用户名: 密码: 验证码:
匙吻鲟雌核发育诱导及其相关机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
匙吻鲟(Polyodon spathula)隶属鲟形目(Acipenseriformes)、白鲟科(Polyodontidae)、匙吻鲟属(Polyodon),是美国特有的大型淡水经济鱼类,也是世界上现有的白鲟科鱼类之一,与我国白鲟是同科异属的珍稀动物。匙吻鲟具有生长快、品质优、适应性广、抗逆能力强等特点,且肉质细腻、营养丰富,是公认的优良养殖鱼类。我国于20世纪90年代初从美国引进匙吻鲟受精卵进行人工孵化并试养成功,目前匙吻鲟已成为我国水产养殖业广受欢迎的一个名优新品种。
     由于匙吻鲟与白鲟(psephurus gladius)同属于白鲟科,因此开展匙吻鲟雌核发育的人工诱导实验可为长江白鲟的种群恢复奠定技术基础。此外,近几年随着匙吻鲟养殖产业的形成,国内每年可人工繁殖的匙吻鲟苗种达数百万尾,获得抗病强,生长快等优良性状的匙吻鲟品系是育种工作的首要任务。
     人工诱导雌核发育技术是快速建立其纯系,选育优良品种的有效途径,为此本研究以我国人工养殖的匙吻鲟为研究对象,采用施氏鲟(Acipenser schrenckii)精子诱导匙吻鲟雌核发育二倍体,通过形态学、细胞遗传学方法与微卫星分子标记对雌核发育群体进行了鉴定,同时,采用扫描电镜、透射电镜和慧星实验对紫外线照射的精子的超微结构和核DNA损伤程度进行了研究,最后,对雌核发育匙吻鲟受精细胞学及其性别决定机制进行初步的探讨,主要研究结果如下:
     1.在以匙吻鲟为母本,施氏鲟为父本的杂交试验中发现,杂交胚胎能发育到原肠期,但无孵出存活,胚胎在出膜前因发育畸形而死亡,经胚胎染色体计数分析表明其染色体为n=60,从而确定,施氏鲟精子与匙吻鲟卵子杂交所得后代即为匙吻鲟的单倍体。基于这个研究结果,本研究首次采用施氏鲟鲜精作为诱导匙吻鲟雌核发育的激活源,通过对雌核发育热休克起始时间,热休克温度和热休克持续时间的筛选和优化,确定了利用施氏鲟鲜精诱导匙吻鲟卵雌核发育的最佳条件是:在18℃水温中授精18 min后,用37℃的淡水对卵进行热休克处理2 min。该组受精率为76.4±9.2%,胚胎孵化率为7.8±1.4%。本研究同时筛选出了施氏鲟精子遗传失活的条件,即采用波长为254 nm的紫外线照射(照射强度为863μw/cm2) 5 min能使施氏鲟精子遗传失活。采用遗传失活的施氏鲟精子与匙吻鲟卵授精后热休克的方法诱导匙吻鲟雌核发育,该组受精率为56.4±1.2%,胚胎孵化率为28.7±1.8%。
     在雌核发育后代鉴定的实验中,分别采用了形态学、染色体计数和核型分析、流式细胞仪检测DNA含量和微卫星标记技术对雌核发育鱼苗进行了鉴定。结果发现,对照组匙吻鲟和雌核发育匙吻鲟在形态上没有差异,对照组和雌核发育组匙吻鲟的染色体组均由80条基本染色体和40条微型染色体组成。根据Levan, etal的分类标准,对匙吻鲟10个中期分裂相进行放大测定,按染色体臂比及相对长度把匙吻鲟染色体分为3组:中部着丝点粒染色体(m)44条、亚中部着丝粒染色体(sm)32条、亚端部着丝粒染色体(st)和端部着丝粒染色体(t)44条。染色体臂数(NF)为196,其核型公式为44m+32sm+44st,t。对对照组二倍体血液样品和雌核发育匙吻鲟血液样品进行DNA相对含量的检测,雌核发育匙吻鲟红细胞的DNA含量与二倍体匙吻鲟红细胞DNA含量比为1:1,其相对含量在3.50-3.59 pg。
     2.采用扫描电镜和透射电镜观察了经紫外线辐射前后施氏鲟精子形态结构和超微结构的变化。结果表明,成熟的施氏鲟精子由顶体、细胞核、中段和尾部三部分构成,其平均长度(顶体+细胞核+中段)为8.95μm,加上尾长(36.80μm)共约45.75μm。鲜精具有明显的顶体及后外侧延伸物,顶体中含有亚顶体、顶体泡和顶体腔,顶体腔中有少量颗粒状物质。经紫外线照射后,精子表现出顶体不明显或顶体与核发生糅合,后外侧延伸物消失或变短,顶体膜受损,顶体腔增大,颗粒物质丢失,有的精子甚至顶体脱落;顶体泡、亚顶体与核之间的排列松弛,线粒体内嵴弥散或线粒体脱落。可以推断,紫外线照射对精子膜、顶体、线粒体和鞭毛的损伤可能是造成精子活力和受精率降低的原因。
     为了更好地了解紫外线辐射与精核DNA相互作用的机理,本文首次采用慧星实验探明了紫外线照射对精子DNA完整性的影响。实验结果表明:随着UV照射剂量的增加,施氏鲟精核DNA断片增多,慧星状细胞数和慧尾长度也增加。紫外线照射时间大于5 min时,精子的彗星率、损伤系数与鲜精差异显著(P<0.05)。紫外线照射剂量与出现彗尾的频率及长度呈明显剂量-效应关系。
     3.运用组织学方法研究了人工诱导匙吻鲟卵子雌核发育的细胞学过程。在光镜下对第二极体抑制型雌核发育匙吻鲟二倍体卵在受精过程中的核相变化进行了详细观察。结果表明,精子入卵后精核始终不解凝,也不与雌性原核融合,是典型的雌核发育鱼类的受精细胞学特征。
     同时,对培育1年后的3个雌核发育群体和2个对照组群体经解剖取性腺,Bouin氏液固定,常规组织切片,性别鉴定结果显示2个对照组家系子代的性别比例都接近于理论值1:1,没有显著性差异(P>0.05);而3个雌核发育群体中,雌性所占百分比为100%,可初步推测匙吻鲟的性别决定机制为XX/XY型。
The American paddlefish Polyodon spathula (Walbaum) is a large freshwater fish belonging to the family Polyodontidae of order Acipenseriformes. The paddlefish of the Mississippi River basin and its tributaries and adjacent Gulf Slope drainagesand and the Chinese paddlefish Psephurus gladius (Martens) of the Yangtze River are the only two species in the family Polyodontidae. The American paddlefish has characteristics such as fast growth, high quality, wide adaptation, etc. which has become increasingly important as a high-value species in aquaculture. Chinese sturgeon aquaculture companies introduced the fertilized eggs of paddlefish and successfully culture in the 1990s. At present, the species has become more and more popular and famous.
