用户名: 密码: 验证码:
LCC-SPRC高压高频大功率电除尘电源的理论分析与功率参数设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电除尘电源新技术能够显著提高除尘效率,在环境保护中发挥着越来越重要的作用,随着节能减排政策的深化和大气污染排放标准的日益严格,目前已经成为一个重要的研究领域。尽管国内外企业关于高压高频大功率电除尘电源的产品逐渐进入市场,应用也越来越广泛,但普遍缺乏对高压高频大功率电除尘电源基础共性问题的研究,尚未涉及谐振变流器和高压高频变压器一体化设计的方法。
     高压高频大功率电除尘电源属于特种电源范畴,涉及多种学科内容,具有一定研究难度。本文从高压高频大功率电除尘电源的基础问题和特殊性出发,论述了断续电流模式串并联谐振变流器(DCM LCC-SPRC)在高压高频大功率电除尘电源中的应用优势,在DCM LCC-SPRC的数学描述和设计方法方面开展了较为系统深入的研究。
     首先,较为全面地给出了对DCM LCC-SPRC的数学描述。DCM LCC-SPRC设计的前提是获得电路的数学描述。目前常用的基于数值计算和仿真的描述方法计算量大,电路参数之问的内在关系表达不明确,难以用于优化设计。基于此,论文第二章推导了反映DCM LCC-SPRC电路特性的归一化解析表达式,其形式简单,仅含有等效电压增益和并联谐振电容与串联谐振电容比值两个参数。在此基础上,本论文还较为全面地给出了对DCM LCC-SPRC的数学描述,并通过大量实验数据验证了其正确性。该部分研究成果揭示了电路参数之间的内在联系,为DCM LCC-SPRC的进一步研究和设计奠定了基础。
     其次,提出了DCM LCC-SPRC和高压高频大功率变压器一体化设计方法。本论文所讨论的高压高频大功率DCM LCC-SPRC一个非常重要的特点是:采用高压高频大功率变压器的寄生参数作为谐振元件。因此,DCM LCC-SPRC和变压器是紧密联系在一起的一个整体。现有文献往往把两者分开考虑,忽视两者的内在联系,其结果是难以实现整体的优化设计。论文第三章提出了DCMLCC-SPRC和高压高频大功率变压器一体化的设计思想和方法。通过基准值变换和寄生参数折算到变压器高压侧等方法,成功解决了变压器匝比和寄生参数对一体化设计的相关性问题,使一体化设计方法具有实际可操作性。论文第三章还进一步提出了电源系统分别在简易控制和优化控制下的一体化设计方案,并给出了实例,包括设计步骤、仿真、实验结果和两种控制方案的对比。其中,简易控制具有控制策略简单的优点;优化控制具有更高的电流输出能力、更高的工作频率和更低的电流应力等优异性能。在一体化设计的基础上,论文讨论了变压器寄生参数对电路特性的影响,为变压器的设计提供了理论指导。
     论文进行了DCM LCC-SPRC系统扩容研究。采用变压器低压侧并联、高压侧串联的结构可有效地提高输出电压;采用变压器低压侧并联、高压侧并联的结构可有效地提高输出电流,并采用上述两种方法分别实现了95kV和1.2A的高压大电流输出。
     DCM LCC-SPRC和高压高频大功率变压器一体化设计方法的研究成果具有很强的工程应用价值,系统扩容研究为高频电除尘电源在更高输出电压和电流场合的应用奠定了基础。
     再次,给出了较为完整的高压高频大功率变压器设计实例。作为特种电源中的关键部件,高压高频大功率变压器的设计涵盖多种学科技术知识,不仅具有理论深度,而且直接和工程应用紧密相关联。其设计方法与常规变压器不同,现有文献缺乏对72kV/1A/(>10kHz)输出等级的高压高频大功率变压器详细设计过程的相关报道。论文第四章紧紧围绕高压高频大功率变压器的特殊性,提出指导原则,在讨论相关问题的过程中完成了高压高频大功率变压器的构建。论文还对变压器寄生参数值的理论计算结果和实验精确提取结果进行了对比,发现理论计算值具有良好的工程应用价值。本章的研究成果丰富了高压高频大功率变压器的设计方法,同时为高频电除尘电源稳定可靠运行提供了保障。
     最后,建立了DCM LCC-SPRC的大信号模型。由工作特性决定,电除尘电源频繁地出现闪络重启动。为了准确地分析电路启动特性,需要建立电路模型。目前谐振变流器常用的是基于广义平均法和基波分量的建模方法,该方法难以直接应用于谐振电流波形严重偏离正弦波且存在断续的DCM LCC-SPRC。针对这种情况,论文第五章建立了控制量和输出状态量的微分方程关系式,消除了与谐振状态量的耦合;同时还建立了单一谐振元件状态量和输出状态量的关系式,不存在与控制量的耦合。所建立的DCM LCC-SPRC大信号模型形式简单,通过仿真研究发现,其非常好地描述了电路启动的暂态过程,并具有仿真速度快的优点,同时避免了电路收敛性问题。
     论文较为系统地研究了DCM LCC-SPRC高压高频大功率电除尘电源,其结果不但丰富了高压高频大功率电除尘电源的研究,同时为DCM LCC-SPRC电源的工程应用打下了良好的基础。
New technologies of the ESP power supply can significantly improve the dust removal efficiency, and play an increasingly important role in environmental protection. With the energy saving policy and the increasing strict of air pollution emission standards it has now became an important research area. Although the high-voltage, high-frequency and high-power ESP power supplies products of domestic and foreign enterprises gradually enter the market, more and more widely applied, the common problem research is lack, not involving the integration design of resonant converter and high voltage transformer.
     The high voltage, high frequency and high power ESP power supply is belong to special power supply. It involves a variety of subject content, with some difficulties in study. Based on the basic problem and specificity, advantages of the discontinuous current mode series-parallel resonant converter (DCM LCC-SPRC) in the high-voltage applications are discussed, and relatively systematic study in DCM LCC-SPRC mathematical description and design is carried out.
