用户名: 密码: 验证码:
魔芋离体形态发生机制及其繁殖技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
魔芋(Konjac)是植物界中迄今发现唯一能大量合成葡苷聚糖(Konjac glucomannan)的高等植物,属天南星科(Araceae)魔芋属(Amrophophallus Blume),为多年生草本植物,广泛分布于我国西南山区,具有悠久的栽培和利用历史。魔芋葡甘聚糖是魔芋地下球茎主要贮藏物质,为一种高分子量碳水化合物,因具有良好的胶溶性、凝胶性、增稠性、成膜性及与其它植物胶的优良复配性等优点而在食品、化工、医药保健、环保等领域具有广泛的应用。因此,魔芋具有极高的市场开发和利用价值。
     魔芋为单叶柄支撑的单叶植物,通常利用球茎着生的根状茎进行无性繁殖,其繁殖系数极低,且多年沿用无性繁殖造成病原菌的积累、种性的退化,进而导致魔芋产量下降、品质劣化。由于缺乏稳定的良种繁育体系,种芋的数量和质量已经成为魔芋生产发展的瓶颈。自上个世纪80年代以来,许多研究者试图利用组织培养技术生产脱毒试管苗,以繁殖种芋,但试管苗因移栽成活率低且对田间管理技术要求较高,不能实现周年供应和长距离运输等缺点,无法在实际生产中广泛运用。二十世纪90年代以来,随着对植物变态器官发育机理认识的不断深入,人们在试管中已成功诱导出了块茎、球茎、鳞茎等营养繁殖器官,其中马铃薯试管块茎生产体系最为成熟,已经实现了工厂化生产,但有关魔芋试管球茎的研究国内外尚未见报道。本研究以花魔芋(A.rivieri)和白魔芋(A.albus)为材料,对魔芋试管球茎的形成及魔芋组织培养繁殖方式开展了系列研究,主要结果如下:
     1.幼嫩叶柄是魔芋组织培养较好的外植体,愈伤组织形成率高,状态好。MS+1.0mg/L NAA+1.0mg/L BA适宜于愈伤组织诱导,而MS+0.5 mg/L NAA+0.5 mg/L BA有利于愈伤组织增殖。愈伤组织在继代培养过程中可形成3种不同的类型,即Ⅰ:水渍状,半透明;Ⅱ:淡黄色,结构疏松;Ⅲ:浅红或绿色,呈瘤状或球状,结构致密。在分化培养基上,Ⅰ型愈伤组织不能分化出芽,Ⅱ型可分化出不定芽,而Ⅲ型可通过拟球茎再生完整植株。这三种类型愈伤组织在特定的培养条件下可相互转化。组织学观察显示,三种类型的愈伤组织其组成细胞类型明显不同,其中Ⅲ型愈伤组织由保守分裂型细胞组成,其细胞中含有淀粉和葡甘聚糖颗粒,是一种半组织化结构。中等浓度(1.0~2.0 mg/L)的细胞分裂素(BA、KT、ZT和TDZ)与低浓度(0.1~1.0mg/L)的NAA配合均能促使Ⅲ型愈伤组织再生植株。
     2.魔芋离体形态建成以器官发生途径为主,拟球茎和芽发生是主要形式。组织学观察显示,魔芋叶柄无维管组织形成层,维管束外层薄壁在培养过程首先启动脱分化,进而形成愈伤组织。魔芋形态建成以器官发生途径为主,在特定培养条件下也可形成体细胞胚,但频率极低,且绝大部分体胚因高度畸形化而不能形成再生植株。魔芋可通过不定芽器官发生途径或拟球茎器官发生途径形成植株,通过拟球茎形成的植株不需生根培养就具有完整的根系,而不定芽在发育过程中不能直接生根且植株生长势弱。不定芽和拟球茎均起源于Ⅲ型愈伤组织的次表皮细胞,这类细胞在分化过程中首先形成拟分生组织团。拟分生组织团在分化培养中既可直接形成芽原基,进而发生不定芽,可形成一种中间的球状体,这种球状体具顶芽分生组织,叶原基不明显,它可进一步发育成拟球茎,进而形成完整植株。
     3.内源GA_3含量增加伴随着不定芽发生,而JA含量增加伴随着拟球茎发生,内源激素平衡是器官发生方式的关键调空因素。魔芋叶柄薄壁细胞在脱分化形成愈伤组织过程中,其内源激素(IAA、GA_3、ABA和JA)含量发生了明显的变化。内源IAA含量培养初期缓慢下降,10d后快速上升,30d后达到平稳。内源ABA含量在培养20d内呈下降趋势,之后迅速上升。内源GA_3和JA含量则在整个愈伤组织诱导过程中迅速下降。研究发现,三种内源激素(GA_3、ABA和JA)在形成芽和拟球茎的愈伤组织中含量变化明显不同。内源GA_3水平在拟球茎发生过程中变动不大,而在不定芽发生过程中快速上升,其绝对含量也比前者高;内源ABA在拟球茎发生过程中基本维持稳定,而在不定芽发生过程中则迅速下降;内源JA含量在拟球茎形成过程中呈明显上升趋势,而在不定芽发生过程中变化不明显。只有内源IAA无论是拟球茎还是不定芽形成过程其含量均呈下降趋势。内源GA_3与ABA和JA的平衡水平在两种不同器官发生途径中呈现出明显的差异,但GA_3/JA差异最为显著,在两种器官发生途径中其变化趋势完全相反。上述结果说明,魔芋离体器官发生形式与内源激素变化及平衡水平相关。
     4.魔芋试管球茎(即拟球茎)的形成受培养基和培养条件的影响。中等浓度的BA(1.0~2.0 mg/L)与低浓度的NAA(0.1~0.5 mg/L)配合有利于Ⅲ型愈伤组织形成试管球茎,其中以MS+2.0 mg/L BA+0.5 mg/L NAA表现最佳。在一定范围内提高培养基中蔗糖浓度有利于白魔芋试管球茎形成,其中6%(w/v)蔗糖效果最好。而花魔芋试管球茎形成所要求的蔗糖浓度较低(4%)。光周期对试管球茎的发生影响不明显,而培养温度的影响则较大,22℃条件下,花魔芋和白魔芋试管球茎形成率、形成个数和单球茎鲜重均达最大值。试管球茎在培养过程可产生次级小球茎以进行增殖,但自然增殖率较低,通过损伤主芽方法打破主芽顶端优势,可促使次级小球茎的发生。
     5.选择性培养魔芋愈伤组织有助于降低再生植株遗传变异频率。对魔芋Ⅲ型愈伤组织进行选择并于适宜培养基上继代培养,弃除状态发生改变的愈伤组织类型,获得不同培养时期的4个再生植株群体G0(初代培养产生)、G2(继代3次产生)、G4(继代5次产生)和G7(继代8次产生)。经两种分子标记技术(RAPD和ISSR)分析显示,G0群体变异频率最高(RAPD:15.6%;ISSR:18.0%),G2、G4和G7的变异频率依次下降。四个群体中,G0再生植株的RAPD差异位点数最多,而其它三个群体的植株差异位点数较少。ISSR技术检测的差异位点数比RAPD技术检测到的要高,但在四个群体中分布差异不明显。上述结果表明,通过对Ⅲ型愈伤组织选择性培养不会导致变异频率增加,魔芋组织培养中的不稳定性主要发生于基因组中重复区域,造成植株性状改变的可能性较小。
     6.试管球茎是建立魔芋繁殖体系的适宜方式,魔芋试管球茎田间生长优势比试管苗明显。将魔芋试管球茎和试管苗进行田间种植,结果发现,试管球茎和试管苗均可用作种芋繁殖。但试管苗只在特定的苗龄期时成活率高,且受移栽时温度影响。试管球茎需要一段时间低温贮藏以完成生理休眠,其植株生长势强,成活率高,体积大的试管球茎(重量大于0.5g)优势更明显。与试管苗相比,由试管球茎产生的球茎体积大、重量高,更适宜于商品种芋的生产。
Up to now, konjac is the only higher plant of vegetable kingdom that largely synthesizes konjac glucomannan, an importantly industrial material. Konjac is perennial herbaceous species belonging to Amorphophallus Blume (Araceae) and widely distributed throughout the mountainous areas in Southwest China with a long history of cultivation and utilization. Konjac glucomannan, a high-molecular-weight carbohydrate, is main storage substance in konjac corm. Due to its excellent physico-chemical characteristics, such as glue dissolving, gelling, thickening, film forming and mixing with other plant glues, konjac glucomannan has high values and is used widely in the food, chemistry, medicine and health protecting, and environment protection.Konjac is a one-leaf plant with a single petiole and conventionally propagated through rhizomes produced by the main corms with a low propagation coefficient. In addition, continuous asexual reproduction accumulates pathogens in corms that causes character degeneration and hence a dramatic loss in yield and degradation in quality. Due to lack of stable seed-corm propagation system, the quantity and quality of seed corm have been bottlenecks hampering development of konjac cultivation in a large scale. Since 1980s, many researchers have paid attention to development of plant tissue culture system for konjac propagation via using in vitro plants. However, in vitro plants had many disadvantages, such as low survival rate after transplantation, requiring extensive care of field management and incapability of being supplied year-around and long-distance deliver. Since 1990s, people have approached gradually the mechanisms of plant storage organ formation, and induced many asexually propagated organs in vitro, such as tuber, corm, bulblet, etc. Among them, the production system of potato seed tuber is most mature and has been industrialized, but little information is available on konjac corm production in vitro. Using konjac (A. riviveri and A. albus) as experimental materials, we carried out a set of researches on in vitro corm