用户名: 密码: 验证码:
隧道工程热液固多场耦合效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
隧道工程总是赋存于一定的地质系统中,地下水、地应力和温度是该物理地质环境中的三个主要因素,隧道围岩温度场、渗流场和应力场之间相互依存,相互联系、相互影响,将各物理场分开进行研究而忽略其相互耦合作用的研究所得出的结论往往与工程实际情况不相适应,也不能满足当前隧道工程建设的需要,因此,有必要对隧道进行热液固多场耦合效应研究,探明各介质的力学特性以及它们之间的相互影响,从而真实反映隧道结构及围岩的实际工作状态。论文以复杂条件下的寒区隧道、高水压水下盾构隧道等典型隧道工程为研究对象,采用热液固耦合数学模型,综合现场跟踪试验、数值模拟等研究手段对寒区及水下隧道进行热液固耦合分析,就高水压水下盾构隧道的施工期安全性及寒区隧道抗防冻保温层设计进行了较系统的研究并取得系列的研究成果。
     1.选择水下盾构隧道有代表性的“砂岩层”和“砂岩-泥岩互层”断面,进行液固耦合效应的现场跟踪测试研究,系统测试实际作用在盾构隧道主体结构上的外水压力、土压力的量值及分布规律,探明水下盾构隧道主体结构与围岩、长江水的相互作用特征,判明盾构隧道主体结构的实际受力状态及结构安全性。
     2.采用有限元数值模拟法,对施工期围岩及结构进行渗流场单场数值模拟分析,探明隧道掘进过程渗流场的变化规律;利用液固双场耦合理论,采用有限元数值模拟,研究施工期间隧道围岩及主体结构的渗流场、应力场及变形场的分布和演化规律以及相互影响关系,并结合现场跟踪测试对施工期主体结构的安全性作出评价。
     3.采用伴相变温度场数学模型,对寒区隧道围岩及结构温度场进行数值模拟分析,探明寒区隧道温度场分布规律及影响因素;对不同材料、不同结构型式/厚度的保温隔热措施进行围岩及衬砌相变温度场研究,获得保温层施作前后的围岩、衬砌温度场,确定合理的试验段保温层厚度。
     4.采用相变温度场、渗流场、应力场耦合数学模型,对保温层施作前后的围岩及结构进行热液固三场耦合分析,探明寒区隧道运营期围岩温度场、渗流场及应力场的分布及演化规律,揭示季节性冻融冻胀条件下隧道结构受力特性,对寒区隧道保温层的保温效果进行数值验证;最后,将寒区隧道保温层材料及厚度的数值模拟方法应用于鹧鸪山隧道,计算满足抗防冻所需的合理保温层材料及厚度,并利用现场试验进行了保温效果的验证,从而为类似寒区隧道的抗防冻设计提供有益的参考。
     本项研究开展面向高水压、高寒等条件下的复杂隧道工程的热液固多场耦合效应研究,对高水压水下盾构隧道施工期安全保障措施、高寒隧道的抗防冻措施的设计与实施均具有重要的现实意义。随着我国基础设施建设的高速发展,特别是2005年国家高速公路网规划的发布,以高寒隧道、江/海底隧道等为代表的复杂隧道工程呈日益增长的趋势,开展这方面的基础课题研究,将对目前以及未来国家重大隧道工程具有重要参考价值。
Tunnel works always exists in a certain geologic system, where groundwater, ground stress and temperature are the three main factors. Since the relations of mutual dependence, interrelation and infection lie among temperature field, seepage field and stress field of tunnel surrounding rock, such studies, which separate the three physical fields and ignore mutual coupling effects, are neither inconformity with actual project conditions nor satisfy present tunnel construction. Therefore, it is necessary to carry out the studies of heat-liquid-solid coupling effects, and prove mechanical properties and mutual effects of such media, and so, veritably reflect actual working conditions of tunnel's structure and surrounding rock. Based on such typical tunnel works under complex conditions as high-cold tunnel, high-water-pressure sub-river tunnel, etc, heat-liquid-solid coupling mathematical model, with such research method as in-situ tracking test and numerical simulation, etc, are used to carry out heat-liquid-solid coupling analysis for high-cold and high-water-pressure tunnels, and systematically and deeply study the construction safety of high-water-pressure sub-river tunnel and design of insulating layer for high-cold tunnel. Such reseach results are attained as follows:
    1. Select typical sandstone layer and alternation of sandstone-siltstone layer to carry out in-situ tracking test, and systematically test actual external water pressure and earth pressure actually acting on agent structures of sub-river shield tunnel, reveal mutual effects among agent structure, surrounding rock and water from Yangtze River, and clearly distinguish the actual stress state and structure safety of agent structure of sub-river shield tunnel.