     Firstly, more comprehensive mathematic description of DCM LCC-SPRC is given. DCM LCC-SPRC design is based on the mathematical description of the circuit. The most commonly used method, such as simulation and numerical calculation need large computation; the intrinsic relationship between the circuit parameters is uncertainty. Therefore, it is difficult to be used in optimizing the design. Normalized analytic expressions in the simple form are derived in the second chapter, reflecting DCM LCC-SPRC circuit characteristics and containing only two parameters, the equivalent voltage gain and the ratio of the parallel resonant capacitor to the series resonant capacitor. On this basis, more comprehensive mathematic description of DCM LCC-SPRC is given, and a great deal of experimental data verifies its correctness. The research reveals the intrinsic relationship between the circuit parameters for DCM LCC-SPRC; establish the foundation for further research and design.
     Secondly, integration design method of DCM LCC-SPRC and high voltage, high frequency and high power transformer is proposed.A very important feature of the discussed DCM LCC-SPRC is the high voltage transformer parasitic parameters are used as resonant components. Therefore, DCM LCC-SPRC and transformers are a whole part. The existing literature tend to neglect the intrinsic relationship between them, it is difficult to achieve the overall optimal design. The integration design method of DCM LCC-SPRC and the high voltage transformer is proposed in the third chapter. By reference value transformation and parasitic parameters referred to the high voltage side, the coupling problem of the transformer turns ratio and the parasitic parameters on integration design issues are solved, so that integrated design method can be implemented. The third chapter further gives simple and optimization control under the integrated design, respectively. Examples, including the design steps, simulation, experimental results and comparison of two control schemes are given. Among them, the simple control strategy is simple; optimal control has a higher current output capability, higher frequency and lower current stress and overall excellent performance. Based on the integration design, the transformer parasitic parameters on the circuit characteristics is discussed, provides a theoretical guidance for the transformer design.
     The capacity expansion study of the DCM LCC-SPRC system is studied in Chapter five. Using the transformer structure of low voltage side parallel, high voltage side series can effectively increase the output voltage; Using the transformer structure of low voltage side parallel, high voltage side parallel can effectively increase the output current. By using the two different methods,95kV high voltage and 1.2A high current output are achieved, respectively.
