用户名: 密码: 验证码:
杨树木材木质素含量快速评价及漆酶活化木质素制备纤维板的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杨树(Populus spp.)生长迅速、繁殖容易、适应性强、抗逆性强、木材用途广,在我国分布地域广泛,杨树人工林木材的加工利用与木材性质及木质素含量联系紧密;傅里叶变换红外光谱分析技术是一种有很大潜力和前途的无损评价预测技术,木材物理化学性质的红外光谱快速评价研究一直倍受世界各国研究人员的广泛关注。红外光谱技术快速预测杨木木质素含量不仅是研发绿色酶法胶合人造板技术中关键的一环,而且还是培育生物能源及造纸用材林树种必不可少的筛选分析技术。人造板中以游离甲醛为主的挥发性有机物污染问题日益受到人们的重视,环境友好型人造板也已经成为世界性难题,因此急需开发既减轻环境负荷又利用可再生资源的人造板制备新技术。通过傅里叶变换红外-衰减全反射光谱技术结合多元数据分析方法,建立多元木质素预测模型,筛选适宜酶法胶合人造板制造的人工林杨树品种,为后期板材制备实验的原材料选定提供指导,进一步阐明漆酶活化木材木质素催化反应的反应机理,探索酶法纤维板的干法制备工艺及对所得板材性能指标进行检测对比,确立漆酶活化杨木纤维制备酶法纤维板的工艺参数,实现环境友好型木基复合材料的清洁生产,为推动杨树人工林木材纤维漆酶活化制备纤维板技术朝向产业化方向发展提供理论参考,对解决人造板中的游离甲醛污染、改善人们生活居住环境、保护人类赖以生存的自然环境都具有重要意义。
     本论文探讨傅里叶变换红外光谱技术结合多元数据分析算法快速预测杨木木质素含量建立标定模型及优化的各种影响因素,考察红外光谱技术定性评价木质素、纤维素等木材主要化学组分的可行性,探索木纤维漆酶催化氧化干法工艺制备酶法纤维板,杜绝使用合成树脂胶,从源头上排除甲醛污染,建立漆酶活化杨树木纤维中间产物直接检测及定量的电子自旋共振波谱分析方法,研究漆酶催化氧化反应的自由基影响及作用。
     本论文的主要研究结论如下:
     1.毛果杨×美洲黑杨杂交种(P. trichocarpa×deltoides)无抽提物木材试样的木质素含量范围为23.45%到32.07%(w/w),呈正态分布,均值为27.02%。采用改进的乙酰溴木质素测定方法,本批次样品分析的标准偏差为0.18%,合并标准离差仅为0.042%,适用于次级分析方法标定样品的木质素含量分析。
     2.毛果杨×美洲黑杨杂交杨树木材无抽提物试样化学组分的种内天然变异性适用于构建木质素含量预测模型。傅里叶变换红外-衰减全反射光谱技术与偏最小二乘回归建模技术相结合,经过外部验证的最佳标定模型决定系数高,R2(标定)为0.906,R2(交叉验证)为0.806,交叉验证均方根误差低,仅为0.77%,独立木材试样数据集验证最佳预测模型所得R2为0.88。杨树木材木质素含量与能量含量的种内变异性互不相关,通过主成分分析识别对这两个特性差异起关键作用的红外吸收峰波数,木质素的前4个因子载荷谱包含32个最大差异波数中的14个指认为芳香族化合物,而能量含量的前4个因子载荷谱中仅有7个最大差异波数指认为芳香族化合物,普遍为碳氢化合物的环振动。
     3.基因改良无异戊二烯释放灰杨(Populus×canescens)与哥廷根野生型杨树木材木质素含量范围为24.06%到26.59%,α纤维素含量为42.95%到47.73%。聚类分析所得树形图表明,基因改良无异戊二烯释放灰杨木材与野生型杨树木材的木质素、纤维素、可溶性抽提物等化学组分没有显著差异。传统湿化学方法测定可溶性抽提物(0.96%至1.83%)、综纤维素(70.17%至74.47%)、α纤维素、木质素含量、能量含量(17690 J/g至18280 J/g)的研究结果均验证了聚类分析所得的结果。对因子载荷谱中最高的七个峰进行尝试性特征化学振动官能团指认分析发现,第二、三、四个因子载荷谱中21个差异显著的吸收峰中的12个对应于碳氢化合物的环振动所占据的波数范围,但也含有少部分木质素的官能团所对应的波数范围,仅7个差异较大波数。
     4.参考干法工艺中密度纤维板热压曲线,通过热电偶测定板坯芯层温度,确定干法工艺漆酶纤维板热压工艺的具体参数,具体热压工艺参数为:热压温度190℃,最大压力保持段压力5 MPa,时间1.5 mmin;低压塑化段压力3.5 MPa,时间3 min。在此热压条件下压制干法工艺漆酶纤维板,酶法纤维板的内结合强度显著高于对照板,在同样工艺条件下,对照纤维板的内结合强度为0.19 MPa,酶用量为5.58 U/g绝干木纤维漆酶纤维板的内结合强度为0.53 MPa。纤维板密度达到一定水平才能得到内结合强度较高的酶法纤维板。铜离子可显著提高酶法纤维板的内结合强度。
     5.采用电子自旋共振波谱自旋捕集剂技术以N-叔丁基-α-苯基硝酮为自旋捕集剂,然后进行乙酸乙酯抽提,鉴别并定量漆酶催化氧化木纤维自由基反应中间产物,N-叔丁基-α-苯基硝酮所捕集自由基的电子自旋共振波谱图的g值为2.005,aN为15.0 G,为超氧化物和羟基自由基等活性氧物质的电子自旋共振波谱图,这表明活性氧物质是漆酶催化反应的主要自由基中间产物。芬顿反应所得羟基自由基标准曲线的决定系数为0.9799,依据电子自旋共振波谱信号强度与羟基自由基未配对自旋数的定量曲线,确定自由基反应中间产物的绝对自旋数为3.74±0.005×1018自旋数/克木纤维干物质。基于存在活性氧物质的研究发现和与漆酶氧化木纤维自由基反应有关的前人文献,我们提出漆酶催化氧化杨树木纤维的可能反应机制:漆酶介导反应不能直接触及木质素的大部分结构域,因此低分子量可溶性木质素可能重新附着到纤维表面,起着与胶黏剂类似的活性化合物的作用。
Poplars(Populus spp.) with various traits including rapid growth, easy propagation, adaptability, stress resistance and wide use of wood are distributed in a wide range of geographical locations. The processing and utilization of poplar wood are closely associated with the plantation wood properties and lignin content. Fourier transform infrared spectroscopy has great potential and prospects as a non-destructive evaluation and forecasting technique. The evaluation of the physical and chemical properties of wood by means of infrared spectroscopy has lured attention from researchers around the world. Rapid prediction of poplar lignin content by Infrared Spectroscopy is not only a crucial chain in the development of technology for the green enzyme-bonded wood composites, but also essential screening analysis in the cultivation of timber tree species in bio-energy and paper-making. The pollution of volatile organic compounds including free formaldehyde has been paid more attention, environment-friendly wood-based panels has become a worldwide problem, therefore there is the urgent need to reduce environmental load and the development of renewable resources, preparation of new technology wood-based panels. The site conditions, genetic characteristics, growth climatic conditions, forest management methods and other factors of wood species have different effects on the physical and chemical properties of wood, in order to achieve high efficiency and optimal use of materials it is required to use Fourier transform infrared-attenuated total reflection spectroscopy combined with multivariate data analysis method to build the prediction model calibration for the overall chemical nature of wood by making fast and accurate forecasts, and thus fully understand the nature of wood. This work is of great significance to address free formaldehyde pollution from wood-based panels and improve the living conditions of people's lives, protect the natural environment of human life.
     In this thesis, Fourier Transform Infrared Spectroscopy with Multivariate Data Analysis algorithm makes fast prediction of poplar lignin content. Optimized calibration model is used to establish factors affecting the qualitative evaluation of wood properties through infrared spectroscopy. The establishment of poplar tree-laccase direct detection of intermediate fibers and quantitative analysis is fulfilled through electron spin resonance spectroscopy to study the catalytic oxidation of laccase and role of free radicals, to explore the manufacture of fiberboards made of laccase catalyzed oxidation of wood fibers, which eliminates the use of synthetic resin and excludes the source of formaldehyde contamination.
     The main findings of this paper are as follows:
     1. The lignin content of Extractive-free wood samples from hybrid poplar (P. trichocarpa×deltoides) ranges from 23.45% to 32.07%(w/w), showing a normal distribution with a mean value of 27.02%. Modifications to the traditional wet chemical analysis - acetyl bromide lignin assay consist of:The weighing range during the period of weighing wood powder sample strictly centered on 0.99 and 1.01 mg, and wood flour together with polypropylene weighing paper was transferred into micro-tube. Prior to the addition of acetyl bromide/acetic acid mixture, the micro-tubes filled with wood flour was placed into the icy water bath, and acetyl bromide/acetic acid mixture was stored at room temperature before use. Within 10 min immediately after the final dilution by acetic acid, the UV absorbance measurement was supposed to complete. By means of the modified acetyl bromide lignin analysis the standard deviation for the current batch of samples was 0.18%, and combined standard deviation was as low as 0.042%, which proves suitable for analysis of lignin content of samples used for secondary calibration. As for preparation flour of for Fourier transform infrared-ATR spectra, we recommend the following steps:finely ground flour as possible, preferably less than 20 microns particle size; to avoid overheating in the course of grinding, milling under liquid nitrogen environment if possible. Wood flour should be placed for at least 3 days in the laboratory for infrared spectrometer before recording IR spectrum for the purpose of equilibrating moisture content in the wood powder.