     Paddlefish is an important cultured freshwater fish as well as a promising model fish for the study of conservation of endangered sturgeons and paddlefishes species. In the present study, a protocol for artificial gynogenesis of paddlefish was developed in order to produce a pure line and to obtain a technique routing of conservation of endangered the Chinese paddlefish. On the other hand, the paddlefish aquaculture industry has appeared in China. Therefore, it is necessary to breed new stains that have a good economic characteristic which is grow fast, strong disease tolerance and so on. Artificial induction of gynogenesis is an effective method of constructing homozygote quickly, which is used to select choiceness breed.
     Artificial induction of gynogenesis is one of the main methods of genome engineering, which can help to solve problems of fish genetics and selection. In this study, we report the methods of inducting meiotic gynogenesis in paddlefish using Amur sturgeon (Acipenser schrenckii) sperm. And apply four methods (the morphometric and chromosome counting analysis, flow cytometry and microsatellite analysis) to confirm the success of the offspring of the gynogenesis. At the same time, electron microscopies (Scanning electron micrograph and Transmission electron micrograph) were used to investigate the changes in morphology and ultrastructure of UV-irradiated Amur sturgeon sperm. And comet assay was also used to detect DNA integrity of Amur sturgeon sperm following UV irradiation. Cytological studies on artificially gynogenetic paddlefish and the sex determinination mechanism in paddlefish were discussed.
     The following results were received:
     1. Paddlefish eggs were fertilized with normal Amur sturgeon sperm, the embryo were haploid (n=60) which were identified by the chromosome counting analysis. Based on this result, apply hybridization-heatshock to induce gynogenesis in paddlefish was made. The optimal iniation time for heat shock of gynogenetic eggs was determined, the optimal temperature and treatment time were determined. The gynogenetic diploid were obtained by eggs fertilized with normal Amur sturgeon sperm then heatshocked at 37℃for 2 min, at 18 min post-fertilization. With this treatment the fertilization rate and hatching rate was 76.4±9.2%,7.8±1.4%, respectively. On the other hand, we also obtained gynogenesis diploid in paddlefish using ultraviolet (UV)-irradiated Amur sturgeon sperm for 5-min and consequent heat shock treatment, and UV irradiation of sperm for 5 min at a UV intensity of 863μw/cm2 was the optimum dose to achieve diploid gynogenesis on the basis of observations on hatching rate of eggs. Morphologically examination, chromosome testing, flow cytometry, andmicrosatellite DNA analysis were involved in the identification of offspring of gynogenes and confirmed that all offspring were gynogenetic diploid paddlefish. Thus both distant hybridization-heatshock and irradiatation-heatshock were effective methods at producing gynogenetic paddlefish.
     2. In the present study, the effect of UV irradiation on sperm morphology and ultrastructure was examined by scanning electron microscopy (SEM) and transmission electron micrograph (TEM). The result shows that the mature spermatozoa of Amur sturgeon consistes of an elongated head with a distinct acrosome and nudeus region, a midpiece and a flagellum. The mean length of the head and midpiece, the flagellum and total length of spermatozoon were 8.95,36.80 and 45.75μm, respectively. The acrosome contains posterolateral projection, subacrosome and granular material and actin filament found within the anterior acrosome and etc. The flagellum was thin and long with a typical "9+2" microtubular structure. Scanning electron microscopy(SEM) observation showed that after iradiated by UV, the acrosome membranes of some of sperm were cracked,and acrosome substances were released to form acrosome filament. Transmission electron micrograph (TEM) observation showed that after iradiated by UV, the plasma membrane swelled and broke off from the nuclear membrane; the acrosome disrupted and its contents lost; some mitochondria lost external membrane, accompanied by the disaggregation of mitochondria or the deformation of mitochondria cristae; swelling of flagellum membrane or loss of flagellum. UV irradiation damage on plasma membrane, acrosome, mitochondria and flagellum probably caused the decrease in motility and fertility of the UV-irradiated sperm. It was estimated that UV irradiation on plasma membrane, acrosome, mitochondria and flagellum probably caused the decrease in motility and fertility of the UV-irradiated sperm.
     In this paper, detection of DNA damage in response to a UV irradiation process in Amur sturgeon spermatozoa was carried out. The results demonstrated that there were no significant differences The results demonstrated that there were no significant differences(P>0.05) between sperm by UV-irradiated 1,3min and fresh sperm. However, a significant drop in sperm motility and fertilization rate was observed in sperm by UV irradiated 5,7,9 min. The comet rate and damage coefficient of UV irradiated sperm with 1,3 min was similar to fresh sperm, but UV irradiated 5,7,9min were significantly differed to fresh sperm. In fact, there was a positive correlation between comet rate of UV irradiated sperm and intensity and time of UV irradiation in protocol. The majority of sperm with DNA damage within the nucleus were slightly and mildly damaged, while minorities were heavily damaged. Few were totally damaged, and only occurred under the conditions of 7min and 9min UV irradiaton. Our analysis suggests that high intensity of UV irradiation is the main factor that causes the DNA damage in UV irradiated sperm nucleus.