formation and propagation methods. The results as followings:1. Yong petiole was optimum explant for konjac tissue culture due to high frequency of desirable callus induction. MS + 1.0 mg/L NAA + 1.0 mg/L BA was optimum for callus induction and MS+0.5 mg/L NAA + 0.5 mg/L BA for callus proliferation and growth. During callus subculture, three types of calli were identified: I. watered, translucent; II. yellowish, loose in structure; III. pink or greenish, nodular or globular, compact in texture. On differentiation medium, except for type I callus, type II and III are capable of differentiating buds. Culture of typeⅢcallus could produce complete plantlets via corm-like structure pathway. In specific culture conditions, the types of calli could change mutually. Histological observations showed that different types of calli composed of different types of cells, of which typeⅢcallus was semi-organized tissue composed of slowly proliferated cells that contain starch and glucomannan granules. Moderate concentrations of cytokinins (BA, KT, ZT and TDZ) (1.0~2.0 mg/L) combined with low concentrations of NAA (0.1~1.0 mg/L) were optimum for typeⅢcallus differentiation.
     2. In vitro morphogenesis of konjac occurred manily through organogenesis and adventitious bud and corm-like structure (CLS) were main pathways. Histological observations showed that cambium was absent in konjac petiole and that the cells outside vascular bundles of petiole firstly started dedifferentiation division to form callus. In vitro morphogenesis in A. rivieri occurred mainly through organogenesis while somatic embryogenesis took place under special culture conditions but with very low frequency. Most somatic embryos cannot convert to plants due high-frequency abnormality in these embryos. In vitro plants were obtained through adventitious bud or CLS pathways. The CLS derived plants had complete root systems without rooting culture while adventitious buds could not root during differentiation culture and grew slim. Both adventitious bud and CLS originated from subepidermal cells of typeⅢcallus that firstly form meristematic masses during further differentiation culture. The meristematic masses could directly develop into bud primordia that developed further into adventitious buds. Meanwhile, the masses could convert to interim globoids that have apical meristem and showed indistinct leaf primordia and developed into CLSs and complete plantlets during further subcultures.
     3. Endogenous GA_3 content increased with bud formation whilst JA increased with corm development, indicating balance of endogenous hormones a key factor influencing organogenesis pathways. During the course of petiole parenchyma cells to form callus, the contents of endogenous hormones (IAA, GA_3, ABA and JA) changed obviously. Endogenous IAA level fell at initial culture stage and then rapidly rose 10d later and was stable after culture for 30d. Endogenous ABA content fell within first 20d and increased during further culture. Endogenous GA_3 and JA content decreased during the whole induction culture. The alternation of contents of the three endogenous hormones (GA_3, ABA and JA), either in the callus that formed CLSs or in the one that differentiated adventitious buds, showed different tendencies. The content of endogenous GA_3 hardly changed in CLS organogenesis but rapidly increased in adventitious bud organogenesis. Endogenous ABA level was almost stable during CLS organogenesis but rapidly fell in adventitious bud organogenesis pathway. Endogenous JA level rose obviously in CLS formation but showed an indistinct change in adventitious bud differentiation. Only the content of endogenous IAA decreased consistently in both the two organogenesis pathways. The balance of GA3 to ABA or JA showed different patterns in the two pathways, but the latter one showed most remarkable difference. The GA_3/JA ratio showed completely reversed tendencies in the two pathways. These results indicated that the pathways of konjac organogenesis in vitro were related to the changes of endogenous hormones and their balances.
     4. In vitro konjac corm formation was influenced by medium and culture condition. The combinations of BA at moderate concentrations (1.0~2.0 mg/L) and NAA at low concentration (0.1~0.5 rag/L) favoured corm formation from type III callus. Among these combinations, MS+2.0 mg/L BA+0.5 mg/L NAA was most effective for both A. rivieri and A. albus. Increase of sucrose concentrations in a certain range (2-8%) favoured A. albus corm formation; 6% (w/v) was most efficient. As for A. rivieri, lower concentration (4%) was required for corm formation. In vitro corm formation was not affected by light periods but greatly influenced by culture temperature. Cultured in 22℃, the percentage of corm formation, mean number of corms and mean corm fresh weight reached their maximum. Wounding the apical meristem of the corm could overcome apical dominance and promote cormel propagation.