     2. The intra-specific natural variability of chemical composition in extractive-free wood samples of hybrid poplar (P. trichocarpa×deltoides) is sufficient for building lignin content prediction model. Fourier transform infrared spectroscopy combined with partial least squares regression modelling technique yielded optimized calibration model which went through external validation. The resultant optimized calibration model was of high quality, with high coefficients of determination (R2 (calibration)=0.906 and R2 (cross-validation)=0.806) and low root mean square error of cross validation (RMSECV=0.77%) respectively. Verification of the best model through independent data sets of wood samples resulted in R2=0.88. These results showed that FTIR-ATR spectroscopy is suitable as a high-throughput method for poplar lignin estimations in large-scale breeding or genetic engineering projects. Poplar lignin content and energy content within the species variability is unrelated. By means of principal component analysis to identify the key wavenumbers influencing the above-mentioned two traits,14 most divergent wavenumbers in the first four factor loading spectra of lignin containing 32 maximum difference in wavenumbers mainly attributes to aromatic compounds, whereas only 7 most divergent wavenumbers in the first four factor loading spectra of the energy content attributes to aromatic compounds, and is generally hydrocarbon ring vibration.
     3. The lignin content in genetically modified non-Isoprene releasing grey poplar (Populus×canescens) and wild-type poplar cultivated in Gottingen wood ranges from 24.06% to 26.59%, and a-cellulose content from 42.95% to 47.73%. The dendrogram obtained from Cluster analysis showed that the lignin content, cellulose content, soluble extractive content between genetically modified non-Isoprene releasing grey poplar wood and wild-type poplar wood displayed no significant difference. The semi-quantitative analysis of the fingerprint region of IR spectra collected from poplar wood four showed that absorption peak height ratio of the characteristic absorption peak of cellulose and hemicelluloses to lignin ranges from 2.18 to 2.23, whereas the corresponding ratio for wild-type poplar wood was 2.16; therefore the major chemical components including lignin and cellulose in the two categories of wood showed no significant difference. The determination of the traditional wet chemical methods with soluble extractives (0.96 to 1.83%), holocellulose (70.17% to 74.47%), a-cellulose, lignin content, and energy content (17690 J/g to 18280 J/g) verified the results of cluster analysis. The projection of three-dimensional data of genetically modified grey poplar wood, wild-type poplar wood and hybrid poplar (P. trichocarpa×deltoides) wood as a result of principal component analysis showed that there was slightly better degree of differentiation between genetically modified grey poplar wood and wild-type poplar wood, which corroborated the results of wet chemistry analysis:The soluble extractives content with an average of 1.11% of one progeny in genetically modified grey poplar wood was significantly lower than that of wild-type poplar grown in Gottingen (mean 1.50%). Through tentative assignment of the characteristic functional groups in the highest seven peaks of the factor loading spectra, it was found that 12 out of 21 most divergent absorption bands corresponds to ring vibration with hydrocarbon origin, but also contains a small number of lignin functional groups with only 7 significantly different wavenumbers.
     4. In reference to MDF dry process hot-press curve, slab core temperature was measured by thermocouples to determine the dry process technology of laccase-bonded fiberboard. The specific parameters of hot pressing are:pressing temperature 190℃, the maximum pressure to maintain the pressure at 5 MPa, time 1.5 min; low pressure plastics section 3.5 MPa, time of 3 min. The enzyme binding strength within the fiberboard was significantly higher than the control board in the same process conditions, control the internal bond strength of fiberboard 0.19 MPa, enzyme dosage of 5.58 U/g oven-dry wood fiber laccase the internal bond strength of fiberboard 0.53 MPa. Fiber density is less than 0.9 g/cm3, the enzyme is very low internal bond strength cf fiberboard, is only 0.17 MPa, fiber density reached a certain level to get a higher bond strength within the enzymatic fiberboard. Copper ions can significantly improve the internal bond strength fiber enzymatic, within the control enzyme binding strength of fiberboard 0.38 MPa, adding copper ions within the enzyme binding strength of fiberboard increased to 0.59 MPa.
     5. To investigate the radical reaction intermediates during the laccase-catalyzed oxidation of poplar wood fibers, electron spin resonance spin trapping technique using N-tert-butyl-a-phenylnitrone as a spin trap followed by ethyl acetate extraction were empioyed to identify and quantify the reaction intermediates. The electron spin resonance spectrum of free radicals trapped by N-tert-butyl-a-phenylnitrone had a triplet at g value=2.005 and an= 15.0 G, showing reactive oxygen species is the major products of laccase oxidation of wood fibers. The Fenton system produced a standard curve for hydroxyl radical with a determination coefficient of 0.9799. Using reactive oxygen species standard curve, the reactive oxygen species detected via N-tert-butyl-a-phenylnitrone spin trap method was quantified as 3.74±0.05×1018 spins/g wood fiber dry substances. Based on the findings of the presence of reactive oxygen species during the activation of wood fiber with laccase and previous studies on related free radical reactions, we propose the possible reaction mechanism for laccase oxidation of wood fibers:the laccase-mediated reaction cannot directly reach the majority of the lignin domain, the low molecular weight soluble lignin may function as reactive compounds like adhesives, clinging back to the fiber surface.
引文
[1]张忠涛,孙乐智.我国的杨树资源与开发利用.林业建设2001,5:21-24.
    [2]联合国粮食及农业组织编.木材生产与土地利用中的杨树与柳树罗马:联合国粮食及农业组织出版处;1979.
    [3]Dickmann DI, Isebrands JG, Eckenwalder JE, Richardson J (Eds.). Poplar Culture in North America Ottawa:NRC Research Press; 2002.
    [4]国家林业局速生丰产用材林基地建设工程管理办公室.杨树速生丰产林.北京:中国林业出版社;2010.
    [5]苏晓华,丁昌俊,马常耕.我国杨树育种的研究进展及对策.林业科学研究2010,1:31-37.
    [6]叶克林,王金林.人工林杨树木材的加工利用.木材工业2003,17:5-7.
    [7]鲍甫成,江泽慧.中国主要人工林树种木材性质.北京:中国林业出版社;1998.
    [8]鲍甫成,刘盛全.人工林杨树木材性质与单板和胶合板质量关系模型的探讨.林业科学2000,36:91-96.
    [9]刘盛全,鲍甫成.我国杨树人工林材性与加工利用研究现状及发展趋势.木材工业1999,13:14-16.
    [10]刘盛全,储茵.不同生长培育条件下人工林杨树木材性质的综合评价.安徽农业大学学报2006,33:141-148.
    [11]段新芳.人工林毛白杨木材材色测定及其株间变异.东北林业大学学报1999,27:26-30.
    [12]段新芳,鲍甫成.人工林毛白杨木材解剖构造与染色效果相关性的研究.林业科学2001,37:112-116.
    [13]方升佐,徐锡增,吕士行.杨树定向培育.合肥:安徽科学技术出版社;2004.
    [14]翁文源.杨树木材纤维长度变异及其在造纸中的应用.湖北林业科技2007,2:31-33.
    [15]杨志斌,胡云三.速生人工林杨树木材的加工利用探讨.湖北林业科技2004:89-91.
    [16]张久荣,吴玉章.人工林杨木利用现状及前景.中国林业产业2006,11:24-26.
    [17]刘君良,王玉秋.酚醛树脂处理杨木、杉木尺寸稳定性分析.木材工业2004,18:5-8.
    [18]刘焕荣,刘君良,李龙哲,柴宇博.密实型杨木单板层积材制造技术.林产工业2009,6:13-16.
    [19]徐剑莹.人造装饰木的生产及其发展前景.建筑人造板1998,1:14-15.
    [20]蔡绍祥.速生杨木木塑复合材料处理工艺实验研究.辽宁林业科技2005,2:5-6.
    [21]黄荣凤,吕建雄,曹永建.热处理对毛白杨木材物理力学性能的影响.木材工业2010,24:5-8.
    [22]Bungay HR. Biomass Refining. Science 1982,218:643-646.
    [23]杨自文.生物炼制技术的现状与展望.湖北农业科学2009,48:3185-3189.
    [24]邓勇,房俊民,陈方,陈云伟,王春明.生物燃料最新发展态势分析.中国生物工程杂志2008,28:142-147.
    [25]李希宏.国内外生物液体燃料发展趋势.当代石油石化2007,15:7-13.
    [26]Jenkins D. Wood Pellet Heating Systems:The Earthscan Expert Handbook for Planning, Design and Installation. London:Earthscan; 2010.