     3. This paper reports the cytological process on Amur sturgeon sperm induced gynogenesis in paddlefish. It was observed that after being inseminated, Amur sturgeon sperm can enter the egg, spermatozoon nucleus beside female pronucleus was condensed and cannot fuse with female pronucleus.
     At the same time, whe fry growth over 1 year, the sex of the fry from gynogenesis diploid group and normal paddlefish group were identified. We successfully checked the sex ratios in 3 families from gynogenesis diploid group and 2 families from normal fish. The results showed the male to female ratios in the two normal fish group were not significantly different from theoretical 1:1 ratio (P>0.05), while there were all female in gynogenesis diploid group. Based on this result, We suggest these sex determination mechanism in paddlefish is XX/XY type.
引文
1.陈细华.鲟形目鱼类生物学与资源现状.北京:海洋出版社,2007,39-41
    2.陈朋,熊邦喜,吕光俊.匙吻鲟的养殖现状及前景分析.江西农业学报,2008,20(4):88-89
    3.陈金生.匙吻鲟及其在水库渔业中的养殖前景. 水利渔业,1996,1:12-14
    4.陈松林.水产生物技术研究的回顾、最新进展及前景展望.水产学报,2007,31(6):825-840
    5.常重杰,余其兴.大鳞副泥鳅ZZ/ZW型性别决定的细胞遗传学证据.遗传,1997,19(003): 17-19
    6.程汉良,潘黔生,马国文.热休克诱导鲫鱼纯合雌核发育二倍体的研究.水利渔业,2005,25(3):25-27
    7.蔡难儿,林峰,柯亚夫,陈本楠.中国对虾人工诱导雌核发育的研究Ⅰ-四步诱导法.1995,3:35-37
    8.丁军,蒋一珪,单仕新.雌核发育银鲫和两性融合发育鱼(红鲫和彩鲫)的卵壳结构及其组成的比较研究.水生生物学报,1995,19(1):3-11
    9.戴世行,尹立刚.鱼类人工雌核发育中两个技术处理的最佳选择.重庆师范学院学报(自然科学版),1991,8(2):51-55
    10.董仕杰,谷口顺彦.微卫星DNA鉴别克隆香鱼.水产学报,2003,27(4):295-299
    11.葛伟,蒋一珪.鱼类的天然雌核发育.水生生物学报,1989,13(3):274-286
    12.桂建芳,梁绍昌,朱蓝菲.鱼类远缘杂交正反交杂种胚胎发育差异的细胞遗传学研究.动物学研究,1993,14(2):171-177
    13.桂建芳,肖武汉,梁绍昌,等.静水压休克诱导水晶彩鲫三倍体和四倍体的细胞学机理初探.水生生物学报,1995,19(1):49-54
    14.桂建芳.银鲫天然雌核发育机理研究的回顾与展望.中国科学基金.1997,11(1):11-16
    15.桂建芳.鱼类性别和生殖的遗传基础及其人工控制.北京:科学出版社,2007:166-167
    16.戈文龙,张全启,齐洁.异缘精子诱导牙鲆雌核发育二倍体.中国海洋大学学报,2005,35(6):1011-1016
    17.何裕康. 匙吻鲟的开发前景及养殖技术. 中国水产,4:25-27
    18.洪云汉,周暾.短颌鲚的核型及其ZZ/ZO型性染色体.遗传.1984,6(4):12-14
    19.蒋一珪,梁绍昌.异源精子在银鲫雌核发育子代中的生物学效应.水生生物学集刊,1983,8(1):1-13
    20.贾继增.分子标记种质资源鉴定和分子标记育种.中国农业科学,1996,29(4):1-10
    21.贾方钧,王剑伟,吴清江.异源精子诱导稀有鮈鲫的人工雌核发育.水生生物学报,2002,26:246-25
    22.刘家寿,余志堂.美国的匙吻鲟及其渔业.水生生物学报,1990,14(1):77-83
    23.楼允东.人工雌核发育及其在遗传学和水产养殖上的应用.水产学报,1986,10(1):111-123
    24.楼允东.鱼类育种学.北京:农业出版社,1999
    25.楼允东.鱼类育种学.北京:中国农业出版社,2001
    26.楼允东,李小勤.中国鱼类远缘杂交研究及其在水产养殖上的应用.中国水产科学,2006,13(1):151-158
    27.李胜忠,陈琳,杜劲松.热休克诱导虹鳟二倍体雌核发育.动物学杂志,1997,32(5):7-9
    28.李雅娟,毛连菊,李霞.太平洋牡蛎人工诱导雌核发育精子遗传失活的初步研究.大连水产学院学报.2003,18(2):109-113
    29.李冰霞,罗琛.热休克法抑制第一次卵裂实现草鱼雌核发育的细胞学观察.水生生物学报.2003,27(2):155-160
    30.刘筠.我国淡水养殖鱼类育种的实践和思考.生命科学研究,1997,1(1):1-8
    31.刘少军,赵如榕,刘锦辉,孙远东,张纯,罗凯坤,刘筠.不同倍性鱼的血细胞和精子DNA含量比较.动物学报,2005,51:360-364
    32.刘静,尤锋,王新成.人工诱导雌核发育牙鲜的染色体核型证明.海洋与湖沼,1999,30(1):68-72
    33.刘榜,张庆德,李奎.微卫星DNA作为遗传标记的优点及前景.湖北农业科学,1997,(2):49-51
    34.刘静霞,周莉,赵振山,桂建芳.锦鲤4个人工雌核发育家系的微卫星标记研究.动物学研究,2002,23(2):97-105
    35.刘萍,孟宪红,孔杰.中国对虾部分基因组文库构建和微卫星DNA序列的筛选.高技术通讯,2004,2:87-90
    36.马纲.中国淡水鱼类染色体形态及数目变异的研究进展.甘肃科学学报,1996,8:77-80