     5. Selection and culture of konjac callus favoured lowering the genetic variation frequency of plants regenerated from the callus. Four groups of regenerated plants GO (derived from the first culture), G2 (derived from the third subculture), G4 (derived from the fifth subculture) and G7 (derived from the eighth subculture) were obtained by selection and culture of well-developed typeⅢcallus. RAFD and ISSR analyses showed that the genetic variation frequency of G0 was the highest (RAPD: 15.6%; ISSR: 18.1%) followed by G2, G4 and G7. Among the four groups, GO had more variation loci (RAPD) than those of the other three. The variation loci detected by ISSR were more than those detected by RAFD and distributed randomly throughout the four groups. From these results, selective culture of typeⅢcallus provided a good measure to control genetic variation of their regenerated plants. The results revealed that the genetic instability induced by konjac tissue culture mainly took place in repeat regions of konjac genome, which hardly results in morphological variation.
     6. In vitro corm system is a suitable way applicable to konjac propagation. In vitro corm had obvious advantages over in vitro plants in adaptability under field conditions. The growth of both in vitro corm and plantlets was compared in the field and the results revealed that although both in vitro derived plants and corms could produce corms after transplantation the survival rate of in vitro plants was much affected by temperature during transplanting. However, in vitro corm grew vigorously and had high survival rate, particularly when the large corms (over 0.5g in weight) were used and the physiological dormancy was broken. The harvested corms produced by in vitro corms were larger in size than those produced by plantlets and hence more suitable for commercial propagation of seed corms.
引文
1.陈惠民,腾世云,于家驹.小麦(Triticum aestivum)幼叶愈伤组织的诱导及器官的形成.植物学报,1980,22(2):112-115
    2.陈雁.魔芋种传病害管理探讨.种子,2001,4:40-42
    3.陈永波,吕世安,盛德贤.魔芋试管苗及种芋工厂化生产栽培技术研究.氨基酸和生物资源,2004(3):17-19
    4.陈永波,赵清华,滕建勋,钟刚琼.正交试验优化花魔芋组织培养条件.氨基酸和生物资源,2005,27(2):29-30
    5.陈正华.木本植物组织培养及其应用.北京:高等教育出版社,1986,456-466
    6.崔红,王伟,陈亮,沈明山,陈睦传.甘薯不同类型愈伤组织的比较.厦门大学学报(自然科学版).2000,39(1):116-121
    7.刁现民,孙敬三.植物体细胞无性系变异的细胞学分子生物学研究进展.植物学通报,1999,16(4);372-377
    8.杜长玉,李东明,张志龙.不同生长素在马铃薯上应用效果的研究.中国马铃薯,2000,14(3):137-140
    9.费甫华,盛正逵.我国魔芋病害近年持续流行原因及其综合防治对策.湖北植保,2000,1:21-22
    10.费甫华,张化平,李松,徐小燕,刘仁.我国魔芋5种新病害的识别与防治.植物医生,2001,14(2):26-27
    11.冯叙桥,赵静.魔芋的利用和加工.食品与机械,1995,(5):12-13
    12.甘立军,曾晓春,周燮.茉莉酸类与植物地下贮藏器官的形成.植物学通报,2001,18(5):546-553
    13.谷瑞升,蒋湘宁,郭仲琛.植物离体培养中器官发生调控机制的研究进展.植物学通报,1999,16(3):238-244
    14.顾玉成,吴金平,万进,宋志红.魔芋不同外植体诱导比较实验.中南民族大学学报(自然科学版),2004,23(3):17-19
    15.郭华春,林满.马铃薯块茎诱导中高浓度蔗糖对内源赤霉素活性的影响.见:陈伊里,屈冬玉主编,高新技术与马铃薯产业.哈尔滨:哈尔滨工程大学出版社,2002,35-38
    16.郭小密,王就光.魔芋软腐病病原细菌的初步坚定.华中农业大学学报,1989,8(1):88-89
    17.郭子彪,盖钧镒.内源激素IAA,ABA对大豆萌发子叶胚性愈伤组织诱导及其分化的调控.大豆科学,1997,16(3):194-198.
    18.过全生.杨树叶薄层培养中不定芽形态发生的细胞组织学研究.植物学报, 1997,39(12):1131-1137
    19.韩碧文,李颖章.植物组织培养中器官建成的生理生化基础.植物生理学通讯,1993,10(2):1-6
    20.何家庆.论东南亚魔芋资源的利用历史、现状及开发潜力.武汉植物学研究,1995,13(3):269-279
    21.何家庆.论我国魔芋资源产业化与可持续发展.湖北民族学院学报(自然科学版),2001,19(1):5-9
    22.何家庆.魔芋栽培及加工技术.合肥:安徽科学技术出版社,1993,174-177
    23.胡家金,萧浪涛,熊兴耀,甘霖.美味猕猴桃不同类型愈伤组织的形态发生能力比较.植物生理学通讯,2001,37(2):119-121
    24.胡建斌,柳俊,严华兵,谢从华.魔芋不同类型愈伤组织及分化能力研究.华中农业大学学报,2004,23(6):654-658
    25.胡云海,蒋先明.不同糖类和BA对马铃薯试管薯的影响.马铃薯杂志,1989,3(4):203-206
    26.黄承钰,张茂玉.魔芋食品对糖尿病患者血糖影响的研究.营养学报,1989,11(4):360-364
    27.黄丹枫.魔芋组织培养细胞分化机理及快繁技术研究.[西南农业大学博士学位论文].重庆:西南农业大学图书馆,1992
    28.黄丹枫,刘佩瑛.魔芋再生植株形态发生途径的细胞组织学观察.上海农学院学报,1994,12(1):25-30
    29.黄丹枫,陆文初.细胞分裂素与魔芋组织培养器官发生研究.西南农业大学学报,1993,15(6):522-526
    30.黄丹枫,陆文初.细胞分裂素与魔芋组织培养器官发生研究.西南农业大学学报,1993,15(6):522-526
    31.黄丹枫,庄天明,甘晓兵.魔芋组织培养器官发生综合因子的数学分析.上海农学院报,1994,12(4):260-265
    32.黄健秋,卫志明.针叶树体细胞胚发生的研究进展.植物生理学通讯,1995,31(2):85-90
    33.黄远新,何凤发,张盛林.魔芋组织培养与快速繁殖技术研究.西南农业大学学报(自然科学版),2003,25(4):309-312
    34.孔凡伦.白魔芋的组织培养和植株再生.植物生理学报,1986,1:41-45
    35.孔凡真.魔芋在医药保健上的应用开发与市场前景.中国中医药信息杂志,2001,8(6):44-45
    36.李宝健,曾庆平.植物生物技术.长沙:湖南科学出版社,1990,256-281
    37.李春香,周燮.MeJA对大蒜鳞茎膨大及内源激素含量的影响.生命科学研究,2002,6(2):183-185
    38.李璠.中国栽培植物发展历史.北京:科学出版社,1984,125-126
    39.李恒,龙春林.中国魔芋属的分类问题.云南植物研究,1988,20(2):168-170
    40.李恒.天南星科的生态地理和起源.云南植物研究.1986,8(4):363-381
    41.李鸿恩,张建新.魔芋营养成分分析研究.中国野生植物,1989,2:9-12
    42.李军生,李春遥,杨倩华.甘蔗幼叶脱分化及愈伤组织形成过程中内源细胞分裂素和ABA的变化.广西植物,1992,12(2):177-181
    43.李浚明.植物组织培养教程.北京:中国农业大学出版社,1992,77-78
    44.李亮亮,朱宝成,成亚利,吴爱民,李庆余.掌状半夏组织培养过程中的染色体变异.农业生物技术学报,1998,6(1):23-27
