用户名: 密码: 验证码:
模块化空间可展开天线支撑桁架设计与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间可展开机构是人类进行空间探测活动不可缺少的航天装备,空间可展开机构中研究最活跃、发展潜力最大的一个分支是空间可展开天线,空间可展开天线是近二三十年来随着航天科技的快速发展而产生的一种新型空间结构,自产生以来便受到许多发达国家和科研机构的高度重视。本文以口径大小变化灵活的模块化空间可展开天线支撑桁架为研究对象,开展了可展开天线基本单元的构型综合与优选方法、模块化可展开天线支撑桁架的空间几何模型、动力学特性分析、结构优化及展开实验等方面的研究工作。
     可展开天线构型的创新设计是可展开天线相关理论研究中最基础的问题。可展开天线支撑桁架也称为背架,通常由若干个模块或基本单元组成,为了设计形式新颖、收纳率大、占用空间小的可展开天线,以6种典型可展开天线基本单元为基础,基于图论理论,建立了4种基本单元的拓扑图模型,分析了构件及运动副的拓扑对称性,提出了可展开天线基本单元的构型综合方法。针对可展开天线模块化结构基本单元的设计要求,建立了构型方案的模糊综合评价数学模型,对构型方案进行了优选。
     为了保证天线的形面精度,提高天线的工作效率,对模块化可展开天线支撑桁架进行了空间几何建模。首先,针对球形支撑桁架与抛物面形工作表面形状差异的问题,提出了一种抛物面形天线工作表面的球面拟合方法。其次,按照等尺寸与不等尺寸两种类型的模块,基于齐次坐标变换方法,建立了两种支撑桁架的空间几何模型,分析了等尺寸模块建模时存在的连接偏差并给出了调整的方法,对不等尺寸模块的几何模型进行了验证。
     模块化可展开天线支撑桁架展开口径大、刚度低,在姿态调整和在轨运行等阶段要经历较为复杂的动力学环境,可能会随之产生许多动力学问题。采用ANSYS软件,建立了支撑桁架的有限元模型,基于子空间法对其进行了模态分析,得到了结构的固有频率和振型,分析了结构在周期载荷作用下的频率响应,研究了中心杆、弦杆、斜腹杆、竖杆和拉索等参数对支撑桁架固有频率的影响,从而给出了提高1阶固有频率的有效措施。
     质量与刚度是衡量可展开天线结构性能的两个重要参数,将这两个参数作为目标函数对结构的杆件参数进行了优化。首先,根据BP神经网络的基本原理,建立了用于优化的预测模型,并进行了泛化能力检验。其次,将目标函数进行构造处理,采用遗传算法对预测模型进行了优化,确定了支撑桁架各杆件的设计参数。在优化的基础上,对驱动机构及模块结构的方案进行了设计。
     最后,研制了一个模块化可展开天线支撑桁架的原理样机及一套零重力模拟实验装置,对样机进行了展开精度实验和动力学实验。采用摄影测量的方法获取了支撑桁架关键点的空间坐标,分析了支撑桁架的形面精度、重复展开精度和关键点的误差情况,将实验数据与理论分析进行了对比验证。采用单点激振多点拾振的方式对支撑桁架进行了自由状态下的模态实验,并将实验结果与有限元仿真结果进行了对比,验证了支撑桁架有限元模型的正确性。
Space deployable structures are the essential aerospace equipment to space exploration activities. Space deployable antenna is one of the most active research fields of space deployable structure, which has the huge development potential. Space deployable antenna is a new type of space structure, which is produced with the rapid development of aerospace science and technology in recent years. From then on, many countries and institutions have paid more attention to this research field. Taking truss structure of modular space deployable antenna as the research object, configuration synthesis and optimization of basic frame for space deployable antenna, spatial geometry modeling of truss structure, dynamic characteristics analysis, structural optimization and deployment precision test have been studied in this paper.