    37.毛晗,周莉,桂建芳.鲢两个人工雌核发育家系的RAPD分析.水生生物学报,2003,27(5):347-350
    38.潘光碧.人工诱导鱼类雌核发育技术研究.淡水渔业,1988,18(6):17-20
    39.潘光碧,邹桂伟,胡德高.荷元鲤雌核发育后代体色和性比的初步研究.水产学报,1995,19(4):366-368
    40.潘光碧,邹桂伟,罗相忠.雌核发育鲢生长、体型的研究.淡水渔业,2004,34(3):3-6
    41.潘锋,胡玫,王和海.异源精子诱导的罗非鱼人工雌核发育.水生生物学报,1994,18,(1):90-91
    42.沈俊宝,范兆廷,李素文,成汝渲. 方正银鲫与扎龙湖鲫体细胞、精子的DNA含量及倍性的比较研究. 动物学报,1984,30(1):7-13
    43.石振广, 王云山, 李文龙.鲟鱼与鲟鱼养殖.哈尔滨:黑龙江科学技术出版,2000
    44.宋苏祥,刘洪柏,孙大江,等. 施氏鲟的核型及DNA含量研究.遗传,1997,19(3):5-8
    45.苏鹏志,陈松林,杨景峰,田永胜,翟介明,孙礼娟.异源冷冻精子诱导大菱鲆的雌核发育.中国水产科学,2008,15(5):715-721
    46.孙效文,梁利群.鲤鱼的遗传连锁图谱(初报).中国水产科学,2000,7(1):1-5
    47.危起伟,杨德国.中国鲟鱼的保护、管理与产业化.淡水渔业,2003,33 (3):3-7
    48.吴业彪,林建国.美国匙吻鲟及其养殖技术.淡水渔业,1999,29(1):38-39
    49.吴仲庆.水产生物遗传育种学.厦门:厦门大学出版社,1991,52-58
    50.吴萍.我国鱼类雌核发育研究的进展及前景.上海水产大学学报,2004,13(3):255-260
    51.吴清江,叶玉珍,陈德荣.1981.鲤鱼人工雌核发育及其作为建立近交系新途径的研究.遗传学报,1981,8(1):50-55
    52.吴清江,桂建芳.鱼类遗传育种工程.上海科技出版社.1999,94-109
    53.王念民,孙大江,曲秋芝.温度对鱼类性别分化和性别决定的影响.水产学杂志.2007,20(2):91-93
    54.王德祥,苏永全,王世锋,陈晓峰.异源精子诱导大黄鱼雌核发育的研究.高技术通讯.2006,16(011):1206-1210
    55.王伟,尤锋,高天翔,张培军.人工诱导牙鲆异质雌核发育群体的微卫星标记分析.高技术通讯,2005,15(7):107-110
    56.王瑞霞.组织学与胚胎学.北京:高等教育出版社,1993:161-166
    57.熊邦喜,梅新海,戴泽贵.匙吻鲟引进中国20年概述.2008,38(5):70-73
    58.许建和,尤锋,吴雄飞,蒋宏雷, 徐永立, 张培军.大黄鱼雌核发育二倍体的人工诱导.海洋科学,2006,(12):37-42
    59.徐德祥,沈河民,王俊男.单细胞凝胶电泳用于检测人精子DNA链断裂.中华医学遗传学杂志,2000,17(4):281-283
    60.徐西长,丁福红,李军.单细胞凝胶电泳用于检测低温保存的真鲷(Pagrosomus major)精子DNA损伤.海洋与湖沼,2005,36(3): 221-225
    61.谢忠明.鲟鱼养殖技术.北京:中国农业出版社,2002,302-312
    62.肖亚梅,罗琛,刘筠,冯浩.人工雌核发育草鱼染色体倍性的鉴定. 生命科学研究,2001,5(4):290-292
    63.岳振宇,蒋一珪,单仕新. 雌核发育和两性融合发育卵调控精核受精发育的生化特征研究. 水生生物学报,1996,20(2):13-20
    64.俞豪祥.天然雌核发育普安鲫生物学特性的研究.水生生物学报,1995,22:16-25
    65.俞豪祥.银鲫雌核发育的细胞学观察.水生生物学集刊.1982,7(4):481-487
    66.余先觉,周敦,李渝成.中国淡水鱼类染色体.北京:科学出版社,1989,1-9
    67.印洪林,周晓军,盛春宁,黄宇烽.弱精症病人精子线粒体的电镜观察.电子显微学报,2001,20:753-757
    68.杨明生,熊邦喜,黄孝湘.匙吻鲟人工繁殖F2的早期发育.华中农业大学学报,2005,24(4):391-393
    69.杨桂军,王卫民,郝汉舟.鱼类人工雌核发育.江西农业大学学报,2004,26(1):134-137
    70.叶玉珍,吴清江,周建峰,王忠卫.鲢人工雌核二倍体群体的产生及其遗传分析.华中农业大学学报,2003,22(2):143-151
    71.叶玉珍,吴清江.鳙人工单倍体育种研究初报.水生生物学报,2003,27(1):106-107
    72.杨景峰. 四种鲽鲆鱼类雌核发育及性别控制技术研究.[博士学位论文].中国海洋大学图书馆,2009
    73.杨书婷,桂建芳.两个雌核发育白鲢群体同工酶分析及遗传标记的确定.水生生物学报,1999,23(3):264-268
    74.杨爱国,王清印.栉孔扇贝受精卵减数分裂的细胞学研究.中国水产科学,1999,6(3):96-98
    75.朱晓琛,刘海金,孙效文,薛玲玲.微卫星评价牙鲆雌核发育二倍体纯合性.动物学研究.2006,27(001):63-67
    76.邹曙明,李思发.团头鲂良种雌核发育群体的建立及其遗传变异.水产学报.2001,25(4):311-316
    77.张遵真,衡正昌,李蕊,谭宗庆.单细胞凝胶电泳试验的最适条件研究.卫生毒理学杂志,1998,12(4):249-251
    78.周莉,刘静霞,桂建芳.应用微卫星标记对雌核发育银鲫的遗传多样性初探.动物学研究,2001,22(4):257-264
    79.邹桂伟,潘光碧,汪登强.人工雌核发育鲢的遗传多样性及异源遗传物质整入的RAPD分析.水生生物学报,2004,28(2):180-185
    80.张桂蓉,严安生,邹桂伟,罗相忠,黄峰.两个人工雌核发育系鲢近交F1遗传多样性的RAPD分析.水产学报,2005,29(2):22-28
    81.张海发,陈湘麟,舒琥,赵俊.异源精子激发彭泽鲫雌核发育产生的子一代及亲本RAPD分析.应用与环境生物学报,1999,5(5):507-511
    82.周嘉申.黑龙江一种银鲫(方正银卿)雌核发育的细胞学初步探讨.动物学报,1983,29(1):11-16
    83.周小云. 湖北多倍体泥鳅分布格局及泥鳅育种基础研究.[博士学位论文].武汉:华中农业大学图书馆,2006
    84.章龙珍,庄平,张涛,黄晓荣,冯广朋,赵峰.史氏鲟精子超微结构.海洋渔业,2008,30(3):196-198
    85.章龙珍,刘鹏,庄平.超低温冷冻对西伯利亚鲟精子形成结构损伤的观察.水产学报,2008,32(4):558-565.