    45.李曙轩.植物生长调节剂与蔬菜生产.上海:上海科学技术出版社,1992
    46.李卫东,葛会波,周春江,张洁.草莓花药愈伤组织类型与状态调控研究.河北农业大学学报,2004,27(2):59-63
    47.李文安,张映璜,王玉琴.不同品种花叶芋的组织培养.植物生理学报,1991,17(3):245-250
    48.李雪梅,刘熔山.小麦幼穗胚性愈伤组织诱导及分化过程中的内源激素的作用.植物生理学通讯,1994,30(4):255-260
    49.连勇,邹颖,东惠茹,金黎平,林桓.马铃薯试管块茎形成过程中几种内源激素的变化.园艺学报,2002,29(6):537-541
    50.连勇.马铃薯试管薯诱导与应用.马铃薯杂志,1995,9(4):273-240
    51.梁一池,扬华.植物组织培养基的研究进展.福建林学院学报,2002,22(1):93-96
    52.梁预,姚敦义.关于细胞的全能性问题.植物学通报,1998,15(4):41-44
    53.林蓉,谢春梅,谢世清.优质魔芋组培快繁技术研究进展.中国农学通报,2005,21(1):153-155
    54.刘贵周,谢庆华,赵庆云,谢世清.魔芋组织培养技术研究进展.中国农学通报.2003,19(4):101-103
    55.刘梦芸,蒙美莲,门福义,毛雪飞.CA_3、IAA、CTK和ABA对马铃薯块茎形成调控作用的研究.内蒙古农牧学院学报,1997,18(2):16-20
    56.刘梦芸,蒙美莲,门福义,毛雪飞.马铃薯生育期间内源激素的变化.马铃薯杂志,1996,10(4):197-202
    57.刘佩瑛,张盛林.中国魔芋产业的兴起、现状、问题和对策.山区开发,2000,9(1):3-5
    58.刘佩瑛,张盛林.中国魔芋科学技术的研究和应用.西南农业大学学报,1995,增刊:1-13
    59.刘淑琼,桂耀林,顾淑荣.石刁柏胚乳愈伤组织内胚胎发生的组织细胞学观察.实验生物学学报,1990,24(4):391-397
    60.刘玉平,柯卫东,黄新芳,彭静.试管芋的诱导.园艺学报,2003,30(1):43-46
    61.柳俊,谢从华.马铃薯块茎发育机理及其基因表达.植物学通报,2001,18(5):531-539
    62.柳俊,胡建斌,谢从华.魔芋离体繁殖的继代方式研究.见:陈振光主编.植物组织培养与试管育苗.北京:中国农业科学技术出版社,2004,98-102
    63.柳俊,谢从华,余展生,刘勇.魔芋离体繁殖研究.华中农业大学学报,2001,20(3):283-285
    64.柳俊,谢从华.马铃薯种薯退化与试管薯应用技术.长江蔬菜,1998,(8):1-4
    65.柳俊.马铃薯试管块茎的形成机理及块茎形成调控.[华中农业大学博士学位论文].武汉:华中农业大学图书馆,2001
    66.楼高文,柏春祥,殷肇君.魔芋开发利用现状及发展对策.上海水产大学学报,1999,6(1):76-80
    67.鲁红学,胡桂香,周燚,潘娜,黄小贞.花魔芋组织培养初步研究.长江大学学报(自然科学版),2005,2(5):52-54
    68.吕世安,沈艳芬,黄元勋,陈永波,柳文录,盛德贤,于斌武.魔芋组织培养及试管苗快繁原原种芋技术研究.湖北农业科学,2003,(6):68-70
    69.吕心泉,段颖,安辛欣.魔芋仿生食品的研究开发.中国食品添加剂,2002,(6):75-78
    70.马崇坚.马铃薯试管块茎形成与内源物质的关系.[华中农业大学博士学位论文].武汉:华中农业大学图书馆,2003
    71.马林,张玲,李卫锋.影响魔芋愈伤组织形成的几个因素.广西植物,2003,23(6):553-557
    72.马生健,曾富华,余炳生,陶美华,卢向阳.高羊茅愈伤组织的诱导与内源激素含量研究.湛江师范学院学报,2002,23(6):53-56
    73.毛碧增,何伯伟,苏善标,李德荼.马铃薯试管苗及微型种薯形成的几个因素研究.浙江大学学报(农业与生命科学版),2002,28(4):417-420
    74.蒙美莲,刘梦芸,门福义,张宏志.赤霉素和脱落酸对马铃薯块茎形成的影响.马铃薯杂志,1994,8(3):134-137
    75.潘瑞炽,李玲.植物生长发育的化学调控(第2版).广州:广东高等教育教出版社,1998,47-52
    76.庞杰,林启训,段芳.魔芋贮藏生理研究,中国农学通报,2000,16(5):67-68
    77.彭艳华,刘成运.脱落酸与胚胎发育的关系及作用方式的研究进展.武汉植物学研究,1991,9(3):289-292
    78.邱凌,仇农学.魔芋资源极其开发利用价值.国土与自然资源研究,1995,2:73-75
    79.阙国宁 译.(Bonga J M著).树木组织培养.北京:中国林业出版社,1988,21-23
    80.沈淞海,郭奇珍.茉莉酮酸类物质与块茎形成.植物生理学通讯,1996,32(4):292-294
    81.沈淞海,沈海铭,吴建华.月光花素调控下甘薯的生长发育.浙江农业大学学报,1994,20(3):254-256
    82.沈悦玉,杨相庆.魔芋胶的特征和魔芋凝胶食品.食品科学,1995,16(6):14-19
    83.施和平,梁朋.扎米莲叶片块茎的诱导与其植株再生.园艺学报,2005,32(1):29-29
    84.史春余,王振林,郭风法,余松烈.甘薯块根膨大过程中ATP酶活性、ATP和ABA含量的变化.西北植物学报,2002,22(2):315-320
    85.苏承刚,张兴国.甜魔芋愈伤组织诱导与植株再生研究.西南农业大学学报(自然科学版),2004,26(5):601-602
    86.孙远明,刘佩瑛,刘朝贵,苏承刚,李启明.花魔芋球茎休眠特征的研究,西南农业大学学报,1995,17(2):118-121
    87.孙远明,刘佩瑛,刘朝贵,苏承刚.花魔芋球茎休眠与脱落酸和赤霉素的关系.园艺学报,1996,23(3):303-304
    88.孙远明,吴青.魔芋葡甘聚糖的结构、食品学性质及保健功能.食品与发酵工业,1999,25(5):47-51
    89.唐玉林,陈婉芬,周燮.烟草叶块分化根和芽过程中内源激素水平的变化.南京农业大学学报,1996,19(2):12-16
    90.陶静,詹亚光,由香玲,杨传平,刘玉喜.白桦组培再生系统的研究(Ⅲ).组培过程中内源激素的变化.东北林业大学学报,1998,26(6):6-9
    91.王海波.离体培养与细胞状态调控.科学(重庆),1994,11:53-56
    92.王海波.组织培养中细胞状态的调控.作物杂志,1991,3:3-6
    93.王凯基,张丕方,倪德祥,朱修竹,杨维勤.油橄榄(Olea europaea L.)组织培养的细胞组织学研究.Ⅰ.愈伤组织的建成.植物学报,1979,21(2):225-230
    94.王玲,李勇军,房亚南,马继琼.魔芋组织培养的一步成苗技术研究.西南农业学报,2004,17(5):636-638
    95.王平华,谢庆华,吴毅歆,张勇飞,高丽琼.白魔芋不同外植体组培分化条件研究.西南农业大学学报,2001,23(1):63-65
    96.王少南.魔芋及其病害研究进展.广西农业科学,2004,1:68-70
    97.王银元,吴祝平.魔芋栽培加工新技术.武汉:武汉大学出版社,2003,4-6
    98.王灶安.植物显微技术.北京:农业出版社,1989,1-26
    99.韦彦余,赵民安,王晓军.植物体细胞无性系变异在植物性状改良中的应用.植物生理学通讯,2004,40(6):763-771
    100.吴毅歆,隋启君,陈海如.魔芋胞芽分化及植株再生条件的研究.云南农业大学学报,2004,19(2):184-187
    101.吴毅歆,谢庆华.白魔芋不同外植体的组培和分化条件初探.植物生理学通讯,2001,37(6):513-514
    102.奚元龄.植物细胞的全能性与细胞分化.遗传学报,1978,5(1):165-168
    103.肖关丽,杨清辉,李富生,杨生超.甘蔗愈伤组织分化绿苗内源激素变化规律研究.西南农业大学学报,2002,24(4):337-339
    104.肖关丽,杨清辉.植物组织培养过程中内源激素研究进展.云南农业大学学报,2001,16(2):136-138
    105.谢笔钧,李波.魔芋胶生产工艺研究进展.粮食与饲料工业,2002,(3):43-45
    106.谢春梅,何丽萍,吴华英,林蓉,谢世清,彭凤梅.魔芋实生种子利用的研究进展.中国种业,2005,1:15-18
    107.谢从华,柳俊.植物细胞工程.北京:高等教育出版社,2004,26-28
    108.谢建华,林常青,庞杰.魔芋精粉的应用及研究进展.河南科技大学学报(农学版),2004,24(3):60-63
    109.谢庆华,张云峰,严胜柒,桑林,谢世清.不同外植体诱导魔芋微球茎的比较研究.云南农业大学学报,2005,20(3):350-355
    110.徐刚,王彩莲,慎玫,陈秋方.魔芋茎尖组织培养和植株再生的研究.生物技术,1994,4(1):19-21
    111.徐汉卿.植物学.北京:中国农业出版社,1995,149-159
    112.许智宏,刘桂云.烟草叶组织培养中愈伤组织和芽形成的细胞学观察.植物学报,1980,22(1):1-5
    113.薛建平,朱艳芳,张爱民,柳俊.半夏试管块茎直接再生技术的研究.作物学报,2004,30(10):1060-1064
    114.严华兵,胡建斌,柳俊.白魔芋高效再生体系的建立及其抗生素敏感性研究.湖北农业科学,2005,4:71-74
    115.杨代明,刘佩瑛.中国魔芋种植区划.西南农业大学学报,1990,12(1):1-7
    116.杨永华,郭子彪,萧凤迥.藏红花不同类型愈伤组织器官形态发生能力的差异.植物资源与环境,1996,5(3):63-64
    117.叶兴国,王连铮.大豆花药愈伤组织的分化及其内源激素分析.作物学报,1997,23(5):555-560
    118.余迪求,杨明兰,李宝健.建兰原球茎发生及其无性繁殖系建立.中山大学学报论丛,1996,2:13-18