    2. Apply FEM numerical simulation method to analyze single seepage field for surrounding rock and agent structure in construction period, and reveal variation laws of seepage field in the course of construction. Based on coupling theory of seepage-stress field, apply FEM numerical simulation to study the distribution and evolution laws of seepage, stress and deformation fields in construction period, and evaluate safety performances of agent structure in construction period combining with in-situ tracking test.
    3. Apply mathematical model of temperature field with phase-change to simulate temperature field of surrounding rock and structure in cold region tunnel so as to reveal distribution laws of temperature field and influential factor in cold-region tunnel. At the same time, apply numerical simulation of phase-change
     temperature field to carry out in-situ erification and numerical simulation for heat preservation effects of test sections with different heat insulation materials, structure types/thickness, reveal distribution laws of temperature field of surrounding rock and linings with and without insulating layers. Combine the results of in-situ test and numerical simulation to determine reasonable thickness of insulating layer.
     4. Apply coupling mathematical model of phase-change temperature field, seepage field and stress field to carry out coupling analysis of distribution laws of temperature field, seepage field and stress field, find stress conditions of tunnel structure under seasonal freeze thawing and frost heaving conditions; Combine with the in-situ test results to verify the insulating property of insulating layers with different insulation material/thickness and determine a reasonable thickness of insulating layer, and therefore provide well references for antifreezing design of analogous tunnels in cold region.
     For such heat-liquid-solid coupling studies facing to complex underground constructions under high water pressure and high cold conditions, it is actually significant to safety control measures of sub-river shield tunnel in construction period and design and actualization of frostresisting antifreezing measures of high-cold highway tunnel. With the rapid development of infrastructural constructions, especially the issuance of 2005 State Expressway Network Layout, such complex underground constructions as high-cold tunnel, sub-river/sub-sea tunnel, etc, take on evergrowing trends. The results about such research task can be significant references for great underground constructions at present and in the future.
引文
[1] 陶振宇.岩石力学的理论与实践[M].北京:水电出版社,1979.
    [2] 仵彦卿,张倬元.岩体水力学导论[M].成都:西南交通大学出版社,1994.
    [3] 吉小明,王宇会.岩体地下流固耦合理论的研究综述[J].石家庄铁道学院学报,2002,15(2):27~31.
    [4] 孙培德,钱耀敏,缪海泉.岩体中热-水-力耦合模型的新进展[J].浙江地质,1998,14(2):45~58.
    [5] 关宝树编著.隧道工程设计要点集[M].北京:人民交通出版社,2003.
    [6] 朱汉华,尚岳全等编著.公路隧道设计与施工新法[M].北京:人民交通出版社,2002.
    [7] 孙钧著.地下工程设计理论与实践[M].上海:上海科学技术出版社,1995.
    [8] 伍勇、刘国琦等主编.地下铁道新技术文集2003,西南交通大学出版社,2003年.
    [9] 张凤祥,朱合华等编著.盾构隧道[M].北京:人民交通出版社,2004.
    [10] 安维东等著.冻土的温度、水分、应力及其相互作用[M].兰州:兰州大学出版社,1990
    [11] Bonacina C, Comini G, Fasano A. et al. Numerical Solution of Phase Change Problems [J]. Int. J. Heat Mass Transfer, 1973, 16(6): 1852~1832.
    [12] Comini G, Guidice S D, Lewis R W, et al Finite element solution of nonlinear heat conduction problems with special reference to phase change [J]. Inter. J. for Numerical method in Engineering, 1974, 8(6): 613~624.