    86.赵峰,杨爱国,刘志鸿.紫外辐射对栉孔扇贝精子遗传失活及形态结构的影响.海洋水产研究,2003,24(4):26-31
    87.郑忠明,何滔,薛良义. 紫外线照射对大黄鱼精子遗传失活和受精能力的影响.宁波大学学报,2008,21(2):170-173
    88.朱香萍.牙鲆同质雌和发育二倍体诱导的分子细胞生物学机制研究.[博士学位论文].中国科学院海洋研究所图书馆,2005.
    89. Arkhipchuk V. Role of chromosomal and genome mutations in the evolution of bony fishes. Hydrobiol. J.1995,31:55-65
    90. Almeida-Toledo L F, Foresti F, Daniel M F. Sex chromosome evolution in fish:The formation of the neo-Yomosome in Eigenmannia (Gvmnotiformes). Chromosoma,2001, 109(3):197-200
    91. Almeida-Toledo L F, Forresti F. Morphologically differentiated sex chromosome in neotropical fresh water fish. Genetica,2001,111:91-100
    92. Arkhipchuk V. Role of chromosomal and genome mutations in the evolution of bony fishes. Hydrobiol. J.1995,31:55-65
    93. Arai K, Naito F, Sasaki H. Gynogenesis with ultraviolet ray irradiated sperm in the Pacific abalone. Bull.Jpn.Sci.Fish,1984,50:2019-2023
    94. Avner C, Eric M. Detection of chromosomal region with two QTL affecting cold tolerance and fish size in an F2 triapia hybrid. Aquaculture,2003,117-128
    95. Bhise M P, Khan T A. Androgenesis:The best tool for manipulation of fish genomes. Truk J Zool.2002,26:317-325
    96. Crews D. Temperature-dependent sex determination:the interplay of steroid hormones and temperature. Zoological science.1996,13(1):1-13
    97. Carrasco L, Penman D J, Bromage N. Evidence for the presence of sex chromosomes in the Nile tilapia (Oreochromis niloticus) from synaptonemal complex analysis of XX, XY and YY genotypes. Aquaculture.1999,173(1-4):207-218
    98. Carlson D M, Bonislawsky P S. The paddlefish (Polyodon spathula) fisheries of the midwestern United States. Fisheries,1981,6(2):17-22
    99. Cherfas N B, Rothbard S, Hulata G, Kozinsky O. Spontaneous diploidization of maternal chromosome set in ornamental (koi) carp, Cyprinus carpio L. Journal of Applied Ichthyology, 1991:7,72-77
    100. Cherfas N B, Gomelsky B, Ben-dom N, Hulata G. Evidence for the heritable nature of spontaneous diploidization in common carp, Cyprinus carpio L., eggs. Aquaculture Research. 1995,26:289-292
    101. Chourrout D, Quillet E. Induced gynogenesis in the rainbow trout:sex and survival of progenies production of all-triploid populations. Theoretical and Applied Genetics,1982,63: 201-205
    102. Chen S L, Tian Y S, Yang J F, Artificial gynogenesis and sex determination in the half-smooth tongue sole (Cynoglossus semilaevis). Marine Biotechnology,2009,11:243-251
    103. Chong L K, Tan S G, Yusoff K. Identification and characterization of Malaysianricer catfish, Mystus nemurus(C&V):RAPD and AFLP analysis. Biochemical Genetics,2000,38(3):63-72
    104. Cimino M C. Meiosis in triploid all female of fish (PoeciliopsisPoeciliidae). Science (Wash), 1972,175:1484-1486
    105. Dillard J G, Graham L K, Russell T R. The Paddlefish:Status, management and propagation. Modern LithoPrint Co., Jefferson City, Missouri,1986
    106. Devlin R H, Nagahama Y. Sex determination and sex differentiation in fish:an overview of genetic, physiological, and environmental influences. Aquaculture.2002,208:191-36
    107. Doroshov S I, Clark W H, Lutes P B. Artificial propagation of the white sturgeon(Acipenser transmontcnus Richardson). Aquaculture,1983,32:93-104
    108. Dai J, Zhang Q, Bao Z. Karyotype studies on Penaeus orientalis. Journal of Ocean University Qingdao.1989,19:97-103
    109. Ezaz T, Mcandrew B J, Penman D J. Spontaneous diploidization of the maternal chromosome set in Nile tilapia Oreochromis niloticus L., eggs. Aquaculture Research,2004,35:271-277
    110. Edwige Quillet. Analysis of the production of all homozygous lines of rainbow trout by gynogenesis. The Journal of experimental Zoology,1999,257:367-374
    111. Fan Z. She J. Studies on the evolution of bisexual reproduction in crucian carp(Carassius auratusgibelio Bloch). Aquaculture,1990,84:235-244
    112. Feist G, Schreck C B, Fitzpatrick M S. Sex steroid profiles of coho salmon (Oncorhynchus kisulch) during early development and sexual differentiation. Gen. Comp. Endocrinol,1990,80:299-313
    113. Feist G, Yeoh C, Fitzpatrick M S, et al. The production of functional sex-reversed male rainbow trout with 17α-methyltestosterone and 11 P-hydroxyandrostenedione. Aquaculture. 1995,131(2):145-152
    114. Fitzpatrick M S, Gale W L, Schreck C B. Binding characteristics of an androgen receptor in the ovaries of coho salmon,Oncorhyn-chus kisulch.Gen. Comp. Endocrinol,1994,95:399-408.