    [27]刘荣厚.生物质能工程.北京:化学工业出版社;2009.
    [28]姚国欣,王建明.第二代和第三代生物燃料发展现状及启示.中外能源2010,15:23-37.
    [29]苏小军,熊兴耀,谭兴和,刘明月.燃料乙醇发酵技术研究进展.湖南农业大学学报:自然科学版2007,33:480-485.
    [30]张延平,李寅,马延和.细胞工厂与生物炼制.化学进展2007,19:1076-1083.
    [31]陈洪章.生物质科学与工程.北京:化学工业出版社;2008.
    [32]刘广青,董仁杰,李秀金.生物质能源转化技术.北京:化学工业出版社;2009.
    [33]Rana R, Langenfeld-Heyser R, Finkeldey R, Polle A. FTIR spectroscopy, chemical and histochemical characterisation of wood and lignin of five tropical timber wood species of the family of Dipterocarpaceae. Wood Sci Technol 2010,44:225-242.
    [34]Muller G, Schopper C, Vos H, Kharazipour A, Polle A. FTIR-ATR spectroscopic analysis of chages in wood properties during particle- and fibreboard production of hard- and softwood trees. Bioresources 2009,4:49-71.
    [35]Raiskila S, Pulkkinen M, Laakso T, Fagerstedt K, Loija M, Mahlberg R, Paajanen L, Ritschkoff A-C, Saranpaa P. FTIR spectroscopic prediction of Klason and acid soluble lignin variation in Norway spruce cutting clones. Silva Fennica 2007,41:351-371.
    [36]段新芳,李玉栋,王平.无损检测技术在木材保护中的应用.木材工业2002,16:14-16.
    [37]杨慧敏,王立海.基于超声波频谱分析技术的木材孔缺陷无损检测.东北林业大学学报2007,35:30-32.
    [38]段新芳,王平,周冠武,高超英.应力波技术在古建筑木构件腐朽探测中的应用.木材工业2007,21:10-12.
    [39]王婧,周永东.木材微波预处理技术研究进展.木材加工机械2009,5:38-41.
    [40]Naumann A, Polle A. FTIR imaging as a new tool for cell wall analysis of wood. New Zealand Journal of Forestry Science 2006,36:54-59.
    [41]国家林业局.中国林业统计年鉴.2009.北京:中国林业出版社;2010.
    [42]马启升,任芳,牛丽丽.国产中密度纤维板生产线设备现状与发展.木材加工机械2009,5:22-25.
    [43]Suchsland O, Woodson GE. Fiberbcard manufacturing practices in the United States. Madison:Forest Products Society; 1990.
    [44]沈隽,刘玉,张晓伟,刘明.人造板有机挥发物(VOCs)释放的影响及研究.林产工业2006,33:5-9.
    [45]刘玉,沈隽,刘明.人造板总挥发性有机化合物(Tvoc)的检测.国际木业2005,35:22-23.
    [46]Henderson JT. Volatile Emissions from the Curing of Phenolic Resins. Tappi J 1979,62:9396.
    [47]Baumann MGD, Lorenz LF, Batterman SA, Zhang GZ. Aldehyde emission from particleboard and medium density fiberboard products. Forest Products Journal 2000,50:75-82.
    [48]Haven K.100 Greatest Science Discoveries of All Time. Westport:Libraries Unlimited (Greenwood Publishing Group, Inc.); 2007.
    [49]Herschel JFW, Schweber SS. Aspects of the life and thought of Sir John Frederick Herschel. New York: Arno Press; 1981.
    [50]Tamara-Dean著天宏工作室译.远程通信技术.北京:清华大学出版社;2004.
    [51]方慧群,于俊生,史坚.仪器分析.北京:科学出版社;2002.
    [52]Olsen ED. Modern optical methods of analysis. Columbus:McGraw-Hill; 1975.
    [53]Robinson JW, Frame EMS, Frame GM. Undergraduate instrumental analysis. New York:M. Dekker; 2005.
    [54]Ahuja S, Jespersen ND. Modern instrumental analysis. Amsterdam:Elsevier B.V.; 2006.
    [55]朱明华.仪器分析.北京:高等教育出版社;2000.
    [56]Naumann A, Peddireddi S, Kues U, Polle A. Fourier Transform Infrared Microscopy in Wood Analysis, In Wood production, wood technology, and biotechnological impacts. Edited by Kues U. Gottingen: Universitatsverlag Gottingen; 2007:179-196.
    [57]Smith BC. Fundamentals of Fourier Transform Infrared Spectroscopy. Victoria:CRC Press; 1995.
    [58]Kneipp J, Beekes M, Lasch P, Naumann D. Molecular Changes of Preclinical Scrapie Can Be Detected by Infrared Spectroscopy. The Journal of Neuroscience 2002.22:2989-2997.
    [59]Bell SEJ, Fido LA, Speers SJ, Armstrong WJ, Spratt S. Forensic Analysis of Architectural Finishes Using Fourier Transform Infrared and Raman Spectroscopy, Part I:The Resin Bases. Applied Spectroscopy 2005,59:1333-1339.
    [60]Steiner G, Koch E. Trends in Fourier transform infrared spectroscopic imaging. Analytical and Bioanalytical Chemistry 2009,394:671-678.
    [61]Wetzel DL, LeVine SM. Imaging Molecular Chemistry with Infrared Microscopy. Science 1999, 285:1224-1225.
    [62]Pavia DL, Lampman GM, Kriz GS, Vyvyan JR. Introduction to spectroscopy. Belmont:Brooks/Cole, Cengage Learning; 2009.
    [63]Yadav MS. A Textbook of Spectroscopy. New Delhi:Anmol Publications Pvt. Ltd; 2003.
    [64]Laitinen H. Analytical Chemistry in Environmental Science. Analytical Chemistry 1973,45:1985.
    [65]Lin-Vien D, Colthup NB, Fateley WG, Grasselli JG. The handbook of infrared and Raman characteristic frequencies of organic molecules. San Diego:Academic Press; 1991.
    [66]Griffiths PR, Griffiths P. Chemical infrared Fourier transform spectroscopy. New York:Wiley Interscience; 1975.
    [67]Zbinden R. Infrared spectroscopy of high polymers. New York:Academic Press; 1964.
    [68]Stuart B, Ando DJ. Biological applications of infrared spectroscopy. West Sussex:John Wiley and Sons, Ltd.; 1997.
    [69]Shepherd KD, Walsh MG. Infrared spectroscopy-enabling an evidence-based diagnostic surveillance approach to agricultural and environmental management in developing countries. Journal of Near Infrared Spectroscopy 2007,15:1-19.
    [70]Briandet R, Kemsley EK, Wilson RH. Discrimination of Arabica and Robusta in instant coffee by Fourier transform infrared spectroscopy and chemometrics. Journal of Agricultural and Food Chemistry 1996,44:170-174.
    [71]Viscarra Rossel R, Walvoort D, McBratney A, Janik L, Skjemstad J. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 2006,131:59-75.
    [72]Adamsons K. Chemical surface characterization and depth profiling of automotive coating systems. Progress in Polymer Science 2000,25:1363-1409.
    [73]Li-Chen ECY, Ismail AA, Sedman J, van de Voort FR. Vibrational Spectroscopy of Food and Food Products. In Handbook of Vibrational Spectroscopy. Volume 5. Edited by Chalmers JM, Griffiths PR. Chichester:Wiley; 2002
    [74]Anderson SK, Hansen PW, Anderson HV. Vibrational Spectroscopy in the Analysis of Dairy Products and Wine. In Handbook of Vibrational Spectroscopy. Volume 5. Edited by Chalmers JM, Griffiths PR. Chichester:Wiley; 2002
    [75]FitzHugh EW. Artists' pigments:a handbook of their history and characteristics. In Artists' Pigments Series. Volume 3. Edited by Feller RL, FitzHugh EW, Roy A. Washington, DC:National Gallery of Art; 1997
    [76]Ryland SG. Infrared Microspectroscopy of Forensic Paint Evidence. In Practical Guide to Infrared Microspectroscopy. Edited by Humecki HJ. New York:Marcel Dekker; 1995
    [77]Clark D. The Analysis of Pharmaceutical Substances and Formulated Products by Vibrational Spectroscopy. In Handbook of Vibrational Spectroscopy. Volume 5. Edited by Chalmers JM, Griffiths PR. Chichester:Wiley; 2002
    [78]Bugay DE. Characterization of the solid-state:spectroscopic techniques. Advanced Drug Delivery Reviews 2001,48:43-65.
    [79]Aldrich DS, Smith MA. Pharmaceutical Applications of Infrared Microspectroscopy. Applied Spectroscopy Reviews 1999,34:275-327.
    [80]Tuazon EC, Winer AM, Pitts Jr JN. Trace pollutant concentrations in a multiday smog episode in the California South Coast Air Basin by long path length Fourier transform infrared spectroscopy. Environmental Science & Technology 1981,15:1232-1237.
    [81]Kaiser K, Guggenberger G, Haumaier L, Zech W. Dissolved organic matter sorption on sub soils and minerals studied by 13C NMR and DRIFT spectroscopy. European Journal of Soil Science 1997, 48:301-310.