    [13] Bansal N K, Sodha, Bharadwaj S S. Performance of earth air tunnels [J]. Energy Research, 1983, 7: 333~345.
    [14] Sandegren E. Insulation against ice rail road tunnels [J]. Transportation Research Record. 1150, 43~48.
    [15] Lee K B, Howell J R. Theoretical and experimental heat and mass transfer in highly porous media [J]. Int. J. Heat Mass Transfer, 1991, 34(8): 2123~2132.
    [16] 何春雄,吴紫汪等.祁连山区大坂山隧道围岩冻融状况分析[J].冰川冻土,2000,22(2):113~120.
    [17] 张建明,盛煜等.铁路碎石道碴层导热系数测试研究[J].冰川冻土,2003,25(6):628~631.
    [18] 乜凤鸣.寒冷地区隧道气温状态[J].冰川冻土,1988,10(4):450~453.
    [19] 赖远明,喻文兵等.寒区圆形截面隧道温度场的解析解[J].冰川冻土,2001,23(2):126~130.
    [20] 赖远明,吴紫汪等.寒区隧道温度场、渗流场和应力场耦合问题的非线性分析[J].岩土工程学报,1999,21(5):529~533.
    [21] 赖远明,吴紫汪等.寒区隧道温度场和渗流场耦合问题的非线性分析[J].1999,29(增):21~26.
    [22] 张学富,赖远明等.寒区隧道三维温度场数值分析[J].铁道学报,2003,25(3):84~90.
    [23] 万志军,赵阳升等.高温岩体地热资源模拟及模拟方法[J].岩石力学与工程学报,2005,24(6):945~949.
    [24] Louis C. Rock hydraulics in rock mechanics [M]. Edited by L. Muller. Verlay Wien, New York, 1974.
    [25] Witherspoon P A, et al. New approaches to problems of fluid flow in fractured rock mass, Proc. U. S. Symp. Rock Mech. 22nd, 1981.
    [26] Barenblett, et al. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [J]. J. Appl. Math. Mech., Engl. Transl., 1960 (5).
    [27] Snow D T. Anisotropic permeability of fractured media. Water Resource Res., 1969, 5(6): 1273~1289.
    [28] Huyakorn P. S, et al. Finite element techniques for modelling ground water flow in fractured aquifers. Water Resources Research, 1983, 19(5).
    [29] M. F. Lough, S. H. Lee, J. Kamath. An efficient boundary integral formulation for flow through fractured porous media [J]. Journal of Computational Physics, 1998(143): 462~483.
    [30] L. Wei, J. A. Hudson. A hybrid discrete-continuum approach to model hydro-mechanical behavior of jointed rocks [J]. Engineering Geology, 1998(49): 317~325.
    [31] 田开铭,万力.各向异性裂隙介质渗流性的研究与评价[M].北京:学苑出版社,1989.
    [32] 毛昶熙,陈平等.裂隙岩体渗流计算方法研究[J].岩土工程学报,1991,13(6):1~10.
    [33] 张有天,刘中.降雨过程裂隙网络饱和/非饱和、非恒定渗流分析[J].岩力学与工程学报,1997,16(2):104~111.
    [34] 朱学愚,谢春红.地下水运移模型[M].北京:中国建筑工业出版社,1990.
    [35] 周志芳等.有限分析法在反求裂隙岩体渗透张量中的应用[J].水利学报,1993(5):68~75.
    [36] 万力等.三维裂隙网络的多边形单元渗流模型[J].水利水运科学研究,1993,(4).
    [37] 速宝玉,詹美礼等.裂隙渗流与应力的耦合试验研究[J].岩土工程学报,1997,19(4):73~77.
    [38] 王媛,速宝玉,徐志英.等效连续裂隙岩体渗流与应力全耦合分析[J].河海大学学报,1998,26(2):26~30.
    [39] 谢和平.分形——岩石力学导论[M].北京:科学技术出版社,1996.
    [40] 赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社,1994.
    [41] 申晋,朱维申等.三峡永久船闸高边坡岩体裂隙分布的分形研究[J].岩土工程学报,1998,20(5):97~100.