     The research results of the integration design method of DCM LCC-SPRC and high voltage transformer has a good value in application; system expansion study establishes the foundation for the ESP power supply in higher output voltage and current application.
     Thirdly, a complete design example of high voltage, high frequency and high power transformer is given.As a key component of the special power supply, design of the high voltage transformer covers many disciplines knowledge, not only has theoretical depth, but also directly associated with applications. The design method is different from the conventional transformer. The existing literature is lack of detailed design report on the 72kV/1.0A/(>10kHz) output level. Based on the specialty, the design guidelines are proposed, in the process of discussing the related issues, the construction of the high voltage transformer is completed. Theoretical calculation and experimental precision extraction of the transformer parasitic parameters are given, respectively. By comparison of the two ways, the theoretical value has good application value.Research results enrich the design method of the high-voltage, high frequency and high power transformer, while providing guarantee for stable and reliable operation of the ESP power supplies.
     Finally, large-signal model of DCM LCC-SPRC is established. Determined by the operation characteristics, electrostatic precipitator generates flashover frequently and then the ESP power supply restart. In order to accurately analyze characteristics of the circuits, the circuit model is needed. The commonly modeling method used in resonant converter is based on the general average method and the fundamental component method, which is difficult to be directly applied to DCM LCC-SPRC, in which the resonant current waveform is severely deviate sine waveform and has discontinuous process.
     Therefore, the differential relationship between the control variable and the output state variable is established in Chapter five, eliminating the coupling with the resonant state variable, Also the relationship between the resonant state variable and the output state variable is established, containing only one resonant state variable and eliminating the coupling with the control state variable. The established DCM LCC-SPRC large-signal model is simply. It is found by simulation that the large signal model has very good description of the circuit start transient process, and has the advantages of fast simulation speed, avoiding the convergence of the circuit.
     The dissertation has a relatively systematic study of the DCM LCC-SPRC high voltage, high frequency and high-power ESP power supply. The results will not only enrich the high frequency, high power high voltage ESP power supply, but also establish a good foundation for application of the LCC-SPRC power supply.
引文
1. 《火电厂大气污染物排放标准》编制组. 《火电厂大气污染物排放标准》编制说明(征求意见稿).2009年6月.
    2. 火电厂大气污染物排放标准GB13223-2003.2003.
    3. 水泥工业大气污染物排放标准GB4915-2004.2004.
    4. 唐国山.工业电除尘器应用技术.北京:化学工业出版社,2006.
    5. 谢广润,陈慈萱.高压静电除尘.北京:水力电力出版社,1993.
    6. 郭俊.电除尘器间歇供电理论与实践.电力环境保护,1999.15(4):pp.16-18,29.
    7. 黄炜.电除尘器的间歇供电与节能运行.机电技术,2006(04):pp.55,58-59.
    8. N. Grass, W. Hartmann, M. Klockner. Application of different types of high-voltage supplies on industrial electrostatic precipitators. IEEE Transactions on Industry Applications,2004. 40(6):pp.1513-1520.
    9. EPIC Ⅲ-Advanced Electrostatic Precipitator Integrated Controller. Available from: www.service.power.alstom.cn.
    10. Electrostatic Precipitator Remote Controls. Available from:www.flsmidth.com.
    11. 电除尘器远程智能集中控制管理系统.Available from:http://www.jiahuan.com.
    12. M. kirsten, C. Mauritzson, M. Thimanson, A. Karlsson. Advanced switched integrated rectifiers for ESP energization. International Conference on Electrostatic Precipitation.2001. pp. Cl-3:1-10.
    13. M. Kirsten, A. Karlsson. Economical aspects of energising electrostatic precipitators with high-frequency switched power supplies. International Conference on Electrostatic Precipitation.2006. pp.7A2:1-14.
    14. 张谷勋,蒋云峰.电除尘器电源的发展方向——高频化和数字化.电源世界,2007(1):pp.1-4.
    15. 朝泽云,徐至新,钟和清,康勇.静电除尘用高压供电电源特性浅析.高电压技术,2006.32(2):pp.81-83.