    [82]Niemeyer JC, Bollag Y. Characterization of humic acids, composts, and peat by diffuse reflectance Fourier-transform infrared spectroscopy. Soil Science Society of America Journal 1992,56:135.
    [83]Concha-Herrera V, Lerma-Garcia MaJs, Herrero-Martinez JM, Simo-Alfonso EF. Prediction of the Genetic Variety of Extra Virgin Olive Oils Produced at La Comunitat Valenciana, Spain, by Fourier Transform Infrared Spectroscopy. Journal of Agricultural and Food Chemistry 2009,57:9985-9989.
    [84]Hoekstra FA, Crowe JH, Crowe LM. Effect of sucrose on phase behavior of membranes in intact pollen of Typha latifolia L., as measured with Fourier transform infrared spectroscopy. Plant physiology 1991, 97:1073.
    [85]李杰妹,黄瑞,吕小王,袁永朝,肖恒.傅里叶变换红外光谱技术在聚氨酯行业中的应用进展.化学推进剂与高分子材料2008,6:30-35.
    [86]江艳,沈怡,武培怡ATR-FTIR光谱技术在聚合物膜研究中的应用.化学进展2007,19:173-185.
    [87]贾红兵,刘寿平.傅里叶变换红外光谱在橡胶研究中的应用.合成橡胶工业1997,20:186-189.
    [88]Litvinov VM. Spectroscopy of rubber and rubbery materials. Shropshire:Rapra Technology Limited; 2002.
    [89]Roy S, De PP. Study of interactions of different rubber blends by infrared spectrophotometry using LDPE as matrix material for sample preparation. Polymer Testing 1994,13:419-433.
    [90]Kummerle M, Scherer S, Seiler H. Rapid and reliable identification of food-borne yeasts by Fourier-transform infrared spectroscopy. Applied and environmental microbiology 1998,64:2207.
    [91]Defernez M, Kemsley EK, Wilson RH. Use of Infrared Spectroscopy and Chemometrics for the Authentication of Fruit Purees. J Agric Food Chem 1995,43:109-113.
    [92]Briandet R, Kemsley EK, Wilson RH. Discrimination of Arabica and Robusta in Instant Coffee by Fourier Transform Infrared Spectroscopy and Chemometrics. J Agric Food Chem 1996,44:170-174.
    [93]刘明杰,王钊,等.傅里叶变换红外光谱法在药学研究中应用的最新进展.药物分析杂志2001,21:373-377.
    [94]杨姣兰,罗添.傅里中变换红外光谱分析技术在预防医学领域的应用.光谱学与光谱分析2002,22:610-614.
    [95]何建川,于建华,文宗河,卫亚丽.傅里叶红外光谱法在肿瘤分析中的应用.重庆大学学报:自然科学版2004,27:127-130.
    [96]Andrus PGL, Strickland RD. Cancer grading by Fourier transform infrared spectroscopy. Biospectroscopy 1998,4:37-46.
    [97]Wang TD, Triadafilopoulos G, Crawford JM, Dixon LR, Bhandari T, Sahbaie P, Friedland S, Soetikno R, Contag CH. Detection of endogenous biomolecules in Barrett's esophagus by Fourier transform infrared spectroscopy. Proceedings of the National Academy of Sciences 2007,104:15864-15869.
    [98]Meyer M, Meyer K, Hobert H. Neural networks for interpretation of infrared spectra using extremely reduced spectral data. Analytica Chimica Acta 1993,282:407-415.
    [99]Ricard D, Cachet C, Cabrol-Bass D, Forrest TP. Neural network approach to structural feature recognition from infrared spectra. Journal of Chemical Information and Computer Sciences 1993, 33:202-210.
    [100]Prashant B, Mendelson Y, Peura RA, Janatsch G, Kruse-Jarres JD, Marbach R, Heise HM. Multivariate Determination of Glucose in Whole Blood Using Partial Least-Squares and Artificial Neural Networks Based on Mid-Infrared Spectroscopy Applied Spectroscopy,1993,47:1091-1288.
    [101]Volmer M, Wolthers B, Metting H, de Haan T, Coenegracht P, van der Slik W. Artificial neural network predictions of urinary calculus compositions analyzed with infrared spectroscopy. Clin Chem 1994, 40:1692-1697.
    [102]Goodacre R, Timmins EM, Rooney PJ, Rowland JJ, Kell DB. Rapid identification of Streptococcus and Enterococcus species using diffuse reflectance-absorbance Fourier transform infrared spectroscopy and artificial neural networks. FEMS Microbiology Letters 1996,140:233-239.
    [103]那娜,欧阳启名,乔玉青,欧阳津,于雅辉.傅里叶变换红外光谱和近红外傅里叶变换拉曼光谱法无损鉴定中国字画.光谱学与光潜分析2004,24:1327-1330.
    [104]白聪芝.红外光谱分析在刑事技术中的作用.新乡师范高等专科学校学报2002,16:35-36.
    [105]刘宪云,张为俊,黄明强,王振亚.异戊二烯及其光氧化产物的傅里叶变换红外光谱研究.红外与毫米波学报2010,29:114-116.
    [106]陈国奇,郭水良,韩琴筱,吴萍.FTIR在植物分类学中应用范围和方法的探究.华东师范大学学报:自然科学版2008,6:88-95.
    [107]于玉华,袁久荣.红外光谱法在中药材鉴定中的应用.上海中医药大学学报2004,18:62-64.
    [108]吴章,李长阁.傅里叶变换红外光谱仪在脱脂分析中的应用.四川化工与腐蚀控制2001,4:22-24.
    [109]康建霞,黄梅.傅里叶变换红外光谱法在大气污染分析中的应用.南京理工大学学报:自然科学版1995,19:87-89.
    [110]Varhegyi G, Szabo P, Till F, Zelei B, Antal Jr MJ, Dai X. TG, TG-MS, and FTIR characterization of high-yield biomass charcoals. Energy & fuels 1998,12:969-974.
    [111]徐有明.木材学.北京:中国林业出版社;2006.
    [112]李坚,王清文,方桂珍,刘一星,李淑君.木材波谱学.北京:科学出版社;2003.
    [113]Faix O. Classification of lignins from different botanical origins by FTIR spectroscopy. Holzforschung 1991,45:21-27.
    [114]Pandey KK, Pitman AJ. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int Biodeter & Biodegr 2003,52:151-160.
    [115]Grube M, Lin J, Lee P, Kokorevicha S. Evaluation of sewage sludge-based compost by FT-IR spectroscopy. Geoderma 2006.
    [116]Ghauch A, Deveau P-A, Jacob V, Baussand P. Use of FTIR spectroscopy coupled with ATR for the determination of atmospheric compounds. Talanta 2006,68:1294-1302.
    [117]Gallardo-Velazquez T, Osorio-Revilla G, Loa MZ-d, Rivera-Espinoza Y. Application of FTIR-HATR spectroscopy and multivariate analysis to the quantification of adulterants in Mexican honeys. Food Research International 2009,42:313-318.
    [118]Greener J, Abbasi B, Kumacheva E. Attenuated total reflection Fourier transform infrared spectroscopy for on-chip monitoring of solute concentrations. Lab on a Chip 2010,10:1561-1566.
    [119]Jelle BP, Myklebost I, Holme J, Hovde PJ, Nilsen T-N. Attenuated Total Reflectance (ATR) Fourier Transform Infrared (FTIR) Radiation Studies of Wood Rot Decay and Mould Fungi Growth on Building Materials. In 11DBMC International Conference on Durability of Building Materials and Components; Istanbul, Turkey. Istanbul Technical University; 2008
    [120]Muller G, Schopper C, Vos H, Kharazipou A, Polle A. FTIR-ATR spectroscopic analysis of changes in wood properties during particle-and fibreboard production of hard- and softwood trees. BioResources 2009,4:49-71.
    [121]Hobro A, Kuligowski J, Doll M, Lendl B. Differentiation of walnut wood species and steam treatment using ATR-FTIR and partial least squares discriminant analysis (PLS-DA). Analytical and Bioanalytical Chemistry 2010,398:2713-2722.
    [122]Nuopponen M. FT-IR and UV Raman spectroscopic studies on thermal modification of Scots pine wood and its extractable compounds. Dissertation. Helsinki University of Technology, Laboratory of Forest Products Chemistry; 2005.
    [123]Kemp W. Organic spectroscopy.3rd edn. London:The Macmillan Press; 1991.
    [124]Rathore AS, Bhushan N, Hadpe S. Chemometrics applications in biotech processes:A review. Biotechnology Progress 2011,27:320-345.
    [125]Adams MJ. Chemometrics in Analytical Spectroscopy. In RSC Analytical Spectroscopy Monographs. 2nd edition. Edited by Barnett NW. Cambridge:Royal Society of Chemistry; 2004
    [126]Wold S. Chemometrics; what do we mean with it, and what do we want from it? Chemometrics and Intelligent Laboratory Systems 1995,30:109-115.
    [127]Geladi P, Esbensen K. The start and early history of chemometrics:Selected interviews. Part 1. Journal of Chemometrics 1990,4:337-354.