    [42] 莫海鸿,林德璋.裂隙介质网络水流模型的拓扑研究[J].岩石力学与工程学报,1997,16(2):97~103.
    [43] 王洪涛,王恩志.岩体主干裂隙系统三维非稳定渗流分析模型[J].水动力学研究与进展(A辑),1998.
    [44] 周创兵,叶自桐等.岩石节理张开度的概率模型与随机模拟[J].岩石力学与工程学报,1998,17(3):267~272.
    [45] 王恩志,王洪涛等.双重介质系统渗流模型研究[J].岩石力学与工程学报,1998,17(4).
    [46] 成建梅,陈崇希.广西北仙岩溶管道—裂隙—孔隙地下水数值模拟研究[J].水文地质工程地质,1998,25(4):50~54.
    [47] 沈洪俊,高海鹰等.应力作用下裂隙岩体渗流特性的试验研究[J].长江科学院院报,1998,15(3):35~39.
    [48] 崔中兴,仵彦卿等.石砭峪岩体裂隙非连续介质渗流对岩体强度的影响[J].西安理工大学学报,2001,17(4):366~369.
    [49] 仵彦卿.岩体水力学基础(一)——岩体水力学的基本问题[J].水文地质工程地质,1996,23(6)
    [50] 仵彦卿.岩体水力学基础(二)——岩体水力学的基本理论[J].水文地质工程地质,1997,24(1).
    [51] 柴军瑞.大坝及其周围地质体中渗流场与应力场耦合分析研究综述[J].水利水电科技进展,2004.22(2):53~55.
    [52] 柴军瑞.大坝及其周围地质体中渗流与应力场耦合分析[D].西安理工大学博士论文,2000年.
    [53] Parts M. The effect of horizontal fluid flow on thermally induced convection currents in porous media [J]. Journal of Geophysical Research, 1966, 10, 71(20): 4835~4838.
    [54] Harlan R L. Analysis of coupled heat-fluid transport in partial frozen soil [J]. Water Resources Research, 1973, 9(5): 1314~1323.
    [55] Hodgkinson, D P, et al. A mathematical model for hydrothermal convection around a radioactive waste depository in hard rock [J]. Annals of nuclear Energy, 1980, 7: 313~334.
    [56] Morrow, C, et al. Permeability of Granite in a temperature gradient [J]. Journal of Geophysical Research, 1981, 4, 86(B4): 3002~3008.
    [57] Wickens, L M. Finite element modelling of ground water flow in hard rock regions containing a heat-emitting radioactive waste depository [J]. Ann. nucl. Energy, 1984, 11(12): 15~25.
    [58] Johansen N I, Huang S L, Aughenbaugh N B. Alaska's CREAL Tunnel [J]. Tunnelling and Underground Space Technology, 1988, 3(1): 19~24.
    [59] Lowell, R P. Thermoelasticity and the formation of black smokers[J]. Geophysical Research Letters,1990. 5, 17(6): 709~712.
    [60] Abdallah, G, et al. Thermal convection of fluid in fractured media[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1995, 32(5): 481~490.
    [61] Liu Jiankun. Coupled problem of unsteady seepage of water and thermal transfer in roadbed on permafrost regions [A]. Proceeding of International Symposium on Cold Regions Engineering, Harbin, China [C]. Harbin: University of Harbin Industry Technology Press. 1996: 107~110.
    [62] 苗天德等.含相变多孔介质本构理论与冻土中的水热迁移问题.中国科学院兰州冰川冻土研究所冻土工程国家重点实验室年报(第六卷)1996,35~41.
    [63] 李守义,陈尧隆,王长江.碾压混凝土坝渗流对温度应力的影响[J].西安理工大学学报,1996,12(1):41~46.
    [64] 李南生,孙焕纯等.渠系基础冻结过程水热耦合问题数值分析[J].水利学报,1997,3:43~48.
    [65] 黄涛.渗流场与应力场耦合环境下裂隙围岩型隧道涌水量预测的研究[D].西南交通大学博士论文,1997.