     Configuration creative design of deployable antenna is the most basic problem of related theoretical research. Truss structure is usually composed of several modules or basic frames. To design novel deployable antenna, taking six typical basic frames as the research foundation, four kinds of topological graph models of basic frame are obtained based on graph theory. The topological symmetry of members and kinematic pairs are analyzed. The synthesis method of basic frame for deployable antenna is proposed. According to the design requirements of basic frame for modular structure, comprehensive evaluation models are built, then an optimal configuration is obtained.
     To ensure the surface precision and improve working efficiency, spatial geometry model of truss structure is presented. To solve the problem of the difference between the shape of the paraboloid working surface and the spherical truss structure, a fitting method of working surface is proposed. Then the truss structure is classified into two types: the same size module and different size module, spatial geometry models of truss structure are presented based on the homogeneous coordinate transformation method. The influencing factors on connection deviation of the same size module are analyzed, and the adjusting method of that is proposed. Geometry model of different size module is verified.
     Modular deployable antenna has two characteristics: large aperture, weak stiffness, so in the course of attitude adjustment and on-orbit operation of antenna, many dynamic problems may be produced such as coupling interference between antenna and satellite, and impact vibration under space debris. The finite element model is built by using ANSYS software. The modal analysis of truss structure was carried out, and the natural frequencies and corresponding vibration modes of structure are obtained. The harmonic response analysis is carried out by full method. At last, the influence of structure parameters such as center beam, chord, diagonal beam, vertical beam and crossing cable on natural frequency of structure is studied, and the method to improve the first natural frequency is proposed.
     Mass and deployment stiffness are two important parameters for deployable antenna. Taking the mass and the first order natural frequency as the objective functions, the structural parameters of truss structure are optimized. At first, according to the basic idea of BP neural network, prediction model is constructed, and generalization capacity of neural network is tested by means of testing samples. Then, sub-goals multiplication and division is adopted to unify the multi-objective optimization to a single-objective function. The optimization analysis is performed by genetic algorithm, and the design parameters of truss structure are obtained. On this basis, the driving mechanism and module structure are designed.
     A set of truss structure prototype of modular deployable antenna and zero gravity simulation mechanism are manufactured successfully. Deployment precision test and dynamic test of truss structure are carried out. Spatial coordinates of key point are obtained by photogrammetry. Surface precision, repeated deployment precision and errors of key point are analyzed, then experimental results and theoretical analysis are compared with each other. Using the way of single input multiple output, modal experment of truss structure is carried out in free state. Comparing with the experimental results, the results show that the finite element model is right.
引文
[1] Macdonald M, Mcinnes C, Hughes G. Technology Requirements of Exploration Beyond Neptune by Solar Sail Propulsion[J]. Journal of Spacecraft and Rockets, 2010, 47(3): 472-483.
    [2] Rong S Y, Liu J F, Zhao B, et al. Inflatable Deployment Dynamics Simulation of Solar Sail Spacecraft Support Tube[C]. International Conference on Mechatronics and Automation, 2009: 2239-2244.
    [3] Cui N G, Liu J F, Rong S Y. Solar Sail Spacecraft Dynamic Modeling and Solving[J]. Acta Aeronautica, 2010, 31(8): 1565-1571.
    [4] Taylor F W, Carpenter B, Hacker J, et al. Geostationary Small Satellite for Operationally Responsive Space (ORS) communications missions[C]. Space 2008 Conference. San Diego, CA, United states, 1-14.
    [5] Deng Q, Li B, Huang H.L, et al. Design and Analysis of a Tapered Deployable Mast[C]. 3rd International Conference on Advanced Design and Manufacture. Nottingham, United kingdom, 2011: 31-34.
    [6] Liu H P, Luo A N, Zhang L X. Analysis of Movement and Stability of the Root Lock Mechanism of the Space Deployable Mast[C]. 2010 IEEE International Conference on Mechatronics and Automation. Xi'an, China, 2010: 1175-1178.
    [7] Guo H W, Liu R Q, Deng Z Q. Mechanics Analysis of Beam-like Space Deployable Truss Mast[C]. 2011 1st International Conference on High Performance Structures and Materials Engineering. Beijing, China, 2011, 217-218: 717-722.
    [8] Duan B Y, You G Q. Optimization of Large Cable-mesh Surface Antenna with both Deployed and Retracted States in Space[C]. 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Portsmouth, Virginia: AIAA, 2006: 943-950.