    [128]Kratzl K, Tschamler H. Infrared spectra of wood and insoluble lignins. Monatshefte fur Chemie-Chemical Monthly 1952,83:786-791.
    [129]Tschamler H, Kratzl K, Leutner R, Steininger A, Kisser J. Die Ultrarotspektren mikroskopischer Holzschnitte und einiger Modellsubstanzen. Mikroskopie 1953,8:238-246.
    [130]Liang C, Marchessault RH. Infrared spectra of crystalline polysaccharides. Ⅶ. Thin wood sections. Tappi Journal 1960,43:1017-1024.
    [131]Bolker H, Somerville N. Infrared spec-troscopy of lignins. Part Ⅱ:Lignins in unbleached pulps. Pulp and paper magazine of Canada 1963,64:187-194.
    [132]Harrington KJ, Higgins HG, Michell AJ. Infrared Spectra of Eucalyptus regnans F. Muell. and Pinus radiata D. Don. Holzforschung 1964,18:108-113.
    [133]Hergert HL. Infrared spectra. In Lignins:Occurrence, Formation, Structure and Reactions. Edited by Sarkanen KV, Ludwig CH. New York:Wiley Interscience; 1971:267-297
    [134]Michell A. Note on a Technique for Obtaining Infrared Spectra of Treated Wood Surfaces. Wood and Fiber Science 1988,20:272-276.
    [135]Faix O. Investigation of Lignin Polymer Models (DHP's) by FTIR Spectroscopy. Holzforschung 1986; 40:273-280.
    [136]Grandmaison JL, Thibault J, Kaliaguine S, Chantal PD. Fourier-transform infrared spectrometry and thermogravimetry of partially converted iignocellulosic materials. Analytical Chemistry 1987, 59:2153-2157.
    [137]Evans PA. Differentiating "hard" from "soft" woods using Fourier transform infrared and Fourier transform spectroscopy. Spectrochim Acta A 1991,47:1441-1447.
    [138]Faix O, Bremer J, Schmidt O, Tatjana SJ. Monitoring of chemical changes in white-rot degraded beech wood by pyrolysis-gas chromatography and Fourier-transform infrared spectroscopy. J Anal Appl Pyrol 1991,21:147-162.
    [139]Naumann D, Helm D, Labischinski H. Microbiological characterizations by FT-IR spectroscopy. Nature 1991,351:81-82.
    [140]Faix O Fourier transform infrared spectroscopy. In Methods in Lignin Chemistry. Edited by Lin SY, Dence CW:Springer-Verlag; 1992:83-109
    [141]Faix O, Bottcher J. The influence of particle size and concentration in transmission and diffuse reflectance spectroscopy of wood. Holz Roh Werkst 1992,50:221-226.
    [142]McCann MC, Hammouri M, Wilson R, Belton P, Roberts K. Fourier Transform Infrared Microspectroscopy Is a New Way to Look at Plant Cell Walls. Plant Physiol 1992,100:1940-1947.
    [143]Kataoka Y, Kondo T. FT-IR Microscopic Analysis of Changing Cellulose Crystalline Structure during Wood Cell Wall Formation. Macromolecules 1998,31:760-764.
    [144]Kacurakova M, Capek P, Sasinkov V, Weilner N, Ebringerov A. FT-IR study of plant cell wall model compounds:pectic polysaccharides and hemicelluloses. Carbohydrate Polymers 2000,43:195-203.
    [145]Aerholm M, Salmen L. Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer 2001,42:963-969.
    [146]Holmgren A, Bergstrom B, Gref R, Ericsson A. Detection of Pinosylvins in Solid Wood of Scots Pine Using Fourier Transform Raman and Infrared Spectroscopy. Journal of Wood Chemistry and Technology 1999,19:139-150.
    [147]Ona T, Sonoda T, Ito K, Shibata M, Ootake Y, Ohshima J, Yokota S, Yoshizawa N. Quantitative FT-Raman spectroscopy to measure wood cell dimensions. Analyst 1999,124:1477-1480.
    [148]Pandey KK. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J Appl Polym Sci 1999,71:1969-1975.
    [149]Wetzel DL, LeVine SM. MICROSPECTROSCOPY:Imaging Molecular Chemistry with Infrared Microscopy. Science 1999,285:1224-1225.
    [150]Muller U, Ratzsch M, Schwanninger M, Steiner M, Zobl H. Yellowing and IR-changes of spruce wood as result of UV-irradiation. Journal of Photochemistry and Photobiology B:Biology 2003,69:97-105.
    [151]Nuopponen M, Vuorinen T, Jamsa S, Viitaniemi P. The effects of a heat treatment on the behaviour of extractives in softwood studied by FTIR spectroscopic methods. Wood Science and Technology 2003, 37:109-115.
    [152]Ferraz A, Baeza J, Rodriguez J, Freer J. Estimating the chemical composition of biodegraded pine and eucalyptus wood by DRIFT spectroscopy and multivariate analysis. Bioresource Technol 2000, 74:201-212.
    [153]Mohebby B. Attenuated total reflection infrared spectroscopy of white-rot decayed beech wood. International Biodetericration & Biodegradation 2005,55:247-251.
    [154]Brinkmann K, Blaschke L, Polle A. Comparison of different methods for lignin determination as a basis for calibration of Near-Infrared Reflectance Spectroscopy and implications of lignoproteins. J Chem Ecol 2002,28:2483-2501.
    [155]Naumann A, Navarro-Gonzalez M, Peddireddi S, Kiies U, Polle A. Fourier transform infrared microscopy and imaging:Detection of fungi in wood. Fungal Genetics and Biology 2005,42:829-835.
    [156]Leple J-C, Dauwe R, Morreel K, Storme V, Lapierre C, Pollet B, Naumann A, Kang K-Y, Kim H, Ruel K, et al. Downregulation of Cinnamoyl-Coenzyme A Reductase in Poplar:Multiple-Level Phenotyping Reveals Effects on Cell Wall Polymer Metabolism and Structure. Plant Cell 2007, 19:3669-3691.
    [157]Muller G, Naumann A, Polle A (Eds.). FTIR spectroscopy in combination with cluster analysis as a tool for analysis of wood properties and production processes:Mitteilungen der Bundesforschungsanstalt fur Forst-und Holzwirtschaft Hamburg; 2007.
    [158]Miiller G, Bartholme M, Kharazipour A, Polle A. FTIR-ATR Spectroscopic Analysis of Changes in Fiber Properties During Insulating Fiberboard Manufacture of Beech Wood. Wood Fiber Sci 2008. 40:532-543.
    [159]Muller G, Polle A. FTIR-ATR-Spektroskopie zur Charakterisierung des Produktionsprozesses neuartiger Sandwichplatten. Holztechnologie 2008,6:16-19.
    [160]Rana R, Gunter M, Naumann A, Polle A. FTIR spectroscopy in combination with principal component analysis or cluster analysis as a tool to distinguish beech (Fagus sylvatica L.) trees grown at different sites. Holzforschung 2008,62:530-538.
    [161]Luo Z, Polle A. Wood composition and energy content in a poplar short rotation plantation on fertilized agricultural land in a future CO2 atmosphere. Global Change Biol 2009,15:38-47.
    [162]Naumann A. A novel procedure for strain classification of fungal mycellum by cluster and artificial neural network analysis of Fourier transform infrared (FTIR) spectra. The Analyst 2009, 134:1215-1223.
    [163]Zhou G, Taylor G, Polle A. FTIR-ATR-based prediction and modelling of lignin and energy contents reveals independent intra-specific variation of these traits in bioenergy poplars. Plant Methods 2011, 7:9 (http://www.plantmethods.com/content/7/1/9).
    [164]Zhou G, Polle A. Biomass Production and FTIR Characterization of Transgenic, Non-isoprene Emitting Poplars Grown under Field Conditions. In 2nd Poplar Symposium:From Genes to Functions; Gottingen, Germany.2009 March
    [165]Zhou G, Polle A. FTIR Spectroscopy for Wood Analysis. In EnergyPoplar-1st Annual Meeting; Ghent, Belgium.2009 January
    [166]Zhou G, Polle A. FTIR Spectroscopy for Analyzing Wood in the respect of rapid prediction of lignin content. In EnergyPoplar-2nd Annual Meeting; Venice, Italy.2010 March
    [167]Muller G. FTIR-ATR spectroscopic and FTIR-FPA microscopic investigations on panel board production processes using Grand fir (Abies grandis (Douglas ex D. Don) Lindl.) and European beech (Fagus sylvatica L.). Dissertation. dissertation. Georg-August University of Gottingen, Faculty of Forest Sciences and Forest Ecology; 2008.
    [168]Orton CR, Parkinson DY, Evans PD, Owen NL. Fourier Transform Infrared Studies of Heterogeneity, Photodegradation, and Lignin/Hemicellulose Ratios Within Hardwoods and Softwoods. Applied Spectroscopy 2004,58:1265-1271.
    [169]Yada M, Shintani H, Meshitsuka G. Infrared spectroscopic study of alkaline oxygen treatment of lignin with ATR technique in aqueous state 1:method for determining quantitative spectr? of oxygen-degraded lignin. Journal of Wood Science 2005,51:239-245.