    119.虞泓,陆永武,程治英.大百合的离体快繁和鳞茎的诱导.植物生理学通讯,2005,41(2):192
    120.曾昭初,高翔,罗鸿源,舒玲.白魔芋组织培养快速繁殖技术的研究.贵州农业科学,1997,25(1):28-31
    121.张春义,杨汉民.植物体细胞无性系变异的分子基础.遗传,1994,16(2):44-48
    122.张东华,汪庆平.天然高分子魔芋葡甘聚糖的复配产物成膜研究.日用化学工业,2000,30(1):19-21
    123.张国裕,程智慧,李娟,周文安,王新华.银条茎尖培养快繁及离体根状茎的诱导.园艺学报,2004,31(1):106-108
    124.张和禹,赵正龙.桑下胚轴愈伤组织诱导及分化过程中内源激素的变化.蚕业科学,2000,26(1):1-4
    125.张磊,王震星,刘贵仁.小枣发育枝愈伤组织类型及细胞学观察.华北农学报,1998,13(2):117-121
    126.张茂玉,黄承钰.魔芋食品对人体脂质代谢的研究.营养学报,1989,11(1):25-29
    127.张明方,将有条.番茄不同分化潜力愈伤组织中内源多胺比较及外源多胺对分化的影响.浙江农业大学学报,1997,23(6):677-681
    128.张丕方,王琦.烟草薄层培养中细胞早期动态研究.植物学报,1989,31:422-426
    129.张盛林,刘佩瑛,张兴国,张玉进,苏承刚.中国魔芋资源和开发利用方案.西南农业大学学报,1999,21(3):215-219
    130.张盛林,孙远明,刘佩瑛,苏承刚,张兴国.花魔芋切块栽培主要农艺措施的优化研究.园艺学进展,1998,(2):658-662
    131.张盛林.魔芋良种繁育体系的建立.山区开发,2000,(9):26-27
    132.张兴国,陈劲枫,张盛林,苏承刚,刘佩瑛.魔芋原生质体游离和培养条件研究.西南农业大学学报,1992,14(1):42-43
    133.张兴国,刘佩瑛.魔芋无性繁殖技术.山区开发,1993,(5):145-146
    134.张兴国,苏承刚,刘佩瑛.魔芋快繁体系建立和人工种子研制.西南农业大学学报,1993,15(3):259-261
    135.张兴国.魔芋组织培养的研究.西南农业大学学报,1988,10(3):345-349
    136.张征兰,黄连超,金聿.魔芋组织培养与植株再生的研究.华中农业大学学报,1986,5(3):224-227
    137.张政,张强,王转花,林汝法,陶雍如.荞麦幼苗内源激素的高效液相色谱测定法.色谱,1994,12(2):140-043
    138.赵国林,李师翁.黄花菜离休花梗愈伤组织发生与器官再生的细胞组织学观察.植物学报,1989,31(2):484-486
    139.赵庆云,彭凤梅,张发春,谢世清,黄荥春,杨冰.魔芋种芋的无性繁殖技术.中国种业,2002,(5):36
    140.朱至清.体细胞无性系变异与植物改良.植物学通报,1991,8(增刊):1-8
    141.庄承纪,周建葵.魔芋属植物愈伤组织的诱导和再生植株的研究.云南植物研究,1987,9(3):339-347
    142. Abe M, Shibaoka H, Yamane H, Takahashi N. Cell cycle-dependent disruption of microtuber by methyl jasmonate in tobacco BY-2 cells. Protoplasma, 1990, 156: 1-8
    143.Abou-Mandour A A, Hartung W. The effect of abscisic acid and increased osmotic potential of the media on growth and root regeneration of Zea mays Callus. Plant physiology, 1986,22:139-145
    144.Alizadeh S, Mantell S H, Viana A M. In vitro shoot culture and microtuber induction in the steroid yam Dioscorea composita Hemsl. Plant Cell Tiss Org Cult, 1998,53:107-112
    145.Allemannl J, Laurie S M, Thiart S, Vorster H J. Sustainable production of root and tuber crops (potato, sweet potato, indigenous potato, cassava) in southern Africa. Afri J Bot, 2004, 70: 60-66
    146. Altaian A, Goren R. Promotion of Callus Formation by Abscisic Acid in Citrus Bud Cultures. Plant Physiol, 1971,47: 844- 46
    147.A1-Zahim M A, Ford-Lloyd B V, Newbury H J. Detection of somaclonal variation in garlic (Allium sativum L.) using RAPD and cytological analysis. Plant Cell Rep, 1999,18:473-477
    148.Asokan M P, O'Hair S K, Litz R F. In vitro plant regeneration from corm callus of Amorphophallus Rivieri Durieu. Sci Hortic, 1984, 24: 251-256
    149.Ap Rees T, Burrell M M, Entwistle T G, Hammond J B, Kirk D, Kruger N J. Effects of low temperature on the respiratory metabolism of carbohydrates by plants. Symp Soc Exp Biol, 1988,42: 377-393
    150.Barker W G, Steward F C. Growth and development of the banana plant. I. The growing regions of the vegetative shoot. Ann Bot, 1962, 26: 389-411
    151.Bingham E T, McCoy J T. Somaclonal variation in alfalfa. Plant Breed Rev, 1986, 4: 123-152
    152.Bird A. DNA methylation patterns and epigenetic memory. Gene and Development, 2002, 16: 6-12
    153.Bobak M, BlehovaA, Samaj J, Ovecka M, Kristin J. Studies of organgenesis from the callus culture of the sundew (Drosera spathuluata Labill.) J plant Physiol, 1993, 142:251-253
    154.Bretell R I, Dennis E S, Scowcroft W T. Molecular analysis of a somaclonal mutant of maize alcohol dehydrogenase. Mol Gen Genet, 1986,202: 235-239
    155.Budimir S. Developmental histology of organogenic and embryogenic tissue in Picea omorika culture. Biol Plant, 2003, 47: 467-470
    156.Carvalho C H S, Bohorova N, Bordallo P N, Abreu L L, Valicente F H, Bressan W, Paiva E. Type II callus production and plant regeneration in tropical maize genotypes. Plant Cell Rep, 1997,17: 73-76
    157.Chang C, Stewart R C. The two-component system. Plant Physiol, 1998, 117:723-731
    158.Cholewa E, Griffith M. The unusual vascular structure of the corm of Eriophorum vaginatum: implications for efficient retranslocation of nutrients. J Exp Bot, 2004, 55:731-741
    159.Choveaux N A, Staden J V. The effect of 1-Naphthaleneacetic acid on the endogenous cytokinin content of aseptically cultured bark Segments of Salix babylonica. Plant Cell Physiol, 1981,22: 1207-1214
    160.Chu C C. Contributions of Chinese botanists to plant tissue culture in the 20th century. Acta Bot Sin, 2002,44: 1075-1084