    [9] Lier E, Study of Deployed and Modular Active Phased-array Multi-beam Satellite Antenna[J]. IEEE Transactions on Antennas and Propagation, 2003, 45(5): 34-45.
    [10] Fang H F, Knarr K, Quijano U, et al. In-Space Deployable Reflect Array Antenna[C]. 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Schaumburg, IL, United states: AIAA, 2008: 2008-2209.
    [11] Tibert A G. Optimal design of tension truss antennas[C]. 44thAIAA/ ASME/ ASCE/AHS Structures, Structural dynamics, and Materials Conference. Norfolk, Virginia: AIAA, 2003: 2051-2060.
    [12] Zheng F, Chen M, Li W, et al. Conceptual design of a new huge deployable antenna structure for space application[C]. 2008 IEEE Aerospace Conference. Big Sky, MT, United states, 2008.
    [13] Meguro A, Harada S, Watanabe M. Key Technologies for High-accuracy Large Mesh Antenna Reflectors[J]. Acta Astronautica, 2003, 53(11): 899-908.
    [14] Im E, Thomson M, Fang H F, et al. Prospects of Large Deployable Reflector Antennas for a New Generation of Geostationary Doppler Weather Radar Satellites[C]. AIAA Space 2007 Conference and Exposition. Long Beach, California: AIAA, 2007: 3130-3140.
    [15] Liu H P, Luo A N, Zhang, T M, et al. Vibration Analysis of Circle Truss of the Astromesh Deployable Antenna[C].3rd International Conference on Measuring Technology and Mechatronics Automation. Shanghai, China, 2011, 3: 1116-1119.
    [16] Tibert G. Deployable Tensegrity Structures for Space Applications[D]. Stockholm, Sweden: Royal Institute of Technology Department of Mechanics, 2002: 17-18.
    [17] You Z, Pellegrino S. Deployable mesh reflector[C]. Proceedings of the IASS-ASCE International Symposium. Atlanta, USA: ASCE, 1994: 103-112.
    [18] Guest S D, Pellegrino S. A New Concept for Solid Surface Deployable Antennas[J]. Acta Astronautica, 1996, 38(2): 103-113.
    [19] Freeland R E, Bilyeu G D, Veal G R, et al. Large Inflatable Deployable Antenna Flight Experiment Results[J]. Acta Astronautica, 1997, 41(4-10): 267-277.
    [20] Freeland R E, Bilyeu G. In-step Inflatable Antenna Experiment[J]. Acta Astronautica, 1993, 30: 29-40.
    [21] Christopher G M, William G D, Michael L P, et al. Experimental Characterization and Finite Element Analysis of Inflated Fabric Beams[J]. Construction and Building Materials, 2009, 23(5): 2027-2034.
    [22] Tsunoda H, Senbokuya Y, Watanabe M. Deployment Method of Space Inflatable Structures using Folding Crease Patterns[C]. 44th AIAA/ ASME/ ASCE/AHS Structures, Structural Dynamics, and Materials Conference. Norfolk, Virginia: AIAA, 2003: 5285-5291.
    [23] Adetona O, Horta L G, Taleghani B K, et al. Vibration Studies of an Inflatable/Rigidizable Hexapod Structure with a Tensioned Membrane[C].44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference. Norfolk, Virginia: AIAA, 2003: 3104-3110.
    [24] Scarborough S E, Cadogan D P, Pederson L M, et al. Elevated Temperature Mechanical Characterization of Isogrid Booms[C]. 44th AIAA/ASME/ ASCE/AHS Structures, Structural Dynamics, and Materials Conference. Norfolk, Virginia: AIAA, 2003: 3938-3948.
    [25] Lichodziejewski D, Veal G, Kruer M. Inflatable Rigidizable Solar Array for Small Satellites[C]. 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference. Norfolk, Virginia: AIAA, 2003: 1898.
    [26] Medzmariashvili E, Tserodze Sh, Tsignadze N, et al. A New Design Variant of the Large Deployable Space Reflector[C]. The 10th Biennial International Conference on Engineering, Construction, and Operations in Challenging Environments. Houston, TX, United states: ASCE, 2006: 1-8.