    [170]Polovka M, Polovkova J, Vizarova K, Kirschnerova S, Bielikova L, Vrska M. The application of FTIR spectroscopy on characterization of paper samples, modified by Bookkeeper process. Vibrational Spectroscopy 2006,41:112-117.
    [171]McCann MC, Defernez M, Urbancwicz BR, Tewari JC, Langewisch T, Clek A, Wells B, Wilson RH, Carpita NC. Neural Network Analyses of Infrared Spectra for Classifying Cell Wall Architectures. Plant Physiology 2007,143:1314-1326.
    [172]Schultz TP, Burns DA. Rapid secondary analysis of lignocellulose:comparison of near infrared (NIR) and fourier transform infrared (FTIR). TAPPI Journal 1990,75:209-212.
    [173]Nuopponen MH, Birch GM, Sykes RJ, Lee SJ, Stewart D. Estimation of wood density and chemical composition by means of diffuse reflectance mid-Infrared fourier transform (DRIFT-MIR) spectroscopy. J Agric Food Chem 2006,54:34-40.
    [174]Rodrigues J, Faix O, Pereira H. Determination of lignin content of Eucalyptus globulus wood using FTIR spectroscopy. Holzforschung 1998,52:46-50.
    [175]Meder R, Gallagher S, Mackie KL, Bohler H, Meglen RR. Rapid determination of the chemical composition and density of Pinus radiata by PLS modelling of transmission and diffuse reflectance FTIR spectra. Holzforschung 1999,53:261-266.
    [176]Silva JC, Nielsen BH, Rodrigues J, Pereira H, Wellendorf H. Rapid determination of the lignin content in Sitka Spruce (Picea sitchensis (Bong.) Carr.) wood by Fourier Transform Infrared Spectrometry. Holzforschung 1999,53:597-602.
    [177]Rodrigues J, Puls J, Faix O, Pereira H. Determination of monosaccharide composition of Eucalyptus globulus wood by FTIR spectroscopy. Holzforschung 2001,55:265-269.
    [178]Bjarnestad S, Dahlman O. Chemical Compositions of Hardwood and Softwood Pulps Employing Photoacoustic Fourier Transform Infrared Spectroscopy in Combination with Partial Least-Squares Analysis. Analytical Chemistry 2002,74:5851-5858.
    [179]Jaaskelainen A-S, Nuopponen, M., Axelsson, P., Tenhunen, M., Loija, M., Vuorinen, T. Determination of lignin distribution in pulps by FTIR-ATR spectroscopy. Journal of Pulp and Paper Science 2003, 29:328-331.
    [180]Hoang V, Bhardwaj NK, Nguyen KL. A FTIR method for determining the content of hexeneuronic acid (hexA) and Kappa number of a high-yield kraft pulp. Carbohydrate Polymers 2005,61:5-9.
    [181]Dang VQ, Bhardwaj NK, Hoang V, Nguyen KL. Determination of lignin content in high-yield kraft pulps using photoacoustic rapid scan Fourier transform infrared spectroscopy. Carbohydrate Polymers 2007,68:489-494.
    [182]Schwanninger M, Hinterstoisser B, Gradinger C, Messner K, Fackler K. Examination of spruce wood biodegraded by Ceriporiopsis subvermispora using near and mid infrared spectroscopy. Journal of Near Infrared Spectroscopy 2004,12:397-410.
    [183]Fengel D, Wegener G. Wood-Chemistry, Ultrastructure, Reactions. Berlin:Walter De Gruyter Inc; 1989.
    [184]Panshin AJ, Zeeuw CD. Textbook of wood technology. Vol.1:structure, identification, properties, and uses of the commercial woods of the United States and Canada.4th edn. New York:McGraw-Hill; 1980.
    [185]Freudenberg K. Biosynthesis and Constitution of Lignin. Nature 1959,183:1152-1155.
    [186]Haars A, Huttermann A. Function of laccase in the white-rot fungus Fomes annosus. Archives of Microbiology 1980,125:233-237.
    [187]孙存普,张建中,段绍瑾.自由基生物学导论.合肥:中国科学技术大学出版社;1999.
    [188]方允中,李文杰.自由基与酶.北京:科学出版社;1989.
    [189]李坚,赵学增,韩士杰,蔡铁军.砂磨提高胶结强度的机理.东北林业大学学报1987,15:66-72.
    [190]蔡力平,刘志群,韩士杰.高压蒸汽处理对刨花表面自由基浓度的影响.木材工业1992,6:2-6.
    [191]史伯章,王婉华.真菌性变色木材的ESR研究.林业科学1992,28:330-335.
    [192]Cao Y, Guo P, Xu Y, Zhao B. Simultaneous Detection of NO and ROS by ESR in Biological Systems. In Methods in Enzymology. Volume Volume 396. Edited by Lester P, Enrique C. San Diego:Academic Press; 2005:77-83
    [193]赵保路.氧自由基和天然抗氧化剂.北京:科学出版社;2002.
    [194]陈贤榕.电子自旋共振实验技术.北京:科学出版社;1989.
    [195]Sjostrom E. Wood chemistry:fundamentals and applications.2nd edn. San Diego:Academic Press Inc.; 1993.
    [196]Kharazipour A, Huttermann A. Enzymatische Behandlung von Holzfasern als Weg zu vollstandig bindemittelfreien Holzwerkstoffen. In Die pflanzliche Zellwand als Vorbild fur Holzwerkstoffe, naturorientierte Herstellung von Span- und Faserplatten-Stand der Technik und Perspektiven. Edited by Huttermann A, Kharazipour A. Frankfurt/M.:Sauerlander's Verlag; 1993
    [197]Nimz HH. Lignin-based wood adhesives. In Wood Adhesives—Chemistry and Technology. Edited by Pizzi A. New York Marcel Dekker; 1983
    [198]Kuhne G, Dittler B. Enzymatische Modifizierung nachwachsender lignocelluloser Rohstoffe fur die Herstellung bindemittelfreier Faserwerkstoffe. European Journal of Wood and Wood Products 1999, 57:264-264.
    [199]Yamaguchi H, Maeda Y, Sakata I. Applications of laccase-induced dehydrogenativeiy polymerized phenols for bonding of wood fibers Mokuzai Gakkaishi 1992,38:931-937.
    [200]Kharazipour A, Huttermann A, Kuhne G, Rong M. Process for conglutinating wood particles into formed bodies. In Book Process for conglutinating wood particles into formed bodies (Editor ed.(?)eds.). City; 1993.
    [201]Kharazipour A, Huettermann A, Luedemann HD. Enzymatic activation of wood fibres as a means for the production of wood composites. Journal of Adhesion Science and Technology 1997,11:419-427.
    [202]Felby C, Hassingboe J, Lund M. Pilot-scale production of fiberboards made by laccase oxidized wood fibers:board properties and evidence for cross-linking of lignin. Enzyme and Microbial Technology 2002,31:736-741.
    [203]朱家琪,史广兴.酶活化处理条件及其对松木纤维胶合性能的影响初探.林业科学2004,40:153-156.
    [204]史广兴,魏华丽.三种树种木纤维的漆酶活化胶合.木材工业2005,19:25-26.
    [205]姜笑梅,刘晓丽,朱家琪,殷亚方.漆酶处理对木质纤维和纤维板微细结构的影响.电子显微学报2005,24:484-488.
    [206]周冠武,段新芳,李家宁,陈永圣,曹远林.漆酶活化木材产生活性氧类自由基的处理条件研究.木材工业2006,20:17-20.
    [207]周冠武。漆酶活化木材产生自由基的影响因素及应用酶法制备纤维板的初步研究.硕士学位论文.中国林业科学研究院,木材工业研究所;2006.
    [208]Zhou, Guanwu, Duan, Xinfang, Cao, Yongjian, Chen, Yongsheng, Yuanlin. Effects of Metal Ions and EDTA on Free Radical Reaction Intermediates of Laccase-catalyzed Oxidation of Wood Powder from Szemao Pine.中国林业科技:英文版2006,5:28-32.
    [209]周冠武,李家宁,陈永圣,段新芳,曹远林.漆酶处理不同树种木材产生ROS自由基变异的研究.In 2006年全国博士生学术论坛;北京.2006
    [210]曹永建,段新芳,曹远林,吕建雄.漆酶处理条件对枫香湿法纤维板强度的影响.木材工业2007,21:15-17.
    [211]曹永建.漆酶活化木材生产人造板及其胶合机理研究.硕士学位论文.北京林业大学,森林工业 学院;2005.
    [212]Cao Y, Duan X, Tao Y, Zhou G, Zhang S, Zhu J, Cao Y. Analysis of changes of free radicals of Pinus kesiya var. langbianensis heartwood treated by two kinds of laccases. In The International Meeting of the Society for free Radical Research (SFRR)-Asia & The Third International Symposium on Natural Antioxidants-Molecular Mechanisms and Health Effects (ISNA); Shanghai.2005
    [213]Singh H. Mycoremediation:fungal bioremediation. New Jersey:Wiley-Interscience; 2006.