    161.Christianson M L, Warnick D A. Competence and determination in the process of in vitro shoot organogenesis. Dev Biol, 1983,95: 288-293
    162.Creelman R A, Mullet J E. Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol, 1997,48: 355-381
    163 Damasco O P, Graham G C, Henry R J, Adkins S W, Smith M K, Godwin I D. Random amplified polymorphic DNA (RAPD) detection of dwarf off-types in micropropagated Cavendish (Musa spp AAA) bananas. Plant Cell Rep, 1996, 16: 118-123
    164.Dantu P K, Bhojwani S S. In vitro corm formation and field evaluation of corm-derived plants of Gladiolus. Sci Hortic, 1995, 61: 115-129
    165.De Klerk G J, Arnholdt-Schmitt B, Lieberei R, Neumann K H. Regeneration of roots, shoots and embryos: physiological, biochemical and molecular aspects. Biol Plant, 1997, 39: 53-66
    166.Dennis E S, Brettell R I, Peacock W J. A tissue cultured Adhl mull mutant of maize results from a single base change. Mol Gen Genet, 1987,210: 181-183
    167.Dermastia M, Ravnikar M, Vihar B, Kovac M. Increased level of cytokinin ribosides in jasmonic acid -treated potato (Solanum tuberosum) stem node cultures. Physiol Plant, 1994, 92: 241-246
    168.Dhaliwal A S, Ramesar-Fortner N S, Yeung E C, Thorpe T A. Competence, determination and meristemoid plasticity in tobacco organogenesis in vitro. Can J Bot, 2003, 81: 611-621
    169.Doleze I J, Novak F J. Effect of plant tissue culture media on the frequency of somatic mutations in Tradescantia stamen hairs. Z. Pflanzenphysiol, 1984, 114:51-58
    170.Ewing E E. In Davies P J eds. Plant Hormones and Their Role in Plant Growth and Development. Martinus Nijhoff Publishers, Netherlands, 1987: 515-530
    171.Fang W X, Wu P W. Variations of konjac glucomannan (KGM) from Amorphophallus konjac and its refined powder in China. Food Hydrocolloid, 2004,18: 167-170
    172.Gandawijaja D, Idris S, Nasution P, Nyman L P, Arditti J. Amorphophallus titanum Becc: an historical review and some recent observations. Ann Bot, 1983, 51:269-278
    173.Ghosh A, Gadgil V N. Shift in ploidy level of callus tissue: A function of growth substances. Ind J Exp Biol, 1979,17: 562-564
    174.GoIeniowski M, Dellongo O, Deforchetti M D, Arguello A. Relationship between peroxidases and in vitro bulbification in garlic (Allium sativum L.). In vitro Cell Dev Biol-Plant, 37: 683-686
    175.Gauttheret R J. Cell differentiation and morphogenesis. In: Bergmann W (eds): North-Holand Publishing Co., 1966, Amesterdam, 55-95
    176.Harris P J, Ferguson L R, Robertson A M, McKenzie R J, White J B. Cell-wall histochemistry and anatomy of taro (Colocasia esculenta). Aust J Bot, 1992, 40:207-222
    177.Hartmann C, Henry Y, De Buyser J, Aubry C, Rode A. Identification of new mitochondrial genome organizations in wheat plants regenerated from somatic tissue cultures. Theor Appl Genet, 1989, 77:169 - 175
    178.Hedden P, Proebsting W M. Genetic analysis of gibberellin biosynthesis. Plant Physiol, 1999, 119:365-370
    179.Huang D F, Wu A Z, Liu P Y. Studies on genetic stability of Amorphophallus rivieri tissue culture progenies. Acta Hortic, 1995, 402: 214-221
    180.Hussey G, Stacey N J. Factors affecting the formation of in vitro tuber of potato. Ann Bot,1984,6: 14-22
    181.Irawati, Arditti J, Nyman L P. In vitro propagation of the Elephant Yam, Amorphohallus campanulatus var. hortensis Backer {Araceae). Ann Bot, 1986, 57:11-17
    182.Jackson S D. Multiple signaling pathways control tuber induction in potato. Plant Physiol, 1999,119: 1-8
    183.Jasik J, Mantell S H. Effect of jasmonic acid and its methylester on in vitro microtuberisation of three food yam (Dioscorea) species. Plant Cell Rep, 2001, 19:863-867
    184.Jean M J, Cappadocia M. In vitro tuberization in Dioscorea alata L. 'Brazo fuerte'\ and 'Florido' and D. abyssinica Hoch. Plant Tiss Org Cult, 1991 26: 147-152
    185.Karp A. Somaclonal variation as a tool for crop improvement. Euphytica, 1995, 85: 295-302
    186.Khuri S, Moorby J. Investigations into the role of sucrose in potato cv. Estima microtuber production in vitro. Ann Bot, 1995, 75: 295-303
    187.Koda Y. Possible involvement of jasmonates in various morphogenic events. Phsiol Plant, 1999,100: 639-646
    
    188.Koda Y, Kikuta Y, Tazaki H, Tsujino Y, Sakamura S, Yoshiara T. Potato tuber-inducing activities of jasmonic acid and related compounds. Phytochemistry, 1991,30: 1435-1438
    
    189.Koda Y, Okazawa Y. Detection of potato tuber-inducing activity in potato leaves and old tubers. Plant Cell Physiol, 1988,29: 969-974