    [27] Tan L T, Pellegrino S. Stiffness Design of Spring Back Reflectors[C]. 43th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Denver, Colorado: AIAA, 2002, 4: 2307-2317.
    [28] Tan L T, Pellegrino S. Ultra Thin Deployable Reflector Antennas[C]. 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Palm Springs, California: AIAA, 2004: 2416-2425.
    [29] Hanayama E, Kuroda S, Takano T, et al. Characteristics of the Large Deployable Antenna on HALCA Satellite in Orbit[J]. IEEE Transactions on Antennas and Propagation, 2004, 52(7): 1777-1782.
    [30] Hanayama E, Araki S, Takano T. Measurement of a Mesh Reflecting Surface for Large Deployable Antennas[J]. Electronics and Commun-ications in Japan, Part I: Communications (English translation of Denshi Tsushin Gakkai Ronbunshi), 1994, 77(1): 95-105.
    [31] Takano T, Miura K, Natori M, et al. Deployable Antenna with 10-m Maximum Diameter for Space Use[J]. IEEE Transactions on Antennas and Propagation, 2004, 52(1): 2-11.
    [32] Takano T, Natori M, Miyoshi K, et al. Large Deployable Antenna with Tension Truss Scheme and Its Electrical Performances[J]. IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), 1998, 4: 2086-2089.
    [33] Kishimoto N, Natori M C, Higuchi K, et al. New Deployable Membrane Structure Models Inspired by Morphological Changes in Nature[C]. 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Newport, Rhode Island, United states: AIAA, 2006:3722-3725.
    [34] Kishimoto N, Natori M C. Control and Mechanical Characteristics of Hierarchical Modular Structures[C]. 46th AIAA/ ASME/ ASCE/ AHS/ ASC Structures, Structural Dynamics, and Materials Conference. Austin, Texas, United states: AIAA, 2005: 1967-1980.
    [35] Meguro A, Ishikawa H, Tsujihata A. Study on Ground Verification for Large Deployable Modular Structures[J]. Journal of spacecraft and rockets, 2006, 43(4): 780-787.
    [36] Yamada K, Tsutsumi Y J, Yoshihara M, et al. Integration and Testing of Large Deployable Reflector on ETS-VIII[C]. 21st International Communications Satellite Systems Conference and Exhibit. Yokohama, Japan: AIAA, 2003: 2217.
    [37] Mitsugi J, Ando K, Senbokuya Y, et al. Deployment Analysis of Large Space Antenna Using Flexible Multibody Dynamics Simulation[J]. Acta Astronautica, 2000, 47(1): 19-26.
    [38] Nakamura K, Tsutsumi Y, Uchimaru K, et al. Large Deployable Reflector on ETS-VIII[C]. AIAA 1998: 1229.
    [39] Uchimaru K, Nakamura K, Tsujihata A, et al. Large Deployable Reflector on ETS-VIII. II[C]. 18th AIAA International Communications Satellite Systems Conference and Exhibit. Oakland, CA: AIAA, 2000: 275-284.
    [40] Natori M C, Hirabayashi H, Okuizumi N, et al. A Structure Concept of High Precision Mesh Antenna for Space VLBI Observation[C]. 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Denver, Colorado: AIAA, 2002: 1359.
    [41] Ando K, Mitsugi J, Senbokuya Y. Analyses of Cable-Membrane Structure Combined with Deployable Truss[J]. Computers and Structures, 2000, 74(1): 21-39.
    [42] Meguro A, Tsujihata A, Hamamoto N, et al. Technology Status of the 13 m Aperture Deployment Antenna Reflectors for Engineering Test Satellite VIII[J]. Acta Astronautica, 2000, 47(2-9): 147-152.
    [43] Misawa M, Ogawa A. Analytical and Experimental Frequency Verification of Deployed Satellite Antennas[C]. 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference. Norfolk, Virginia: AIAA, 2003: 879-885.
    [44] Homma M, Hama S, Kohata H, et al. Experiment Plan of ETS-8 in Orbit: Mobile Communications and Navigation[J]. Acta Astronautica, 2003, 53(4-10): 477-484.