    16. 赵会良,罗承沐,覃穆,王幽林.电除尘中的高压供电技术.高电压技术,1996.22(1):pp.66-69.
    17. N. M.Johnson, S.E. Neister, C. F.Bultler. Power supply for electrostatic precipitator electrodes. US Patent 5,631,818,1997.
    18. 王洁,施小东,施建伟.电除尘用三相高压电源.ZL 200720108716.9,2008.
    19. B. Zhang, R. Wang, K. Yan. Industrial applications of three-phase T/R for upgrading ESP performance. International Conference on Electrostatic Precipitation.2008. pp.276-280.
    20. 蒋云峰,张之平,蒋庆龙.ESP用三相中频直流高压电源.200710069164.X,2007.
    21. Y. Jiang, Z. Zhang. The research on three-phase medium-frequency DC high-voltage power. International Conference on Electrostatic Precipitation.2008. pp.354-358.
    22. F.G. Turnbull, R.E. Tompkins. Design of a pulsewidth-modulated resonant converter for a high-output-voltage power-supply. IEEE Transactions on Industry Applications,1987.23(6): pp.1016-1021.
    23. Y. Liu, X. He. PDM and PFM hybrid control of a series-resonant inverter for corona surface treatmen. IEE Proceedings Electric Power Application,2005.152(6):pp.1405-1410.
    24. 刘勇,张琪,何湘宁.基于移相脉冲宽度调制(PS-PWM)控制的串联谐振式塑料薄膜表面处理电源的研制.中国电机工程学报,2006.26(8):pp.142-147.
    25. 刘勇,何湘宁,张仲超.脉冲密度调制串联谐振型塑料薄膜表面处理电源的研制.中国电机工程学报,2005.25(16):pp.158-162.
    26. 张琪.塑料薄膜表面处理电源的PS-PWM控制及其人机界面,硕士学位论文,杭州:浙江大学,2006.
    27. P. Lefley, K. Parker. Breathe easy. IEE Power Engineer,2006:pp.38-43.
    28. P. Ranstad, C. Mauritzson, M. Kirsten, R. Ridgeway. On experiences of the application of high-frequency power converters for ESP energisation. International Conference on Electrostatic Precipitation.2004. pp.8A2:1-16.
    29. R. Dallhammer, F. Neulinger, W. Schmidt, H. Schummer. Electrostatic precipitator power supply. US Patent 4,808,200,1989.
    30. N. Grass, W. Hartmann, M. Romheld. Microsecond pulsed power supply for electrostatic precipitators. IEEE Industry Applications Conference.2001. pp.2520-2524.
    31. G.T. Santamaria. Pulsed power supply for an electrostatic precipitator. US Patent 4,600,411, 1986.
    32. V. Reyes, C. R.Lund. Full scale test with switch mode power supplies on an ESP at high resistivity operating conditions. International Conference on Electrostatic Precipitation.2001. pp. Cl-4:1-10.
    33.Φ. Wetteland. Hard switching-a superior switched mode power supply design for ESPs. International Conference on Electrostatic Precipitation.2001. pp. C1-2:1-13.
    34. A.T. Haaland, F. Vik, A. Nesse. Modular switched mode power supplies-a way to solve the challenges of reliablility,output properties and cost,compared to conventional T/R's in ESP applications. International Conference on Electrostatic Precipitation.2006.
    35. L. Lillieblad, C. Mauritzson. Upgrade technologies for electrostatic precipitators. International Conference on Electrostatic Precipitation.2006. pp.8A2:1-11.
    36. D. Chakrabarti, R. Pritchard. Challeges for reduction in emission in old electrostatic precipitators at lower cost. International Conference on Electrostatic Precipitation.2008. pp. C1-3:1-6.
    37. A. Pokryvailo, C. Carp, C. Scapellati. Highly efficient switch-mode 100 kV,100 kW power supply for ESP applications. International Conference on Electrostatic Precipitation.2008. pp. C1-3:1-6.
