep N H, Field L M.2009. Characterisation of Bombyx mori odorant-binding proteins reveals that a general odorant-binding protein discriminates between sex pheromone components. Journal of Molecular Biology 389: 529-545.
    Zhou S H, Zhang S G, Zhang L.2009b. The chemosensilla on tarsi of Locusta migratoria (Orthoptera: Acrididae):Distribution, ultrastructure, expression of chemosensory proteins. Journal of Morphology 270:1356-1363.
    Zhuge P P, Luo S L, Wang M Q, Zhang G.2010. Electrophysiological responses of Batocera horsfieldi (hope) adults to plant volatiles. Journal of Applied Entomology 134:600-607.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700