    [45] Meguro A, Ishikawa H, Tsujihata A. A Study on the Accuracy of Deployment Testing for Large Deployable Structures[C]. 43rd AIAA/ ASME/ ASCE/ AHS/ ASC Structures, Structural Dynamics, and Materials Conference. Denver, Colorado: AIAA, 2002: 1606.
    [46] Thomson M W. AstroMesh Deployable Reflectors for Ku- and Ka-band Commercial Satellites[C]. 20th AIAA International Communication Satellite Systems Conference and Exhibit. Montreal, Quebec, Canada: AIAA, 2002: 2032.
    [47] Tibert A G. Optimal Design of Tension Truss Antennas[C]. 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference. Norfolk, Virginia: AIAA, 2003: 2051-2060.
    [48] Mehran M. Methods of Analyzing Surface Accuracy of Large Antenna Structures duo to Manufacturing Tolerances[C]. 44th AIAA/ ASME/ ASCE/AHS Structures, Structural Dynamics, and Materials Conference. Norfolk, Virginia: AIAA, 2003: 508-517.
    [49] Wilson W J, Njoku E G, Yueh S H. Active/Passive Microwave System with Deployable Mesh Antenna for Spaceborne Ocean Salinity Measurements [C]. International geoscience and remote sensing symposium. 2000, (6): 2549-2551.
    [50] Smith T M, Lee B, Semler D, Chae D. A Large S-Band Antenna for a Mobile Satellite[C]. A Collection of Technical Papers-AIAA Space 2004 Conference and Exposition. 2004: 2317-2324.
    [51] Duan B Y, You G Q. Optimization of Large Cable-Mesh Surface Antenna with both Deployed and Retracted States in Space[C]. 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. 2006: 943-950.
    [52]张京街,关富玲,胡其彪,等.带弹簧节点的大型构架式展开天线结构的设计和研究[J].空间结构,2000,6(2):30-37.
    [53] Guan F L, Shou J J, Hou G Y, Zhang J J. Static Analysis of Synchronism Deployable Antenna[J]. Journal of Zhejiang University: Science, 2006, 7(8): 1365-1371.
    [54]陈向阳,关富玲.六棱柱单元可展抛物面天线结构设计[J].宇航学报,2001,22(1):75-78.
    [55]陈向阳,关富玲,岳建如.可展星载抛物面天线结构设计[J].空间结构,2000,6(4):41-46.
    [56]李刚,关富玲.环形桁架展开天线索网的预拉力优化技术及工程应用[J].固体力学学报,2006,27:174-179.
    [57]陈务军,张淑杰.空间可展开结构体系与分析导论[M].北京:中国宇航出版社,2006:74-188.
    [58]赵孟良.空间可展结构展开过程动力学理论分析、仿真及试验[D].杭州:浙江大学,2007:29-32.
    [59]罗鹰.大型星载可展开天线的动力优化设计与工程结构的系统优化设计[D].西安:西安电子科技大学,2004:36-57.
    [60]罗鹰,段宝岩.周边桁架式展开天线几何布局优化[J].空间科学学报,2004,24(2):132-137.
    [61]王从思.可展开天线中柔性多体系统动力学DAEs的数值方法研究[D].西安:西安电子科技大学,2004:13-60.
    [62]徐海强.基于太空热环境下的可展开天线反射面调整的研究[D].西安:西安电子科技大学,2007:8-15.
    [63]刘士华.大型空间可展开天线压电智能结构研究[D].西安:西安电子科技大学,2005:5-10.
    [64]狄杰建.索网式可展开天线结构的反射面精度优化调整技术研究[D].西安:西安电子科技大学,2005:54-110.
    [65]谭惠丰,李云良,毛丽娜,等.空间充气展开支撑管的自振特性研究[J].哈尔滨工业大学学报,2008,40(5):709-713.
    [66]王长国,杜星文,万志敏.空间充气天线反射器受冲击气体质量损失分析[J].哈尔滨工业大学学报,2006,38(4):507-510.
