用户名: 密码: 验证码:
以壳聚糖和纤维素硫酸钠为主要材料的结肠定位释药载体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
口服结肠定位给药系统(oral colon-specific drug delivery system),是指通过适当的方法,使药物经口服后避免在胃和小肠中释放,运送至回盲部后才开始释放,从而发挥局部或全身治疗作用的一种新型给药系统。通过结肠靶向给药,使药物能够直接作用于病变部位,减少由于药物在胃肠道上端吸收而引起的副作用,并使生物大分子类药物能够实现口服给药。在口服结肠定位给药系统中,载体材料的选择十分关键,在活性功能成分的释放、导向等方面具有决定性作用。其中,天然多糖具有良好的生物相容性和生物降解性,越来越多地用于口服结肠定位给药材料的研究。壳聚糖和纤维素硫酸钠都是来源广泛的天然多糖衍生物,两者结合能够形成不溶于水的聚电解质复合物。有研究发现,壳聚糖/纤维素硫酸钠(NaCS)聚电解质复合物在口服结肠定位给药系统中具有很大的应用潜力。本论文以壳聚糖和NaCS为材料制备的复合膜为对象,围绕复合膜的生物降解、机械、溶胀和药物渗透性能等内容进行展开,并且以壳聚糖和NaCS为主要材料制备微球,对其的制备和在载蛋白药物的应用进行了初探。
     针对在标定NaCS性能方法准确性方面存在的问题,本论文确定了分别用凝胶渗透色谱法、BaSO4比浊法和酶降解法来测定NaCS的分子量、取代度和生物降解性能,并由此考察了NaCS制备条件对NaCS性质影响。结果表明,反应时间越长,NaCS的分子量越小;而分子量分布系数随反应时间而变化,先逐渐增加,在6h达到最大值(5.16),继续增加反应时间,分子量分布系数却迅速下降。NaCS的取代度随着反应时间先逐渐增大,到6h后,取代度保持在0.5左右。通过纤维素酶降解实验可知,NaCS的降解性随着其制备时间的增加而呈现逐渐下降的趋势。这些结果说明制备条件对产品NaCS的性质有较大影响并将直接影响其应用。
     考察了壳聚糖与NaCS的质量比对壳聚糖/NaCS复合膜表面形态、机械性能(强度、韧性等)和溶胀性能的影响。结果发现,当壳聚糖/NaCS质量比为1:2时,该复合膜的表面较光滑,但膜表面有分散的不规则小孔,说明壳聚糖/NaCS复合膜是多孔膜。机械性能和溶胀性能的测定结果证明,壳聚糖和NaCS的最佳质量比在1:2左右。通过改变壳聚糖分子量、NaCS分子量和取代度,可以调节该复合膜的机械性质和溶胀性能。壳聚糖分子量越高,该复合膜的断裂伸长率越大;而NaCS分子量和取代度的增大则会导致该膜的溶胀率降低。此外,溶液pH对壳聚糖/NaCS复合膜溶胀率也有显著的影响。
     其次,采用胃肠道中的主要酶,包括胃蛋白酶、α-淀粉酶、胰蛋白酶、脂肪酶和纤维素酶,对壳聚糖、NaCS和壳聚糖/NaCS复合膜的降解性能进行了系统的研究。结果显示,胃蛋白酶、淀粉酶、胰蛋白酶和脂肪酶对壳聚糖都具有显著的水解活性,但不能降解NaCS.然而,纤维素酶表现出了较高的NaCS水解活性,壳聚糖水解活性却比较低。在壳聚糖/NaCS复合膜的降解研究中,发现其降解速率与壳聚糖和NaCS的分子量密切相关。此外,本论文还通过在pH分别为1.5、7.4和6.4的溶液中添加酶来模拟胃液、小肠液和结肠液,以此探讨壳聚糖/NaCS聚电解质复合物在胃肠道的降解特性。体外降解实验的结果表明,壳聚糖/NaCS复合膜的配方将直接影响其在胃肠道系统中的崩解时间和位置。如当壳聚糖分子量为563.3 kDa, NaCS分子量为169.7 kDa时,两者所形成的复合膜在模拟胃液中处理3h将崩解,而当壳聚糖和NaCS分子量分别为563.3 kDa和710.8 kDa时,复合膜在经历3h的胃液处理和6h的小肠液处理后,仍保持其表面的完整。由此可见,壳聚糖/NaCS聚电解质在胃肠道定位给药系统中具有良好的应用潜能。
     为研究壳聚糖/NaCS复合膜的药物控制释放特性,本论文还研究了该复合膜的药物渗透性能。采用包括扑热息痛、5-氨基水杨酸(5-ASA)和大肠杆菌蛋白质混合物等三种物质作为模型药物,对该复合膜的药物渗透性能进行了研究。结果表明,壳聚糖/NaCS复合膜的渗透性能与其溶胀性能密切相关。通常情况下,高溶胀率将导致高渗透系数。并且,该复合膜的渗透性能深受壳聚糖和NaCS的分子量以及pH的影响。此外,本论文还以扑热息痛作为模型药物研究了壳聚糖/NaCS复合膜在模拟胃肠液中对药物的渗透性能。结果表明,通过调整该膜的配方,可以使该膜分别实现胃、小肠和结肠定位释药的目的。
     鉴于壳聚糖/NaCS复合物在蛋白质定位释药方面表现出了较好的潜能,本论文以壳聚糖、NaCS和三聚磷酸钠(TPP)为原料,采用滴定法制备了壳聚糖/NaCS/TPP双层微球。通过FTIR分析了双层微球的内外层成分,发现其外层由壳聚糖、NaCS和TPP三种物质组成,而内层主要成分为壳聚糖和TPP。微球的制备时间和TPP浓度对微球的形态有显著的影响。TPP浓度较低时,该微球表面都较为光滑。但TPP浓度越高,反应时间越长,双层微球表面越容易皱缩,当反应时间为10 min时,所得到的双层微球表面最为光滑。
     此外,本论文以牛血清蛋白(BSA)为模型药物研究了该微球的包封率、载药量、溶胀性能和释药特性。TPP浓度对BSA包封率和载药量有重要的影响。未加TPP时,壳聚糖/NaCS微球具有较高的药物包封率(99.8%±0.1%)和载药量(37.5%±1.9%)。壳聚糖/TPP微球的载药量非常低,仅有4.5%±2.7%。与这两种微球相比,壳聚糖/NaCS/TPP双层微球也具有较高的药物包封率(79%以上)和载药量(18%以上)。为了研究壳聚糖/NaCS/TPP双层微球的溶胀性能和BSA体外释放性能,本论文选取pH分别为2.0、7.4和6.4的Na2HPO4-.柠檬酸缓冲液模拟胃液、小肠液和结肠液。结果表明,当TPP浓度在1.0%(w/v)或以上时,壳聚糖/NaCS/TPP双层微球出现了两步溶胀行为。而该微球的BSA释放特性与其溶胀实验结果并不一致。当TPP浓度为1.5%(w/v)时,双层微球在pH为2.0和6.4的缓冲溶液中几乎不释放BSA,但在pH 7.4下,经4h后该微球能够释放不足25%的BSA。在pH 6.4的缓冲溶液中加入适量纤维素酶能够使该微球的BSA释放量显著增大,在120 min时由原来的1.9%提高到50%以上。