    190.KohIenbach H W, Becht C. In vitro propagation of Amorphophallus titanum Becc and Amorphophallus rivieri Durieu. Acta Hortic, 1988,226: 65-72
    191 .Kumar D, Warring P F. Factors controlling stolon development in the potato plant. New Phytol, 1972, 71: 639-648
    192.Kuznetsova O I, Ash O A, Hartina G A, Gostimskij S A. RAPD and ISSR analyses of regenerated pea Pisum sativum L. plants. Russ J Genet, 2005,41: 60-65
    193.Larkin P, Scowcroft W R. Somaclonal variation, a novel source of variability from cell cultures for plant improvement. Theor Appl Genet, 1981, 60: 197-214
    194.Langens-Gerrits M, De Klerk G J, Croes A. Phase change in lily bulblets regenerated in vitro. Physiol Plant, 2003,119: 590-597
    195.Liu J, Xie C H, Liao Y, Huang D E. Effects of endogenous gibberellic acid and abscisic acid on the induction of potato microtubers in vitro. In: Liu Q and Kokubu J ads. Proceedings of 1st Chinese -Japanese Symposium on Sweetpotato and Potato. Beijing agricultural University, Beijing, 1995,267-275
    196.Luo J P, Jia J F. Callus induction and plant regeneration from hypocotyl explants of the forage legume Astragalus adsurgens. Plant Cell Rep, 1998,17: 567-570
    197.Ma Y, Wang H L, Zhang C J, Kang Y O. High rate of virus-free plantlet regeneration and production of sets from garlic and shallot. Plant Cell Rep, 1994, 14:65-68
    198.Maeda M, Shimahara H, Sugiyama N. The branched structure of konjak glucomamman. Agri Biol Chem, 1980,44: 245-252
    199.Mantell S H, Hugo S A. Effects of photoperiod, mineral medium strength, inorganic ammonium, sucrose and cytokinin on root, shoot and microtuber development in shoot cultures of Dioscorea alata L. and D. bulbifera L. yams. Plant Cell Tiss Org Cult, 1989,16:23-37
    200.Matsuki T, Tazaki H, Fujimori T, Hogetsu T. The influences of jasmonic acid methyl ester on microtubules in potato cells and fomation of potato tubers. Biosci Biotech Biochem, 1992, 56: 1329-1330
    201.McManus J F A. Histological and histochemical use of periodic acid. Stain Technol, 1948,23:99-108
    202.Morel G, Wetmore R H. Tissue culture of monocotyledons. Am J Bot, 1951, 33:138-140
    203.Murashige T. Plant propagation through tissue culture. Annu. Rev. Plant Physiol,1974,25: 135-138
    204.Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant, 1962,15: 473-497
    205.Neuhuber F, Park Y D, Matzke A J M. Susceptibility of transgene loci to homology-dependent gene silencing. Mol Gen Genet, 1994,224: 230-241
    206.Nishinari K, Williams P A, Phillip G O. Review of the physic-chemical characteristics and properties of Konjac glucomannan. Food Hydrocolloid, 1992, 6:199-222
    207.Nishinari N, Syono K. Changes in ednogenous cytokinin levels in partially synchronise culture tobacco cells. Plant Physiol, 1980, 65: 437-441
    208.Orton T J. Genetic instability during embryogenic cloning of celery. Plant Cell Tiss Org Cult, 1985,4:159 -169
    209.Ovecka M, Bobark M, Samaj J. Development of shoot primordial in tissue culture of Papaver somiferum L. Biol Plant, 1997, 39: 499-506
    210.Palombi MA, Damiano C. Comparison between RAPD and SSR molecular markers in detecting genetic variation in kiwifruit (Actinidia deliciosa A. Chev). Plant Cell Rep, 2002, 20:1061-1066
    211 .Pandit M K, Nath P S, Mukhopadhyay S, Devonshire B J, Jones P. First report of Dasheen mosaic virus in elephant foot yam in India. Plant Pathol, 2001, 50: 802
    212.Preece J E, Sutter E G Acclimatization of micorpropagated plants to the greenhouse and field. In: Debergh P C, Zimmerman R H, editors. Micropropagation. The Netherlands: Kluwer Academic, 1991, 71-93
    213.Pelacho A M, Mingo-Castel A M. Jasmonic acid induces tuberisation of potato stolons cultured in vitro. Plant Physiol, 1991, 97: 1253-1255
    214.Phillips G C. In vitro morphogenesis in plants - recent advances. In Vitro Cell Dev Biol-Plant, 2004,40: 342-345
    215.Prakash E, Sha Valli Khan P S, Sai Ram Reddy P, Rao K R. Regeneration of plants from seed-derived callus of Hybanthus enneaspermus L. Muell., a rare ethanobotanical herb. Plant Cell Rep, 1999,18: 873-878
    216.Redway F A. Histology and stereological analysis of shoot formation in leaf callus of Saintpaulia ionantha Wendl. (African violet). Plant Sci, 1991, 73: 243-251
    217.Sasaki K, Shimomura H, Kamada H, Harada H. IAA metabolism in embryogenic and non-embryogenic carrot cells. Plant Cell Physiol, 1994,35: 1159-1164