    [67]李洲洋,陈国定,王三民,等.大型可展开卫星天线的展开过程仿真研究[J].机械设计与制造,2006,(7):67-69.
    [68]张春.径射状空间可展开天线的多体动力学分析[D].西安:西北工业大学,2007:10-80.
    [69] Kishimoto N, Natori M C, Higuchi K, et al. New Deployable Membrane Structure Models Inspired by Morphological Changes in Nature[C]. 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Newport, Rhode Island, United states: AIAA, 2006: 3722-3725.
    [70] Kishimoto N, Natori M C. Control and Mechanical Characteristics of Hierarchical Modular Structures[C]. 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Austin, Texas, United states: AIAA, 2005: 1967-1980.
    [71] Warnaar D B, Chew M. Kinematic Synthesis of Deployable-Foldable TrussStructures using Graph Theory, Part 1: Graph Generation[J]. Journal of Mechanical Design, Transactions of the ASME, 1995, 117(1): 112-116.
    [72] Warnaar D B, Chew M. Kinematic Synthesis of Deployable-Foldable Truss Structures using Graph Theory, Part 2: Graph Generation[J]. Journal of Mechanical Design, Transactions of the ASME, 1995, 117(1): 117-122.
    [73] Chen Y, You Z. Connectivity of Bennett Linkages[C]. 43rd AIAA /ASME /ASCE /AHS/ASC Structures, Structural Dynamics, and Materials Conference. Denver, Colorado: AIAA, 2002: 2318-2324.
    [74] Zhao J S, Chu F L, Feng Z J. The Mechanism Theory and Application of Deployable Structures based on SLE[J]. Mechanism and Machine Theory, 2009, 44(2): 324-335.
    [75]杨廷力.机械系统基本理论[M].北京:机械工业出版社,1996:15-34.
    [76] Usyukin V I, Zimin V N, Meshkovsky V E, et al. Large self-deployable truss space antennae: structure and models[C]. 3rd International Conference on Mobile and Rapidly Assembled Structures. Madrid, Spain: WITPress, 2000: 175-183.
    [77]高海燕,袁茹,王三民.径射状可展开天线反射器结构固有模态分析[J].机械设计与制造,2007,5:174-176.
    [78]闫军,袁俊刚.大型空间抛物面天线非线性有限元建模分析[C]. 2007全国结构动力学学术研讨会.南昌:中国振动工程学会结构动力学专业委员会,2007:262-267.
    [79]王建立.挠性多体卫星天线展开及指向控制的研究[D].哈尔滨:哈尔滨工业大学,2009:1-3.
    [80]赵孟良,关富玲.考虑摩擦的周边桁架式可展天线展开动力学分析[J].空间科学学报,2006,26(3):220-226.
    [81]张春,王三民,袁茹.空间可展机构弹性动力学特性研究[J].机械科学与技术,2007,26(11):1479-1489.
    [82]周志成,曲广吉.星载大型网状天线非线性结构系统有限元分析[J].航天器工程,2008,17(6):33-38.
    [83]尤国强.周边桁架可展开天线的结构优化设计[D].西安:西安电子科技大学,2005:18-51.
    [84]万小平,袁茹,王三民.环形可展开卫星天线的多目标结构优化设计[J].机械科学与技术,2005,24(8):914-916.
    [85]高海燕.径射状桁架天线模态分析与结构参数优化[D].西安:西北工业大学,2007:12-61.
    [86] Tsunoda H, Hariu K, Kawakami Y, et al. Deployment Test Methods for a Large Deployable Mesh Reflector[J]. Journal of Spacecraft and Rockets, 1997, 34(6): 811-816.
    [87] Tsunoda H, Hariu K, Kawakami Y, et al. Structural Design and Deployment Test Methods for a Large Deployable Mesh Reflector [C]. AIAA /ASME/ ASCE /AHS /ASC Structures, Structural Dynamics and Materials Conference. Kissimmee, FL, USA: AIAA, 1997: 2963-2971.
    [88]韦娟芳.空间4~10米可展开天线的动力耦合分析及实验技术[D].杭州:浙江大学,2002:102-110.