    [214]Ferm R, Kringstad KP, Cowling EB. Formation of free radicals in milled wood lignin and syringaldehyde by phenol-oxidizing enzymes. Sven Papperstidn 1972,14:859-865.
    [215]Kleinert TN. Stable free radicals in various lignin preparations. Tappi J 1967,50:120-122.
    [216]Felby C, Pedersen LS, Nielsen BR. Enhanced Auto Adhesion of Wood Fibers Using Phenol Oxidases. Holzforschung 1997,51:281-286.
    [217]Milstein O, Huettermann A, Frund R, Ludemann HD. Enzymatic co-polymerization of lignin with low-molecular mass compounds. Applied microbiology and biotechnology 1994,40:760-767.
    [218]Felby C, Nielsen B, Olesen P, Skibsted L. Identification and quantification of radical reaction intermediates by electron spin resonance spectrometry of laccase-catalyzed oxidation of wood fibers frcm beech (Fagus sylvatica). Applied microbiology and biotechnology 1997,48:459-464.
    [219]Widsten P. Oxidative Activation of Wood Fibers for the Manufacture of Medium-Density Fiberboard (MDF). Ph.D. Dissertation. Helsinki University of Technology,2002.
    [220]段新芳,曹远林,曹永建,周冠武,陈永圣,朱家琪,赵保路.漆酶处理不同树种木材自由基变化的比较研究.In中国林学会木材科学分会第十次学术研讨会论文集.2005:403-406.
    [221]段新芳,曹远林,曹永建,周冠武,陈永圣,朱家琪,赵保路.漆酶活化处理对木材自由基变化的影响.林业科学2007,43:134-136.
    [222]Zhou G, Li J, Chen Y, Zhao B, Cao Y, Duan X, Cao Y. Determination of reactive oxygen species generated in laccase catalyzed oxidation of wood fibers from Chinese fir (Cunninghamia lanceolata) by electron spin resonance spectrometry. Bioresource Technology 2009,100:505-508.
    [223]周冠武,曹远林,段新芳,陶毅,曹永建,赵保路.不同处理条件与金属离子对漆酶氧化木纤维自由基反应影响.生物物理学报2006,22:425.
    [224]Cao YJ, Duan XF, Cao YL, Lii JX, Zhu JQ, Zhou GW, Zhao BL. ESR Study in Reactive Oxygen Species Free Radical Production of Pinus kesiya var. langbianensis Heartwood Treated with Laccase. Applied Magnetic Resonance 2008,35:205-211.
    [225]曹永建,段新芳,曹远林,朱家琪,周冠武,张双保.两种漆酶处理对思茅松边材自由基的影响.科学技术与工程2006,6:3142-3145.
    [226]Johnson D. the spectrophotometric determination of lignin in small wood samples. TAPPI Journal 1961,44:793-798.
    [227]Akerholm M, Salmen L. Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer 2001,42:963-969.
    [228]Hermans PH, Weidinger A. On the Recrystallization of Amorphous Cellulose. Journal of the American Chemical Society 1946,68:2547-2552.
    [229]Maurer A, Fengel D. On the Origin of Milled Wood Lignin. Part 1. The Influence of Ball-Milling on the Ultrastructure of Wood Cell Walls and the Solubility of Lignin. Holzforschung 1992,46:417-423.
    [230]Albersheim P, Darvill A, Roberts K, Sederoff R, Staehelin A. Plant Cell Walls. New York:Garland Science, Taylor & Francis Group; 2010.
    [231]Polle A, Douglas C. The molecular physiology of poplars:paving the way for knowledge-based biomass production. Plant Biology 2010,12:239-241.
    [232]Rae A, Street N, Robinson K, Harris N, Taylor G. Five QTL hotspots for yield in short rotation coppice bioenergy poplar:The Poplar Biomass Loci. BMC Plant Biol 2009,9:23.
    [233]Zyl JD. Notes on the spectrophotometric determination of lignin in wood samples. Wood Science and Technology 1978,12:251-259.
    [234]Iiyama K, Wallis AFA. An improved acetyl bromide procedure for determining lignin in woods and wood pulps. Wood Science and Technology 1988,22:271-280.
    [235]Davis MF, Tuskan GA, Payne P, Tschaplinski TJ, Meilan R. Assessment of Populus wood chemistry following the introduction of a Bt toxin gene. Tree Physiol 2006,26:557-564.
    [236]Novaes E, Osorio L, Drost DR, Miles BL, Boaventura-Novaes CRD, Benedict C, Dervinis C, Yu Q, Sykes R, Davis M, et al. Quantitative genetic analysis of biomass and wood chemistry of Populus under different nitrogen levels. New Phytol 2009,182:878-890.
    [237]Demirbas A. Relationships between heating value and lignin, moisture, ash and extractive contents of biomass fuels. Energ Explor Exploit 2002,20:105-111.
    [238]Kataki R, Konwer D. Fuelwood characteristics of some indigenous woody species of north-east India. Biomass Bioenerg 2001,20:17-23.
    [239]Fangrat J, Hasemi Y, Yoshida M, Kikuchi Si. Relationship between heat of combustion, lignin content and burning weight loss. Fire Mater 1998,22:1-6
    [240]Naumann D, Helm D, Labischinski H, Giesbrecht P. The characterization of microorganisms by Fourier transform infrared spectroscopy (FTIR). In Modern Techniques for Rapid Microbiological Analysis. Edited by Nelson WH. New York:Wiley-VCH; 1991:43-96
    [241]Parker FS. Applications of infrared, raman, and resonance raman spectroscopy in biochemistry. New York:Plenum Press; 1983.
    [242]Tillmarm P. Kalibrationsentwicklung fur NIRS-Gerate:Eine Einfuhrung. Gottingen:Cuvillier Verlag; 1996.
    [243]Usmanov KU, Yulchibaev AA, Dordzhin GS, Vaiiev A. Ir spectroscopic analysis of graft co-polymers of cellulose and its derivatives with vinyl fluoride. Fibre Chem 1972,3:292-295.
    [244]Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B. Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vibrational Spectroscopy 2004, 36:23-40.
    [245]Socrates G. Infrared and Raman characteristic group frequencies:tables and charts.3rd edn. West Sussex:John Wiley & Sons Ltd.; 2004.
    [246]Yeh TF, Chang HM, Kadla JF. Rapid prediction of solid wood lignin content using transmittance Near-Infrared spectroscopy. J Agric Food Chem 2004,52:1435-1439.
    [247]te Giffel MC, Zwietering MH. Validation of predictive models describing the growth of Listeria monocytogenes. International Journal of Food Microbiology 1999,46:135-149.
    [248]Srinivasan G. Vibrational Spectroscopic Imaging for Biomedical Applications. McGraw-Hill; 2009.
    [249]Faix O. Practical uses of FTIR spectroscopy in wood science and technology. Microchimica Acta 1988, 94:21-25.
    [250]Tjeerdsma BF, Militz H. Chemical changes in hydrothermal treated wood:FTIR analysis of combined hydrothermal and dry heat-treated wood. European Journal of Wood and Wood Products 2005, 63:102-111.
    [251]Beekes M, Lasch P, Naumann D. Analytical applications of Fourier transform-infrared (FT-IR) spectroscopy in microbiology and prion research. Veterinary Microbiology 2007,123:305-319.
    [252][Bruker Optics, http://www.brukeroptics.com/m-ir.html,April 25th,2011]
    [253]Wienhaus O, Niemz P, Fabian J. Untersuchungen zur Holzartendifferenzierung mit Hilfe der Infrarot-Spektroskopie (Teil 1). Holzforschung und Holzverwertung 1988,40:20-125.
    [254]Antti H. Multivariate Characterization of Wood Related Materials. Ph.D. Dissertation. Umea University, Department of Chemistry; 1999.
    [255]Schimleck LR, Michell AJ, Vinden P. Eucalypt wood classification by NIR spectroscopy and principal components analysis. Appita journal 1996,49:319-324.
    [256]Katja Behnke BE, Markus Teuber, Martina Bauerfeind, Sandrine Louis, Robert Hansch, Andrea Polle. Jog Bohlmann, Jog-Peter Schnitzler,. Transgenic, non-isoprene emitting poplars don't like it hot. The Plant Journal 2007,51:485-499.
    [257]Baunigartner R, Scarth G, Teichtmeister C, Somorjai R, Moser E. Fuzzy clustering of gradient-echo functional MRI in the human visual cortex. Part Ⅰ:Reproducibility. Journal of Magnetic Resonance Imaging 1997,7:1094-1101.
    [258]Salzer R, Steiner G, Mantsch HH, Mansfield J, Lewis EN. Infrared and Raman imaging of biological and biomimetic samples. Fresenius' Journal of Analytical Chemistry 2000,366:712-726.
    [259]Helm D, Labischinski H, Schallehn G, Naumann D. Classification and identification of bacteria by Fourier-transform infrared spectroscopy. Journal of General Microbiology 1991,137:69.
    [260]Kemsley E, Belton P, McCann M, Ttofis S, Wilson R, Delgadillo I. A rapid method for the authentication of vegetable matter using Fourier transform infrared spectroscopy. Food Control 1994, 5:241-243.