    38. The new SIR-switched integrated rectifier 120 kW. Available from: www.service.power.alstom.com.
    39. 林渭勋.现代电力电子电路.杭州:浙江大学出版社,2002.
    40. 赵良炳.现代电力电子技术基础.北京:清华大学出版社,1995.
    41. 张立.现代电力电子技术.北京:科学出版社,1992.
    42. Infineon CoolMOSTM Power Transistor IPW90R120C3.
    43. MITSUBISHI IGBT Module. Available from:http://www.mitsubishichips.com.
    44. EUPEC IGBT Module. Available from:http://www.infineon.com.
    45. SEMIKRON IGBT Module. Available from:http://www.sem.ikron.com.
    46. 三菱电机功率模块技术研讨会论文集.2006:pp.3-12.
    47. 宫崎裕二,村同宏记,日吉道明.适合中高频应用的NFM系列IGBT模块.电力电子技术,2006.40(4):pp.127-129.
    48. R.L. Steigerwald. Analysis of a resonant transistor dc-dc converter with capacitive output filter. IEEE Transactions on Industrial Electronics,1985.32(4):pp.439-444.
    49. S.D. Johnson, A.F. Witulski, R.W. Erickson. Comparison of resonant topologies in high-voltage DC applications. IEEE Transactions on Aerospace and Electronic Systems,1988. 24(3):pp.263-274.
    50. M.Z. Youssef, H. Pinheiro, P.K. Jain. Analysis & modeling of a self-sustained oscillation series-parallel resonant converter with capacitive output filter using sampled-data analytical technique. International Telecommunications Energy Conference.2003. pp.282-289.
    51. C. Loef. Analysis of a full-bridge LCC-type parallel resonant converter with capacitive output filter. IEEE Power Electronics Specialists Conference.1997. pp.1402-1407.
    52. J.M. Alonso, C. Blanco, E. Lopez, A.J. Calleja, M. Rico. Analysis and design of a LCC resonant inverter for high intensity discharge lamps. IEEE International Power Electronics Congress.1995. pp.102-107.
    53. A.K.S. Bhat. Analysis and design of a series-parallel resonant converter with capacitive output filter. IEEE Transactions on Industry Applications,1991.27(3):pp.523-530.
    54. H.I. Sewell, M.P. Foster, C.M. Bingham, D.A. Stone, D. Hente, D. Howe. Analysis of voltage output LCC resonant converters, including boost mode operation. IEE Proceedings-Electric Power Applications,2003.150(6):pp.673-679.
    55. A.K..S. Bhat, X. Zhuang. Characteristics of a series-parallel resonant converter with capacitive output filter operating on the utility line. International Conference on Power Electronics, Drives and Energy Systems for Industrial Growth.1996. pp.403-409.
    56. F. Da Silveira Cavalcante, J.W. Kolar. Design of a 5kW high output voltage series-parallel resonant DC-DC converter. IEEE Power Electronics Specialists Conference.2003. pp. 1807-1814.
    57. D. Fu, Y. Qiu, B. Lu, F. Wang, F.C. Lee. An improved three-level LCC converter with a novel control strategy for high-frequency high-power-density capacitor-charging power supplies. IEEE Applied Power Electronics Conference and Exposition.2006. pp.1401-1407.
    58. M.P. Foster, H.I. Sewell, C.M. Bingham, D.A. Stone, D. Howe. Methodologies for the design of LCC voltage-output resonant converters. IEE Proceedings-Electric Power Applications, 2006.153(4):pp.559-567.
    59. M.A. Perez, C. Blanco, M. Rico, F.F. Linera. A new topology for high voltage, high frequency transformers. IEEE Applied Power Electronics Conference and Exposition.1995. pp.554-559
    60. 赵修科.开关电源中磁性元器件:南京航空航天大学自动化学院,2004.
    61. L. Dalessandro, F. da Silveira Cavalcante, J.W. Kolar. Self-capacitance of high-voltage transformers. IEEE Transactions on Power Electronics,2007.22(5):pp.2081-2092.
    62. 齐玮,钟和清,林磊等.分布电容对高频高压变压器性能的影响及其控制措施.电源技术,2008:pp.70-72.