    [66] 黄涛,杨立中.工程岩体地下水渗流-应力-温度耦合作用数学模型的研究[J].西南交通大学学报,1999,34(1):11~15.
    [67] 陆宏轮.饱和多孔介质冻融过程的混合物连续介质理论[J].西南交通大学学报,Vol.36,No.6
    [68] 何建,马景骏.潮湿路基温度场、湿度场耦合作用计算模型[J].哈尔滨工程大学学报,2001,22(3):59~62.
    [69] 王铁行,胡长顺.多年冻土地区路基温度场和水分迁移场耦合问题研究[J].土木工程学报,2003,26(12):93~97.
    [70] 胡建华,汪稔.多年冻土区路基—地质体双向冻结湿热耦合的数学模型[J].土工基础,2004,18(1):30~33.
    [71] Miller R. D. Freezing and heaving of saturated and unsaturated soils. Highway, Research Report, 1972, No. 393: 1~11.
    [72] Willians P. J. and Wood J. A. Internal stresses in frozen ground. Can. Geotech. J. 1985, Vol. 22: 413~416.
    [73] Masami Fukuda, Seiiti Kinosita. Field prediction of the uplift force to conduits due to frost heaving. Fourth International Symposium on Ground Freezing/Sapporo, August, 1985: 5~7.
    [74] 吴紫汪,张家懿,朱元林.冻土强度与破坏特征.第二届全国冻土学 术会议论文选集:275~280.甘肃:人民出版社,1983.
    [75] 朱强.甘肃省混凝土衬砌渠道地基冻胀土壤的分级及防冻措施.第二届全国冻土学术会议论文选集:455~462.甘肃:人民出版社,1983.
    [76] 朱伯芳,王同生等.水工混凝土的温度应力与温度控制[M].北京:水利电力出版社,1976年.
    [77] 倪国荣,刘庆潭.地下工程冻结法温度应力解答[J].长沙铁道学院院报,1995,13(2):55~62.
    [78] 丁靖康,娄安全.多年冻土区挡土建筑物的设计与计算.见:第五届全国冰川冻土学大会论文集(下).兰州:甘肃文化出版社,1996:1127~1137.
    [79] 王青海等.中低放核废料地下处置对围岩介质(花岗岩体)温度场的影响[J].地质灾害与环境保护,1997,12,8(4):54~58.
    [80] 曹为民,吴健等.水闸闸墩温度场及应力场仿真分析[J].河海大学学报(自然科学版),2002,30(5):48~52.
    [81] 张淑娟,赖远明等.风火山隧道冻融循环条件下岩石损伤扩展室内模拟研究[J].岩石力学与工程学报,2004,23(24):4105~4111.
    [82] Terzaghi K. Theoretical soil mechanics [M]. New York, Tiho Wiley, 1943.
    [83] Biot M A. General solution of the equation of elasticity and consolidation for porous material [J]. Jour. Appl. Mech., 1956(78): 91~96.
    [84] Verruijt. Elastic storage of aquifers [A]. In: Flow Through Porous Media [C]. R J M. New York: Tiho Wiley, 1969, 5~65.
    [85] Gangi A. F. The variation of mechanical and transport properties of cracked rock with pressure. Proc. 22nd, U. S. Rock Mech., 1981.
    [86] Killsall P. C., et al. Evaluation of excavation induced changes in rock permeability[J]. Int. J. Rock Mech. Min. Sci., 1984(3).
    [87] Oda M. An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses [J]. Water Resources Research, 1986(13).
    [88] Noorishad J. Coupled thermal-hydraulic-mechanical phenomena in saturated fractured porous [J]. Numerical approach. J. Geoph. Res, 1989(B12).
    [89] 陈平,张有天.裂隙岩体渗流与应力耦合分析[J].岩石力学与工程学报,1994(4).
    [90] 杨延毅,周维垣.裂隙岩体非线性流变性态与裂隙扩展过程关系研究[J].工程力学,1994(2):81~90.
    [91] 张玉卓,张金才.裂隙岩体渗流与应力耦合的试验研究[J].岩土力学,1997(4):59~62.