     为了制备粒径均一的双层微球,本论文还采用微流控法研究了微球的制备。研究发现,采用2%(w/v)的壳聚糖和含5% Span 80的液体石蜡溶液,能够制备出粒径在100-200μm,粒径分布系数小于6%的双层微球。这为壳聚糖/NaCS复合物在制剂学上的发展提供了参考。
Oral colon-specific drug delivery system is a novel drug delivery system, which targets drug to the colon for treatment of local or systemic disorders with proper methods. With colon-specific drug delivery system, drug could act directly on the lesion site, reduce side effect induced by drug release in the upper gastrointestinal tract, and enable biomacromolecules to be used for oral administration. Carriers play the key role in the oral colon-specific drug delivery systems. They have decisive effect on the release, as well as the target sites of active components. Among various carriers, natural polysaccharides are investigated more frequently for oral colon-specific delivery systems, owing to their good biocompatibility and biodegradability. Chitosan and sodium cellulose sulfate (NaCS) are both derivatives of natural polysaccharides with abundant resources. The combination of the two polymers could form polyelectrolyte complex (PEC) insoluble in water. It was reported that chitosan/NaCS PEC had great potential for colon-specific drug delivery systems. This work will focus on the mechanical and swelling properties, biodegradation and drug permeation of chitosan/NaCS complex film. In addition, we explored the preparation of microspheres based on chitosan and NaCS and its application in the delivery of proteinic drugs.
     Considering the problems in the measurement of NaCS properties, gel permeation chromatograph, BaSO4 turbidimetry and enzymatic degradation were employed to determine the molecular weight, structure and degradation properties of NaCS, as well as the influence of the preparation conditions. The results showed that increasing the reaction time would lead to lower molecular weight. Meanwhile, the polydispersity changed with the reaction time. With the increase of the reaction time, the polydispersity increased and obtained the maximum (5.16) at 6 h. However, further increase would cause a sharp decrease of polydispersity. When it came to the substitution degree of NaCS, it increased with increase of reaction time gradually, and kept about 0.5 from 6 h. In addition, the degradation of NaCS by cellulose decreased with the increase of the preparation time of NaCS. The results showed that the preparation conditions have great influence on the properties and application of NaCS.