    63. 钟和清,徐至新,邹云屏,周丕璋,郭良福.串联谐振CCPS电路结构研究.电气传动,2005.35(7):pp.43-44.
    64. P.W. Lefley, J.C. Fothergill. A Controllable, variable waveform, high voltage power supply for electrostatic precipitators. Final report for EPSRC Grant GR/K 40925,1998.
    65. P.A.G. Ranstad. Power supply for electrostatic precipitator. US Patent 2009/0129124 A1, 2009.
    66. J.C. Fothergill, P.W. Devine, P.W. Lefley. A novel prototype design for a transformer for high voltage, high frequency, high power use. IEEE Transactions on Power Delivery,2001.16(1): pp.89-98.
    67. K. Yong Ju, H. Hatakeyama, M. Nakaoka. Comparative evaluations of phase-shifted PWM resonant inverter-fed. International Conference on Power Electronics and Drive Systems.1995. pp.657-664.
    68. A. Pokryvailo, A. Schwarz. Design of a resonant converter power transformer when using its leakage inductance in oscillatory circuit.17th Convention of Electrical and Electronics Engineers.1991. pp.316-319.
    69. H. Takano, T. Hatakeyama, J.M. Sun, K.G.D.A.L.K.G.D. Laknath, M.A.N.M. Nakaoka. Feasible characteristic evaluations of resonant PWM inverter-linked dc-dc power converter using high-voltage transformer parasitic circuit components. Sixth International Conference on Power Electronics and Variable Speed Drives.1996. pp.525-533.
    70. S. Junming, M. Nakaoka, H. Takano. High-voltage transformer parasitic resonant PWM DC-DC high-power converters and their performance evaluations. IEEE International Symposium on Industrial Electronics.1997. pp.572-577.
    71. B. Tala-Ighil, J.M. Nyobe-Yome, P. Gouton, C. Glaize. On the utilisation of the transformer parasitic capacitances as a resonant component in high voltage converters operating above resonance with variable frequency. IEE Colloquium on Static Power Conversion.1992. pp. 3/1-3/5.
    72. J. Biela, J.W. Kolar. Using transformer parasitics for resonant converters-A review of the calculation of the stray capacitance of transformers. IEEE Transactions on Industry Applications,2008.44(1):pp.223-233.
    73. S. Nagai, E. Hiraki, Y. Arai, M. Nakaoka. New phase-shifted soft-switching PWM series resonant inverter topologies and their practical evaluations. International Conference on Power Electronics and Drive Systems.1997. pp.318-322.
    74. Y.M. Mandrik. Series resonant full bridge converter with phase shifted controls and quasi-soft switching action of power switches for wide range load changing. International Conference on Actual Problems of Electronic Instrument Engineering.2000. pp.194-197.
    75. Y.J. Kim, M. Nakaoka, H. Takano, T. Hatakeyama. Comparative performance evaluations of high-voltage transformer parasitic parameter resonant inverter-linked high-power DC-DC converter with phase-shifted PWM scheme. IEEE Power Electronics Specialists Conference. 1995. pp.120-127.
    76. R.L. Steigerwald. A comparison of half-bridge resonant converter topologies. IEEE Transactions on Power Electronics,1988.3(2):pp.174-182.
    77. T. Filchev, D. Cook, P. Wheeler, A. Van den Bossche, J. Clare, V. Valchev. High power, high voltage, high frequency transformer/rectifier for HV industrial applications. Power Electronics and Motion Control Conference.2008. pp.1326-1331.
    78. J.M. Alonso, J. Garcia, A.J. Calleja, J. Ribas, J. Cardesin. Analysis, design, and experimentation of a high-voltage power supply for ozone generation based on current-fed parallel-resonant push-pull inverter. IEEE Transactions on Industry Applications,2005.41(5): pp.1364-1372.
    79. H. Hino, T. Hatakeyama, T. Kawase, M. Nakaoka. High-frequency parallel resonant converter for X-ray generator utilizing parasitic circuit constants of high voltage-transformer and -cables. International Telecommunications Energy Conference.1989. pp.20.5/1-20.5/8
    80. V. Garcia, M. Rico, J. Sebastian. An optimized dc-to-dc converter topology for high-voltage pulse-load applications. IEEE Power Electronics Specialists Conference.1994. pp. 1413-1421.