    [92] 耿克勤,吴水平.拱坝和坝肩岩体的力学与渗流的耦合分析实例[J].岩石力学与工程学报,1997(16):125~131.
    [93] 高海鹰,夏颂佑.三维裂隙岩体渗流场与应力场耦合模型研究[J].岩土工程学报,1997,19(2):102~105.
    [94] 杨明举.地下水封裸洞储存LPG耦合问题的变分原理及应用[J].岩石力学与工程学报,2003(4):
    [95] 盛建龙,刘新波等.固液耦合的有限元法及其应用[J].地下空间,1999,19(4):323~327.
    [96] 沈振中,徐志英等.三峡大坝坝基粘弹性应力场与渗流场耦合分析[J].工程力学,2000,17(1):105~113.
    [97] 陈庆中,张弥等.应力场-渗流场-流场耦合系统问题[J].工程力学,2000,17(6):53~58.
    [98] 盛金昌,速宝玉等.裂隙岩体渗流-弹塑性应力耦合分析[J].岩石力学与工程学报,2000,19(3):304~309.
    [99] 朱珍德,徐卫亚.裂隙岩体渗流场与损伤场耦合模型研究[J].河海大学学报(自然科学版),2003,31(2):156~160.
    [100] 黄润秋,王贤能等.深埋隧道涌水过程的水力劈裂作用分析[J].岩石力学与工程学报,2000,19(5):573~576.
    [101] 李宗利,任青文等.考虑渗流场影响深埋圆形隧洞的弹塑性解[J].岩石力学与工程学报,2004,23(8):1291~1295.
    [102] 李廷春,李术才等.厦门海底隧道的流固耦合分析[J].岩土工程学报,2004,26(3):397~401.
    [103] B. Dempsey. A mathematical model for predicting coupled heat and water movement in unsaturated soil [J]. Int. J. for Numerical and Analytical Methods in Geomechanics, 1978(5): 19~34.
    [104] J. Klein. Finite element method for time-dependent problems of frozen soils [J]. Int. J. for Numerical and Analytical Methods in Geomechanics, 1981 (5): 263—283.
    [105] Barton N, Bandis S C. Strength, deformation and conductivity coupling of rock joints [J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1985, 22(3):121-140.
    [106] Mctigue D. E, Thermo-elastic response of fluid saturated porous rock, Journal of Geophysical Research. 91(B9), 1986:9533-9542.
    [107] Fremond M , Mikkola M . Thermomechanical of freezing soil [A]. Proceedings of the Sixth International Symposium on Ground Freezing [C]. Rottendam: A. A. Balkema, 1991.
    [108] Neaupane K M, Yamabe T. A fully coupled thermo-hydro-mechanical nonlinear model for a frozen medium [J]. Computers and Geotechnics, 2001, 28(8): 613—637
    [109] Yamabe T , Neaupane K M . Determination of some thermo-mechanical properties of Sirahama sandstone under subzero temperature condition [J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(7): 1029—1034
    [110] Konrad J. M and Duquennoi C. A model for water transport and ice lensing in freezing soils [J]. Water Resources Research., 1993, 29(9): 3109-3124.
    [111] Thomas H R, He Y. Analysis of coupled heat, moisture and air transfer in a deformable unsaturated soil [J]. Geotechnique, 1995, 45(4): 677-689.
    [112] Jing L, Tsang C F, Stephansson O. DCOVALEX—an international co-operative research project on mathematical models of coupled THM process for safety analysis of radioactive waste repositories [J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1995, 32(5):399-408.
    [113] Gatmiri B , Delage P . A new formulation of fully coupled thermal-hydro-mechanical behavior of saturated porous media: numerical approach [J]. Int. J. Numer. Anal. Methods Geomech., 1997, 21(3): 199-225.
    [114] Abousit B. L. S. H. Advani, et al. Finite element evaluation of thermo-elastic consolidation. In: Proc. U. S. Symp. Rock Mechanic, 1998, 23rd, 587-595.
    [115] I. Masters, W. K. S. Pao and R. W. Lewis. Coupling temperature to a double-porosity model of deformable porous media[J]. International Journal for Numerical Methods in Engineering, 2000(49): 421~438.