    [89]黄本诚,童靖宇.空间环境工程学[M].北京:中国科学技术出版社,2010:274-302.
    [90]刘明治,高桂芳.空间可展开天线结构研究进展[J].宇航学报,2003,24(1):82-87.
    [91]颜鸿森.机械装置的创造性设计[M].北京:机械工业出版社,2002:69-168.
    [92] Tankersley B C. Maypole (Hoop/Column) Deployable Reflector Concept Development for 30 to 100 Meter Antenna[C]. AIAA, 1979: 446-458.
    [93] NASA Staff Writers. TDRS-1 Satellite Reaches 25 Years of Age[EB/OL]. (2008-4-8)[2011-5-30].http://www.spacemart.com/reports/TDRS_1_Satellite_Reaches_25_Years_Of_Age_999.html.
    [94]于海波,于靖军,毕树生,等.基于图论的可重构机器人构型综合[J].机械工程学报,2005,41(8):79-83.
    [95]刘缵武.应用图论[M].长沙:国防科技大学出版社,2006:98-100.
    [96]邱雪松,邓宗全,胡明.可展开式月球车车轮构型设计及构态变换分析[J].机械工程学报,2006,42(B05):148-151.
    [97]于靖军,刘辛军,丁希仑,等.机器人机构学的数学基础[M].北京:机械工业出版社,2008:10.
    [98]李所军.月球探测车摇臂悬架设计参数优化及折展实验研究[D].哈尔滨:哈尔滨工业大学,2009:69-74.
    [99]乐英,韩庆瑶,王璋奇.数控加工中非圆曲线的最小二乘圆弧逼近[J].华北电力大学学报,2006,33(6):102-104.
    [100]蔡自兴.机器人学[M].北京:清华大学出版社,2000:29-43.
    [101]陈烈民.航天器结构与机构[M].北京:中国科学技术出版社,2005:38-65,177.
    [102]商跃进.有限元原理与ANSYS应用指南[M].北京:清华大学出版社,2006:85-88.
    [103]郭宏伟.索杆铰接式伸展臂及其力学特性研究[D].哈尔滨:哈尔滨工业大学,2009:16-38.
    [104]彭熙伟,杨会菊.液压泵效率特性建模的神经网络方法[J].机械工程学报,2009,45(8):106-111.
    [105]施彦,韩力群,廉小亲.神经网络设计方法与实例分析[M].北京:北京邮电大学出版社,2009:23-76.
    [106]郭亚娟.空调配管系统的减振研究与阻尼优化设计[D].上海:上海交通大学,2010:83-89.
    [107]李云雁,胡传荣.试验设计与数据处理[M].北京:化学工业出版社,2005:79-113.
    [108]薛定宇,陈阳泉.高等应用数学问题的MATLAB求解[M].北京:清华大学出版社,2004:357-359.
    [109]郭仁生.基于MATLAB和Pro/ENGINEER优化设计实例解析[M].北京:机械工业出版社,2007:143-150.
    [110]付丽.充气展开天线形面精度分析[D].哈尔滨:哈尔滨工业大学,2006:40-51.
    [111] Natori M C. Adaptivity Demonstration of Inflatable Rigidized Integrated Structures[J]. Acta Astronautica, 1995,37: 59-67.
    [112] Pappa R S, Giersch L R, Quagliaroli J M. Photogrammetry of a 5m Inflatable Space Antenna with Consumer Digital Cameras[J]. Experimental Techniques, 2001, 25(4): 550-560.
    [113]卢成静,黄桂平,李广云. V-STARS工业摄影三坐标测量系统精度测试及应用[J].红外与激光工程,2007,36(S1):245-249.
    [114]王保丰;李广云;李宗春等.应用摄影测量技术检测大型天线工作状态的研究[J].中国电子科学研究院学报,2006,1(5):435-439.
    [115]许文学.大型天线测量方法研究及应用[D].郑州:中国人民解放军信息工程大学,2006:6-23.
    [116]黄桂平,钦桂勤,卢成静.数字近景摄影大尺寸三坐标测量系统V-STARS的测试与应用[J].宇航计测技术,2009,29(2):5-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700