    115. Fopp-Bayat D, Kolman R, Woznicki P. Induction of meiotic gynogenesis in sterlet Acipenser ruthenus using UV-irradiated bester sperm. Aquaculture,2007,264:54-58
    116. Fopp-Bayat D, Woznicki P. Spontaneous and induced gynogenesis in sterlet (Acipenser ruthenus Brandt). Caryologia,2007,60:315-318
    117. Fopp-Bayat D. Spontaneous gynogenesis in Siberian sturgeon (Acipenser baeri Brandt). Aquaculture Research,2007,38:776-779
    118. Freshney R I. Culture of Animal Cells-A Manual of Basic Technique,4th ed.Wiley-Liss, John Wiley and Sons, incorporated Publish, New York, USA.2000,577 p
    119. Felip A, Zanuy S. Carrilo M, Piferrer F. Induction of triploidy and gynogenesis in teleost fish with emphasis on marine species. Genetica,2001,111:175-195
    120. Flajshans M, Kvasnicka P, Rab P. Genetic studies in tench(Tinca tinca L.):high incidence of spontaneous triploidy. Aquaculture,1993,110:243-248
    121. Flynn S R, Matsuoka M, Reith M, Martin-Robichaudand D J, Benfey T J. Gynogenesis and sex determination in shortnose sturgeon (Acipenser brevirostrum Lesuere). Aquaculture,2006, 253:721-727
    122.Frage CG, Olive PL. The comet assay:a comprehensive review. Mutat. Res.1995,339: 37-59
    123. Hertwig O. Die radiumkrankheit tierischer keimzellen. Arch.Mikrosk.Anat.,1911,77:1-97
    124. Hines G A,Watts S A.Non-steroidal chemical sex manipulation of tilapia Journal of the World Aquaculture Sosiety,1995,26:98-102
    125. Hubbs C L. Apparent arthenogenesis in nature in a form of fish of hybrid origin. Science, 1932,76:628-630
    126. Heist E J, Nicholson E H, Sipiorski J T, Keeney D B. Microsatellite Markers for the Paddlefish Polyodon spathula. Conservation Genetics,2002,3:205-207
    127. Ihssen P E. Ploidy manipulation and gynogenesis in fishes:cytogenetic and fisheries application to fish. Transations of the American Fisheries Society.1990,119:698-71
    128. Ijiri K, Egami N. Hertwig effect caused by UV irradiation of sperm of Oryzias latipes (teleost) and its photoreactivation. Mutation Research,1980,69:241-248
    129. Javier G F, Angeles P M, Yolanda. Comparison of RAPDs, AFLPs and SSR markers for the genetic analysis of yeast strains of Saccharomyces cerevisiae. Food Microbiology,2005,22: 561-569
    130. Kusunoki T, Arai K, Suzuki R. Production of viable gynogens without chromosome duplication in the spinous loach Cobitis biwae. Aquaculture,1994,119:11-23
    131.Kowtal G V. Preliminary experiments in induction of polyploidy, gynogenesis and androgenesis in the white sturgeon (Acipenser transmontanus Richardson). Proceeding of the world symposium on selection,1987
    132. Kitano T. Sex of flounders with the effect of water temperatures. Newsletter of Japan Society for Comparative Endocrinology.2006,120:10-12
    133. Kevin J K. Effect of water temperature and formulated diets oil growth and survival of larva paddlefish. Fransaetions of the American Fisheries Sciety,1992,121:538-543
    134. Kumar S, Tamura K, Jakobsen I B. MEGA2:Molecular evolutionary genetics analysis software. Arizona State University. Tempe Arizona,2001
    135. Kent C H, Eady J J, Ross G M, Steel G G. The comet moment as a measure of DNA damage in the comet assay [J]. Int J Radiat Biol.1995,67(6):655-660
    136. Lou Y D, Purdom C E. Diploid gynogenesis induced by hydrostatic pressure in rainbow trout, Salmo gairdneri. J Fish Biol,1984,24:665-670
    137. Lin F, Dabrowski K. Induction of gynogenesis in muskellunge (Esox masquinongy). Aquaculture.1995,137(8):153-154
    138. Lrvine D S, Twigg J P, Gordon D L. DNA intergrity in human spermatoza:relations with semen quality. J. Androl,2000,21(1):33-44
    139. Li Q, Kijima A. Microsatellite analysis of gynogenetic families in the Pacific oyster, Crassostrea gigas. Exp Mar Biol Ecol,2006,331:1-8
    140. Li Q, Makoto Osada, Masaru Kashihara. Effects of ultraviolet on genetical inactivation and morphological structure of sperm of the Japanese scallop Patinopecten yessoensis. Aquaculture,2000,186:233-242
    141. Li P, Wei Q W, Liu L. DNA integrity of Polyodon spathula cryopreserved sperm. Journal of Applied Ichthyology.2008,24:121-125
    142. Levan A, Fredga K, Sandberg A A. Nomenelature for centromerie position on chromosomes. Hereditas,1964,52:201-220
    143. Liu Z, Tan G, Kucuktas H, Li P, Karsi A, Yant D R, Dunham R A. High levels of conservation at microsatellite loci among Ictalurid catfishes. Journal of Heredity,1999,90: 307-311
    144. Labbe C, Martoriati A, Devaux A, Maisse G. Effect of sperm cryopreservation on sperm DNA stability and progeny development in rainbow trout. Mol Reprod Dev.2001.60: 397-404
    145. Lahnsteiner F, Berger B, Weismann T, Patzner R. Changes in morphology, physiology, metabolism, and fertilization capacity of rainbow trout semen following cryopreservation. Prog. Fish. Cuhur.1996,58:149-159
    146. Mims S D, Shelton WL. Production of Paddlefish. SRAC Publication,1999,437: 22-28
    147. Mims S D, Shelton W L. Paddlefish. American Fisheries Society Symposium,2005,46: 227-249
    148. Mims S D, Shelton W L, Linhart O, Wang C. Induced meiotic gynogenesis of paddlefish Polyodon spathula. Journal of the World Aquacuture Society,1997,28:334-343
    149. Mims S D, Shelton W L. Induced meiotic gynogenesis in shovelnose sturgeon. Aquaculture International,1998,16:323-329
    150. Morishima K, Nakayama I, Arai K. Microsatellite-centromere mapping in the loach. Misgurnus anguillicaudatus. Genetica,2001,111:59-69
    151.Neyfakh A A. The effect of ionizing radiation on gametes of the loach (Misgurnus anguillicaudatus L.). Dokl. Akad.Nauk SSSR.1956,111(3):585-588