    [116] 周希圣.隧道冻结工程水、温度、应力、位移场的耦合研究[D].徐州:中国矿业大学,1998.
    [117] 何平,程国栋等.饱和正冻土中的水、热、力场耦合模型[J].冰川冻土,2000,22(2):135~138.
    [118] 刘亚晨,蔡永庆等.岩体裂隙结构面的温度-应力-水力耦合本构关系[J].岩土工程学报,2001,23(2):196~200.
    [119] 杨代泉,沈珠江.非饱和土孔隙气、水、汽、热耦合运动之模拟[J].岩土工程学报,2000,22(2):357~361.
    [120] 李宁,陈波等.寒区复合地基的温度场、水分场和变形场三场耦合模型[J].土木工程学报,2003,36(10):66~71.
    [121] 靳德武,牛富俊等.土体冻融过程中渗流场-应力场-温度场耦合作用机理研究[J].煤田地质与勘探,2003,31(5):40~42.
    [122] 贺玉龙.三场耦合作用相关试验及耦合强度量化研究[D].西南交通大学博士论文,2003年.
    [123] 徐光苗,刘泉声等.冻结温度下岩体THM完全耦合的理论初步分析岩石力学与工程学报,2004,23(21):3709~3713.
    [124] 《重庆主城排水工程太平门至海棠溪长江隧道工程地质详勘报告》[R].冶金西南勘察基础工程总公司,2001年5月.
    [125] 重庆主城排水工程过江隧道(盾构)招标图纸[R].重庆市排水有限公司,中煤工程设计咨询集团重庆设计研究院,2001年.
    [126] 国道317线鹧鸪山隧道及其引道工程施工图设计(隧道)[R].铁道部第二勘测设计院,2001年1月.
    [127] 谢红强.小湾坝肩槽开挖高边坡卸荷特性三维非线性有限元分析及加固措施研究[D].四川大学硕士学位论文,2002年.
    [128] 朱伯芳著.有限单元法原理与应用(第二版)[M].北京:中国水利水电出版社,1998.
    [129] H.A.崔托维奇[苏].冻土力学[M].北京:科学出版社,1985年.
    [130] 杨强生等.高等传热学[M].上海交通大学出版社,1995年.
    [131] 郭陕云.论我国隧道和地下工程技术的研究和发展[J].隧道建设,2004,24(5):1-5.
    [132] 杨红禹,周建民.论我国越江隧道的发展[J].地下空间,2000,20(3):209~213.
    [133] 贾嘉陵,刘维宁等.水压在隧道工程水环境中的力学效应机理初探[J].中国安全科学学报,2003,13(8):29~33.
    [134] 蔡晓鸿,蔡勇平著.水工压力隧洞结构应力计算[M].北京:中国水利水电出版社,2004.
    [135] 吴波.复杂条件下城市地铁隧道施工地表沉降研究[D].西南交通大学博士学位论文,2003年
    [136] 施仲衡,张弥等.地下铁道设计与施工[M].陕西科学技术出版社,1997年.
    [137] 马静嵘.软岩体冻融损伤水热力耦合研究初探[D].西安科技大学硕士学位论文,2003年
    [138] 吴剑.隧道冻害机理及冻胀力计算方法的研究[D].西南交通大学硕士学位论文,2004年.
    [139] 杨针娘,刘新仁,曾群柱。陈赞廷.中国寒区水文.科学出版社,2000
    [140] 程知言.浅表隧道工程多冷源冻结温度、应力、水分场耦合研究[D].中南大学博士学位论文,2002年.
    [141] 中国科学院寒区旱区环境与工程研究所.高海拔寒冷地区隧道工程冻害防治技术研究,2000.10:16~29
    [142] 孙文昊.寒区特长公路隧道抗防冻对策研究[D].西南交通大学硕士学位论文,2004年.
    [143] 赵强政,何川,谢红强.鹧鸪山隧道抗防冻措施热力耦合研究[A].成都:2005全国公路隧道学术会议论文集[C].北京:人民交通出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700