    [261]Yokoyama T, Kadla JF, Chang H-m. Microanalytical method for the characterization of fiber components and morphology of woody plants. J Agric Food Chem 2002,50:1040-1044.
    [262]Gabriel KR. The biplot graphic display of matrices with application to principal component analysis. Biometrika 1971,58:453.
    [263]Chen L, Carpita NC, Reiter WD, Wilson RH, Jeffries C, McCann MC. A rapid method to screen for cell wall mutants using discriminant analysis of Fourier transform infrared spectra. The Plant Journal 1998,16:385-392.
    [264]Cotrim A, Ferraz A, Goncalves A, Silva F, Bruns R. Identifying the origin of lignins and monitoring their structural changes by means of FTIR-PCA and-SIMCA. Bioresource Technology 1999,68:29-34.
    [265]Sharkey TD, Yeh S. ISOPRENE EMISSION FROM PLANTS. Annual Review of Plant Physiology and Plant Molecular Biology 2001,52:407-436.
    [266]Behnke K, Kaiser A, Zimmer I, Bruggemann N, Janz D, Polle A, Hampp R, Hansch R, Popko J, Schmitt-Kopplin P, et al. RNAi-mediated suppression of isoprene emission in poplar transiently impacts phenolic metabolism under high temperature and high light intensities:a transcriptomic and metabolomic analysis. Plant Molecular Biology 2010,74:61-75.
    [267]Ristein J, Stief R, Ley L, Beyer W. A comparative analysis of a C:H by infrared spectroscopy and mass selected thermal effusion. Journal of applied physics 1998,84:3836.
    [268]Helland IS, Naes T, Isaksson T. Related versions of the multiplicative scatter correction method for preprocessing spectroscopic data. Chemometrics and Intelligent Laboratory Systems 1995, 29:233-241.
    [269]Ng AY, Jordan MI, Weiss Y. On spectral clustering:Analysis and an algorithm. In the 2001 Neural Information Processing Systems (NIPS) Conference; Vancouver, British Columbia, Canada. Edited by Dietterich TG, Becker S, Ghahramani Z. Massachusetts Institute of Technology Press; 2002:849-856.
    [270]Wood B, Chiriboga L, Yee H. Quinn M, McNaughton D, Diem M. Fourier transform infrared (FTIR) spectral mapping of the cervical transformation zone, and dysplastic squamous epithelium. Gynecologic oncology 2004,93:59-68.
    [271]李莉,高凌云,董越,杨莉.植物类异戊二烯生物合成相关酶基因研究进展.浙江师范大学学报:自然科学版2008,31:461-466.
    [272]杨小琴.植物挥发性有机物(VOCs)释放及其环境净化效应概述.湖南城市学院学报:自然科学版2006,15:57-60.
    [273]Landais P, Rochdi A. Reliability of semiquantitative data extracted from transmission microscopy-Fourier transform infrared spectra of coal. Energy & Fuels 1990,4:290-295.
    [274]Guillen M, Iglesias M, Dominguez A, Blanco C. Semi-quantitative FTIR analysis of a coal tar pitch and its extracts and residues in several organic solvents. Energy & Fuels 1992,6:518-525.
    [275]Sandak A, Sandak J, Negri M. Relationship between near-infrared (NIR) spectra and the geographical provenance of timber. Wood Science and Technology:1-14.
    [276]Tsuchikawa S, Inoue K, Noma J, Hayashi K. Application of near-infrared spectroscopy to wood discrimination. Journal of Wood Science 2003,49:29-35.
    [277]Van Aardt J, Wynne R. Examining pine spectral separability using hyperspectral data from an airborne sensor:An extension of field-based results. International Journal of Remote Sensing 2007, 28:431-436.
    [278]Hori R, Sugiyama J. A combined FT-IR microscopy and principal component analysis on softwood cell walls. Carbohydrate Polymers 2003,52:449-453.
    [279]Yaropolov A, Skorobogat'Ko O, Vartanov S, Varfolomeyev S. Laccase:Properties, catalytic mechanism, and applicability. Applied Biochemistry and Biotechnology 1994,49:257-280.
    [280]Felby C, Nielsen BR, Olesen PO, Skibsted LH. Identification and quantification of radical reaction intermediates by electron spin resonance spectrometry of laccase-catalyzed oxidation of wood fibers from beech (Fagus sylvatica). Applied Microbioiogy and Biotechnology 1997,48:459-464.
    [281]Kharazipour A, Huettermann A, Luedemann HD. Enzymatic activation of wood fibres as a means for the production of wood composites. Journal of Adhesion Science and Technology 1997,11:419-427.
    [282]Yamaguchi H, Maeda Y, Sakata I. Application of phenol dehydrogenative polymerization by laccase to binding among woody-fibers. Mokuzai Gakkaishi 1992,38.
    [283]徐咏兰.中密度纤维板制造.北京:中国林业出版社;1995.
    [284]李坚.无胶湿法中密度纤维板.林产工业1988,15:35-38.
    [285]Ander P, Eriksson KE. The importance of phenol oxidase activity in lignin degradation by the white-rot fungus Sporotrichum pulverulentum. Archives of Microbiology 1976,109:1-8.
    [286]Ishihara T. The role of laccase in lignin biodegradation. In Lignin Biodegradation:Microbiology, Chemistry and Potential Applications. Volume 2. Edited by Kirk TK, Higuchi T, Chang HM. Boca Raton:CRC Press; 1980
    [287]Morohoshi N, Haraguchi N. Degradation of lignin by the extracellular enzymes of Coriolus versicolor III. Mokuzai Gakkaishi 1987,33:143-150.
    [288]Kawai S, Umezawa T, Higuchi T. Degradation mechanisms of phenolic β-1 lignin substructure model compounds by laccase of Coriolus versicolor. Archives of Biochemistry and Biophysics 1988, 262:99-110.
    [289]Ferm R, Kringstad KP, Cowling EB. Formation of free radicals in milled wood lignin and syringylaldehyde by phenol oxidizing enzymes. Sven Papperstidn 1972,14:859-865.
    [290]Amer GI, Drew SW. The concentration of extracellular superoxide radical as a function of time during lignin degradation by the fungus Coriolus versicolor. Developments in Industrial Microbiology 1980, 22:479-484.
    [291]Bes B, Ranjeva R, Boudet AM. Evidence for the involvement of activated oxygen in fungal degradation of lignocellulose. Biochimie 1983,65:283-289.
    [292]Faison BD, Kirk TK. Relationship Between Lignin Degradation and Production of Reduced Oxygen Species by Phanerochaete chrysosporium. Appl Environ Microbiol 1983,46:1140-1145.
    [293]Milstein O, Huttermann A, Friind R, Ludemann H-D. Enzymatic co-polymerization of lignin with low-molecular mass compounds. Applied Microbiology and Biotechnology 1994,40:760-767.
    [294]Capani F, Loidl CF, Aguirre F, Piehl L, Facorro G, Hager A, De Paoli T, Farach H, Pecci-Saavedra J. Changes in reactive oxygen species (ROS) production in rat brain during global perinatal asphyxia:an ESR study. Brain Research 2001,914:204-207.
    [295]Hall PL. Enzymatic transformations of lignin:2. Enzyme and Microbial Technology 1980,2:170-176.
    [296]Finkelstein E, Rosen GM, Rauckman EJ. Production of hydroxyl radical by decomposition of superoxide spin-trapped adducts. Molecular Pharmacology 1982,21:262-265.
    [297]Pou S, Hassett DJ, Britigan BE, Cohen MS, Rosen GM. Problems associated with spin trapping oxygen-centered free radicals in biological systems. Analytical Biochemistry 1989,177:1-6.
    [298]Rex RW. Electron Paramagnetic Resonance Studies of Stable Free Radicals in Lignins and Humic Acids. Nature 1960,188:1185-1186.
    [299]Steelink C. Stable free radicals in lignin and lignin oxidation products, advances in chemistry series 1966,59:51-64.
    [300]Huttermann A, Mai C, Kharazipour A. Modification of lignin for the production of new compounded materials. Applied Microbiology and Biotechnology 2001,55:387-384.
    [301]Yamaguchi H, Yutaka M, Isao S. Bonding among woody fibers by use of enzymic phenol dehydrogenative polymerization-mechanism of generation of bonding strength. Mokuzai Gakkaishi 1994,40:185-190.
    [302]Felby C, Hassingboe J. The influence of chemical structure and physical state of native lignin upon the bonding strength of enzymatic bonded dry-process fiberboards. In:Towards the new generation of bio-based composites. In Third Pacific Rim Bio-Based Composites Symposium; December 2-5; Kyoto, Japan.1996:283-291.
    [303]Caldwell ES, Steelink C. Phenoxy radical intermediates in the enzymatic degradation of lignin model compounds. Biochimica et Biophysica Acta 1969,184:420-431.
    [304]Srebotnik E, Messner K. Enzymatic attack of wood is limited by the inaccessibility of the substrate. In Biotechnology in pulp and paper manufacture. Edited by Kirk TK, Chang HM. London: Butter-worth-Heinemann; 1990:111-122

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700