    152. Nei M. Genetic distance between populations. American Natturalist.1972,106:283-292
    153. Nelson J S. Fishes of the World. New York, NY:Wiley,1994:600.
    154. Naotaka O, Mamoru M, Shinji A, Katsutoshi A, Kohei Y. Sex ratios of triploids and gynogenetic diploids induced in the hybrid sturgeon, the bester (Huso huso female x Acipenser ruthenus male). Aquaculture,2005,245:39-47
    155.Norris T. Microsatellite genetic variation between and with in farmed and wild Atlantic salmon (Salmosalar) populations. Aquaculture,1999,180:247-264
    156. Omoto N, Maebayashi M, Adachi S. Sex ratios of triploids and gynogenetic diploids induced in the hybrid sturgeon, the bester(Huso huso female×Acipenser ruthenus male). Aquaculture. 2005,245(5):39-47
    157. Ospina-alvarez N, Piferrer F. Temperature-Dependent Sex Determination in Fish Revisited: Prevalence, a Single Sex Ratio Response Pattern, and Possible Effects of Climate Change. PLoS ONE.2008,3:e2837.
    158. Osfling O, Johanson K J. Microelectrophoretic study of radiation induced DNA damages in individual cells. Biochem. Biophys. Res. Commun,1984,123(1):291-298
    159. O'Connell M, Wright J M. Microsatellites DNA in fishes. Reviews in Fish Biology and Fisheries,1997,7:331-363
    160. Ohta T. Electron microscopic observations on sperm entry into eggs of the rose billerling during crossfertilization:J.Exp.Zool.1985,233(2):291-300
    161. Ohta T. Electron microscopic observations on sperm entry and pronuclearformation in naked eggs of the rose bitterling in polyspermic fertilization. J.Erp.Zoo,1985,234:273-281
    162. Purdom. Radiation-induced gynogenesis and androgenesis in fish. Heredity,1969,24: 431-444
    163. Purdom C E. Geneties and Fish Breeding, Fish and Fisheries Series 8.Chapman and Hall, London,1993
    164. Piferrer F, Zanuy S, Carrillo M. Brief treatment with an aromatase inhibitor during sex differentiation causes chromosomally female salmon to develop as normal,functional males. J Exp.Zool.1994,270:255-262
    165.Pavlidis M, Koumoundouros G, Sterioti A. Evidence of temperature-dependent sex determination in the European sea bass(Dicentrarchus labrax L.).J Exp. Zool,2000. 287(3):225-232
    166. Pascual A B, Penman D J, Rana K J, et al. Cryopreservation and refrigerated storage of UV-inactivated milt for gynogenesis. Aquaculture.1993,111(2):324-325.
    167. Piferrer F, Cal R M. Gomezb C, Alvarez-Blazquezb B, Castroc J, Martinezc P. Induction of gynogenesis in the turbot (Scophthalmus maximus):effects of UV irradiation on sperm motility, the Hertwig effect and viability during the first 6 months of age. Aquaculture,2004, 238,403-419
    168. Pourkazemi M. Molecular and biochemical genetic analysis of sturgeon stock from the south Caspian Sea. Ph.D. Thesis, School of Biological Sciences,1996, University of Wales, Swansea,260pp
    169. Pandian T J. Koteeswaran R. Ploidy induction and sex control in fish. Hydrobiologia.1998, 384,167-243
    170. Pardo G B, Casas L, Fortes G G. New microsatellite markers in turbot (Scophthalmus maximus) derived from an enriched genomic library and sequence databases. Molecular Ecology Notes,2005,5(1):62-64
    171. Parker P G, Snow A, chug M D, Booton G C, Fuerst P A. What molecules can tell us about populations:Choosing and using a molecular marker. Ecology,1998,79(2):361-392
    172. Postllethwait J H. A Genetic linkage map for the Zebrafish. Science,1994,264(29):699-703
    173. Qi L, Makoto O, Masaru K. Effects of ultraviolet irradiation on genetical inactivation and morphological structure of sperm of the Japanese scallop, Patinopecten yessoensis. Aquaculture,2000,186:233-242