    218.Sadik S, Ozbun J L. Histochemical changes in the shoot tip of cauliflower during floral induction. Can J Bot, 1967,45: 955-959
    219.Shi Valli Khan P S, Prakash E, Rao K R. Callus induction and plant regeneration in Bixa orellana L., an annatto-yielding tree. In Vitro Cell Dev Biol-Plant, 2002,38:186-190
    220.Shillo R, Halevy A H. Flower and corm development in gladiolus as affected by photoperiod. Sci Hortic, 1981, 15: 187-196
    221.Siegel A. Gene amplification in pants, in: Modification of Information Content of Plant Cells, (eds by Markham R), Amsterdam: Elsivier. 1975,15-26
    222.Skirvin R M. Natural and induced variation in tissue culture. Euphytica, 1978, 27:241-266
    223.Skoog F, Miller C O. Chemical regulation of growth and organ formation in plant tissues culture in vitro. Symp Soc Exp Biol, 1957,11: 118-131
    224.Smith M K, Drew R A. Current applications of tissue culture in plant propagation and improvement. Aust J Plant Physiol, 1990,17: 267-289
    225.Suzuki T, Imamura A, Ueguchi C, Mizuno T. Histidine-containing phosphotransfer (HPt) signal transducers implicated in His-to-Asp phosphorelay in Arabidopsis. Plant Cell Physiol, 1998a, 39: 1256-1268
    226.Suzuki T, Miwa K, Ishikawa K, Yamada H, Aiba H, Mizuno T. The Arabidopsis sensor His-kinase, AHk4, can respond to cytokinins. Plant Cell Physiol, 2001b, 42:107-113
    227.Samaj J, Bobak M, Erdelsky K. Histological-anatomical studies of the structure of the organogenesis callus in Papaver somiferum L. Biol Plant, 1990, 32: 14-18
    228.Takayama S, Misawa M. Differentiation in Lilium bulbscales grown in vitro. Effect of various cultural conditions. Physiol Plant, 1986,46: 184-190
    229.Takigami S, Takiguchi T, Phillips G O. Microscopical studies of the tissue structure of konjac tubers. Food Hydrocolloid, 1997,11: 479-484
    230.Te-chato S, Lim M. Improvement of mangosteen micropropagation through meristematic nodular callus formation from in vitro-derived leaf explants. Sci Hortic,2000,86:291-298
    
    231 .Teng W L. An alternative propagation method of Ananas through nodule culture. Plant Cell Rep, 1997,16: 454-457
    232.Thorpe T A, Murashige T. Some histochemical change underlying shoot initiation in tobacco callus cultures. Can J Bot, 1970, 48: 277-284
    233.Torrey J. The initiation of organized development in plants. Adv Morphol, 1966, 5:39-91
    234.Turner J G, Ellis C, Devoto A. The jasmonate single pathway. The Plant Cell, 2002,14:153-164
    235.Jimenez V M, Bangerth F. Endogenous hormone concentrations and embryogenic callus development in wheat. Plant Cell Tiss Cult, 2001, 67: 37-46
    236.Vendrame W A, Kochert G, Wetzstein H Y. AFLP analysis of variation in pecan somatic embryos. Plant Cell Rep, 1999,18:853 - 857
    237.Vishnevetskya J, Zamskia E, Ziva M. Carbohydrate metabolism in Nerine sarniensis bulbs developing in liquid culture. Physiol Plant, 2000,108: 361-369
    238.Williams E G, Maheswaran G Somatic embryogenesis: factors influencing coordinated behavior of cells as an embryogenic group. Ann Bot, 1986, 57: 443-462
    239.Williams J G K, Kubelik A R, Livak K J, Rafalski J A, Tingey S V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res, 1990,18:6531-6535
    240.Yang H, Tabei Y, Kamada H, Kayano T, Takaiwa F. Detection of somaclonal variation in cultured rice cells using digoxigenin-based random amplified polymorphic DNA. Plant Cell Rep, 1999, 18: 520-526
    241.Yamamoto Y. In vitro corm formation and growth habit of propagated seed corm in taro (Colocasia esculenta Schott). J Jap Soc Hort Sci, 1992, 61: 55-61
    242.Zeevaart J A D, Creelman R A. Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol, 1988, 39:439-473
    243.Zhang Y Q, Xie B J, Gan X. Advance in the applications of konjac glucomannan and its derivatives. Carbohyd Polym, 2005, 60: 27-31
    244.Zhou S P, He Y K, Li S J. Induction and characterization of in vitro corms of diploid-taro. Plant Cell Tiss Org Cult, 1999, 57: 173-178
    245.Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeats (SSR)-anchored polymerase chain reaction amplification. Genomics, 1994,20:176-183
    246.Zimmerman J L. Somatic embryogenesis: A model for early development in higher plants. Plant Cell, 1993, 5: 1411-1423
    247.Zrenner R, Salanoubat M, Willmitzer L, Sonnewald U. Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.). Plant J, 1995,7: 97-107

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700