    81. G. Zhang. Serial/Parallel resonant converter (SPRC) in ESP power. International Conference on Electrostatic Precipitation.2008. pp.323-327.
    82. F. Da Silveira Cavalcante. High output voltage series-parallel rsonant dc-dc converter for medical X-ray imaging applications, Ph.D. Thesis, Zurich:Swiss Federal Institute of Technology,2006.
    83. A.J. Gilbert, C.M. Bingham, D.A. Stone, M.P. Foster. Normalized analysis and design of LCC resonant converters. IEEE Transactions on Power Electronics,2007.22(6):pp.2386-2402.
    84. G. Ivensky, A. Kats, S. Ben-Yaakov. A Novel RC model of capacitive-loaded parallel and series-parallel resonant DC-DC converters. IEEE Power Electronics Specialists Conference. 1997. pp.958-964.
    85. G. Ivensky, A. Kats, S. Ben-Yaakov. An RC load model of parallel and series-parallel resonant DC-DC converters with capacitive output filter. IEEE Transactions on Power Electronics, 1999.14(3):pp.515-521.
    86. A.C. Lippincott, R.M. Nelms. A capacitor-charging power supply using a series-resonant topology, constant on-time/variable frequency control, and zero-current switching. IEEE Transactions on Industrial Electronics,1991.38(6):pp.438-447.
    87. E.E. Bowles, S. Chapelle, G.X. Ferguson, D.S. Furuno, M. Marietta. A high power density, high voltage power supply for a pulsed radar system. Twenty-First International Power Modulator Symposium.1994. pp.170-173.
    88. 高迎慧,孙鹞鸿,严萍,石一.40kW高功率密度数字化控制充电电源.强激光与粒子束,2009.21(8):pp.1259-1262.
    89. B. C.Pollard, R.M.Nelms. Using the series-parallel resonant converter in capacitor charging applications. IEEE Applied Power Electronics Conference and Exposition.1992. pp.245-252.
    90. 任青毅,曹科峰,黄斌,李素江.高效紧凑的高压脉冲电容器恒流充电电源.高能量密度物理,2006(1):即.7-11.
    91. 张东辉,严萍.高压电容器充电电源的研究.高电压技术,2008.34(7):pp.1450-1455.
    92. 邵建设,严萍.高压电容器充电电源谐振变换器的定频控制.高电压技术,2006.32(11):pp.107-110.
    93. 钟和清,徐至新,邹云屏,潘垣,李劲.软开关高压开关电源设计方法研究.高电压技术,2005.3 1(1):pp.20-23.
    94. 钟和清,徐至新,邹旭东,朝泽云,李劲,林福昌.软开关高压开关电源研究.高电压技术,2003.29(8):pp.7-9.
    95. 尚雷,王相綦,裴元吉,赵涛,冯光耀,王琳.新型软开关高压脉冲电容恒流充电技术分析.强激光与粒子束,2001.13(2):pp.241-244.
    96. Y. Chen, G. Lu, J. Guo. Development and application features of high power high frequency power supply for ESP. International Conference on Electrostatic Precipitation 2008. pp.305-309.
    97. N. Grass, A. Zintl. Precipitator performance improvements and energy savings based on IGBT inverter technology. International Conference on Electrostatic Precipitation.2008. pp. 259-263.
    98. H. Herder, B. Guenther, G. Klemm. Performance enhancements achieved with high frequency switch mode power supplies. International Conference on Electrostatic Precipitation.2008. pp. 264-269.
    99. M.B. Looney, M. Berry, H. Herder, R. Guenther, R.W. Smith, R. Altman. High frequency power supply operation on hot-side ESP. International Conference on Electrostatic Precipitation.2008. pp.270-275.
    100. C. Thome, D. Dupas. Another concept of three phase high frequency high voltage supply. International Conference on Electrostatic Precipitation.2008. pp.304.