    174. Refstie T, Vassvik V, Gjedrem T. Induction of polyploidy in salmonids by cytochalasin B. Aquaculture.1977,10:65-74.
    175.Romashov D D, Nikdydkin V N, Belyaevaand N A. Possibilities of producing diploid radiation-induced gynogenesis in sturgeons. Radiobiology,1963,3:145-154
    176. Ricoc R I, Hewitt G. million years of conservation of microsatellite loci among fish species. Proceedings:Biological Sciences,1996,263:549-557
    177. Rougeot C, Ngingo J V, Gillet L, Vanderplasschen A, Melard C. Gynogenesis induction and sex determination in the Eurasian perch, Perca fluviatilis. Aquaculture,2005,243:411-415
    178. Sharma O P, Tripathi N K. Female heterogamety in two teleostean fishes. Cytologia.1988, 53:81-86
    179. Sakamoto T, Danzmann R G, Gharbi K. A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex-specific difference in recombination rates.Gene,2000,155:1331-1345
    180. Singh N P, Mccoy M T, Tice R R,. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res,1988,175(1):184-191
    181. Saber M H, Noveiri S B, Pourkazemi M, Yarmohammadi M. Induction of gynogenesis in stellate sturgeon (Acipenser stellatus Pallas,1771) and its verification using microsatellite markers. Aquaculture Research,2008,39:1483-1487
    182. Schwartz F J. World literature to fish hybrids with an analysis by family, species, and hybrid. Publish Gulf Coast Research Labour,1972, Mississippi,USA
    183. Sakamoto T. A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates. Gentics,2000,155: 1331-1375
    184. Sambrook J, Fritsch E F, Maniatis T. Molecular cloning:a laboratory manual. New York: Cold Spring Harbor Laboratory Press,1989
    185. Streisinger G. Production of clone homozygous diploid zebra fish(Btachydnaio rerio). Nature,1981,291:292-296
    186. Thompson D, Purdom C E. Jones B W. Genetic analysis of spontaneous gynogenetic diploids in the plaice Pleuronectes platessa. Heredity,1981,47:269-274
    187. Tegelstrom H. Mitochondrial DNA in natural populations:an improved routine for the screening of genetic variation based on sensitive silver staining. Electrophoresis,1986,7: 226-229
    188. Tvedt H B, Benfey T J, Martin-Robichaud D J, McGowan C, Reith M. Gynogenesis and sex determination in Atlantic Halibut (Hippoglossus hippoglossus). Aquaculture,2006.252: 573-583
    189. Thomas D K, Woo J L, Halina Sobolewska. A genetic linkage map of a cichlid fish, the tilapia(Oreochromis niloticus). Genetics,1998,148:1225-1232
    190. Varadaraj K. Production of viable haploid Oreochromis mossambicus gynogens using UV-irradiated sperm. Journal of Experimental Zoology,1993,267,460-467
    191. Van Eenennaam A L, Van Eenennaam J P, Medrano J F, Droshov S I. Rapid verification of meiotic gynogenesis and polyploidy in white sturgeon Acipenser transmontanus Richardson. Aquaculture,1996,147:177-189
    192. Volckaert A M, Galbuseraa H A, Hellemansa A S. Gynogenesis in the African catfish (Clarias gariepinus).1. Induction meiogynogenesis with thermal and pressure shocks. Aquaculture,1994,128(4):221-233
    193. Wei Q W, Ke F, Zhang J, Zhuang P, Luo J, Zhou R, Yang W. Biology, fisheries, and conservation of sturgeons and paddlefish in China. Environmental Biology of Fishes,1997,56: 241-255
    194. Wu X. The loss of genetic diversity in the Chinese paddlefish Psephurus gladius Martens as revealed by DNA fingerprinting. Journal of Genetics,2005,84:323-325
    195. Wang G T, Lapatra S, Zeng L B, Zhao Z S, Lu Y N. Establishment, growth, cryopreservation and species of origin identification of three cell lines from white sturgeon Acipenser transmontanus. Methods in Cell Science,2004,25:211-220
    196. Wang J.X., Liu H.J., Min W.Q., Tong J.G., Guan M., Han Y.Z., Gong L.J., Hang Z., Ren J., Zhang J.P.& Zheng H.P. Induced meiotic gynogenesis in tench, Tinca tinca (L.) using irradiated heterogenic sperm. Aquaculture International,2006,14:35-42
    197. Wolfus G M, Garcia D K, Warren A A. Apphcation of the microsatellite technique for analyzing genetic diversity in shrimp bring programs. Aquaculture,1997,152:35
    198. William P Y. A detailed linkage map of rainbow trout produced using doubled haploids. Genetics,1998,148:839-850
    199. Xu J H, You F, Yan L B, Zhang P J. Effects of ultra-violet irradiation on sperm motility and diploid gynogenesis induction in large yellow croaker (Pseudosciaena crocea) undergoing cold shock. Aquaculture International,2007,15:371-382
    200. Xu J H, You F. Sun W, Yan B L, Zhang J P, Jiang B X. Induction of diploid gynogenesis in turbot Scophthalmus maximus with left-eyed flounder Paralichthys olivaceus sperm. Aquaculture International,2008,16,623-634
    201. Xie D, Wu T, Yang H. Artificial gynogenesis and sex reversal in Hypophthalmichthvs molitrix. Developmental &reproductive biology,2000,9:31-36
    202. YamanootoT, KajlshimaT. Sex hormone induetion of sex reversal in the gold fish and evidence for male heterogamety. J. Exl, Zool,2001,1968,168:215-222
    203. Yamazaki F. Sex control and manipulation in fish. Aquaculture.1983,33(1-4):329-354
    204. Yeh F C, Boyle T. POPGENE version 1.32:Microsoft Windows base software for population genetic analysis.1997
    205. You C H, Yu X M, Tan D Q, Tong J G. Gynogenesis and sex determination in large-scale loach Paramisgurnus dabryanus (Sauvage). Aquaculture International,2008,16:203-214
    206. Zhang H, Wei Q, Du H, Shen L, Li Y, Zhao Y. Is there evidence that the Chinese paddlefish (Psephurus gladius) still survives in the upper Yangtze River? Concerns inferred from hydroacoustic and capture surveys,2006-2008. Journal of Applied Ichthyology,2009,25 (Suppl.2):95-99

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700