    101. A. Wang. Design of switch mode power supply for ESP. International Conference on Electrostatic Precipitation 2008. pp.348-349.
    102. R. Wang, Y. Wei. Research on high frequency switched HV power supplies for ESP. International Conference on Electrostatic Precipitation.2008. pp.345-347.
    103. 范青,汪邦金,尚雷.线型调制器谐振逆变充电技术的分析.现代电子,1998(62):pp.36-42.
    104. 阮新波,严仰光.直流开关电源的软开关技术.北京:科学出版社,2000.
    105. H. Zhong, Z. Xu, X. Zou, Y. Zou, L. Yang, Z. Chao. Current characteristic of high voltage capacitor charging power supply using a series resonant topology. IEEE Industrial Electronics Society Conference.2003. pp.373-377.
    106. 钟和清,徐至新,邹云屏,郭良福,等周丕,郑万国.寄生电容对串联谐振电容器充电电源特性的影响.中国电机工程学报,2005.25(10):pp.40-44.
    107. M.H. Kheraluwala, D.W. Novotny, D.M. Divan. Design considerations for high power high frequency transformers. IEEE Power Electronics Specialists Conference.1990. pp.734-742.
    108. R. Petkov. Design issues of the high-power high-frequency transformer. International Conference on Power Electronics and Drive Systems.1995. pp.401-410.
    109. A. White. Design of high voltage power transformers.14th Institution of Engineering and Technology International School on High Voltage Engineering and Testing.2007. pp. 253-282.
    110. 张占松,蔡宣三.开关电源的原理与设计.北京:电子工业出版社,2004.
    111. 尹克宁.变压器设计原理.北京:中国电力出版社,2003.
    112. 周泽存,沈其工,方瑜,王大忠.高电压技术.北京:中国电力出版社,2007.
    113. 徐德鸿.电力电子系统建模及控制.北京:机械工业出版社,2005.
    114. R.W. Erickson. Fundamentals of power electronics Kluwer Academic Publishers,2001.
    115. D. Maksimovic, A.M. Stankovic, V.J. Thottuvelil, G.C. Verghese. Modeling and simulation of power electronic converters. Proceedings of the IEEE.2001. pp.898-912.
    116. S.R. Sanders, J.M. Noworolski, X.Z. Liu, G.C. Verghese. Generalized averaging method for power conversion circuits. IEEE Transactions on Power Electronics,1991.6(2):pp.251-259.
    117. E.X.-Q. Yang. Extended describing function method for small-signal modeling of resonant and multi-resonant converters, Ph.D. Thesis, Blackburg,Virginia:Virginia Polytechnic Institute and State University,1994.
    118. J.A. Martin-Ramos, A.M. Pernia, J. Diaz, F. Nuno, J.M. Alonso. A circuit for the large and small signal dynamic modeling of the PRC-LCC resonant topology with a capacitor as output filter. IEEE Power Electronics Specialists Conference.2005. pp.635-641.
    119. J.A. Martin-Ramos, J. Diaz, A.M. Pernia, M.J. Prieto, F.F. Linera. A large-signal model for the PRC-LCC resonant topology with a capacitor as output filter. IEEE International Power Electronics Congress.2002. pp.55-60.
    120. J.A. Martin-Ramos, J. Diaz, A.M. Pernia, F. Nuno, J. Sebastian. Large-signal modelling of the PRC-LCC resonant topology with a capacitor as output filter. IEEE Applied Power Electronics Conference and Exposition.2002. pp.1120-1126.
    121. J.A. Martin-Ramos, J. Diaz, A.M. Pernia, M.J. Prieto, F.F. Linera. Modelling of the PRC-LCC resonant topology with a capacitor as output filter using EDF. IEEE Power Electronics Specialists Conference.2002. pp.1337-1342.
    122. F.S. Cavalcante, J.W. Kolar. Small-Signal Model of a 5kW High-Output Voltage Capacitive-Loaded Series-Parallel Resonant DC-DC Converter. IEEE Power Electronics Specialists Conference.2005. pp.1271-1277.
    123. 张寿松.自动控制原理.北京:科学出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700