     Effects of the weight of chitosan to NaCS on the morphology, the mechanical (strength and brittleness) and swelling properties of the complex film were studied. Obviously, chitosan/NaCS complex films were porous membrane. When chitosan/ NaCS ratio was 1:2, the complex film was smooth, with diverse, irregular pores. It was confirmed by mechanical and swelling studies that the optimum chitosan/NaCS ratio was about 1:2. The mechanical and swelling properties of chitosan/NaCS films could be controlled by adjusting chitosan Mw, and the Mw and substitution degree of NaCS. Higher elongation at break of the complex films would be obtained with chitosan of higher Mw. Meanwhile, the increase of the Mw and substitution degree of NaCS would cause the decrease of the swelling ratios. In addition, pH of the solution has great influence on the swelling ratios of chitosan/NaCS films.
     The biodegradation characteristics of chitosan, NaCS and chitosan/NaCS PEC films were investigated with main gastrointestinal enzymes, including pepsin, trypsin, lipase,α-amylase, and cellulase. The results showed that pepsin, amylase, trypsin and lipase have the appreciable hydrolytic activity to chitosan, but can not degrade NaCS. However, cellulase showed high cellulosic activity and low chitosanolytic activity. For the hydrolysis of chitosan/NaCS films, the degradation rates were greatly influenced by the molecular weights of chitosan and NaCS. Furthermore, in order to study biodegradation behaviors of chitosan/NaCS complex in gastrointestinal tract, the simulated gastric fluids (SGF), simulated intestinal fluids (SIF) and simulated colonic fluids (SCF) were prepared by adding enzymes to the solutions, respectively, with pH 1.5,7.4 and 6.4. In vitro tests showed that different formulations caused diverse disintegration time of the films through the gastrointestinal tract. For example, when the Mw of chitosan and NaCS were 563.3 and 169.7 kDa, respectively, the complex film would disintegrate after treatment in SGF for 3 h. However, when the Mw of chitosan and NaCS were 563.3 and 710.8 kDa, respectively, the complex film would keep intact after treatment in SGF for 3 h and SIF for 6 h. The results indicated the PEC based on chitosan and NaCS showed good potential for the gastrointestinal delivery systems.
     In order to assess the controlled drug release behavior of films composed of chitosan and sodium cellulose sulfate (NaCS), the permeability of drugs across chitosan/NaCS films were measured. The permeability experiments were conducted with three substances, including paracetamol,5-aminosalicylic acid (5-ASA) and protein mixture from Escherichia coli. The results showed that the permeability of chitosan/NaCS films was closely related to the swelling properties. In addition, both the permeability and swelling properties of chitosan/NaCS films were markedly influenced by the weight ratio of chitosan to NaCS, the molecular weight (Mw) of chitosan and NaCS as well as pH values. Furthermore, the permeability of paracetamol across the film was conducted in simulated gastrointestinal solutions for in vitro tests. The results showed that the films have the gastro-, intestine-and colon-targeted drug release properties, respectively, when they were exposed to the simulated gastrointestinal fluids in sequence.
     Chitosan/NaCS was found to have great potential in the delivery of protein in ourwork. So double-walled microspheres based on chitosan, NaCS and sodium tripolyphosphate (TPP) were prepared by dipping method. It was found by fourier transform infrared spectroscopy (FTIR) that the shell of the microspheres was composed of chitosan, NaCS and TPP, while the inner layer was based on chitosan and TPP. The concentration of TPP and the reaction time had marked influence on the morphology of the double-walled microspheres. When the concentration of TPP was low, the surface of the microspheres seemed smooth. Nevertherless, higher concentration of TPP and increase of the reaction time would cause shrinkage of the surface of the microspheres. When the reaction time was 10 min, smooth microspheres would be obtained.
     Furthermore, encapsulation efficiency (EE) and loading efficiency (LE) and the release behavior of the microspheres were investigated with bovine serum albumin (BSA) as the model drug. The concentration of TPP had great influence on EE and LE. Without addition of TPP, rather high EE (99.8%±0.1%) and LE (37.5%±1.9%) could be achieved. However, quite low LE (4.5%±2.7%) would be got with chitosan/TPP microspheres. As for chitosan/NaCS/TPP double-walled microspheres, high EE (above 79%) and LE (above 18%) could also be obtained. In order to assess in vitro release of BSA from chitosan/NaCS/TPP double-walled microspheres, the environment of SGF, SIF and SCF were simulated with solutions of pH 2.0,7.4 and 6.4, respectively. Two-step swelling performance was observed with concentration of TPP≥1.0%(w/v). However, the release of BSA from the microspheres was not in conformance with the swelling studies. It should be noted that almost no BSA released when the microspheres with 1.5% TPP was at pH 2.0 and 6.4. Less than 25% BSA was released even after treatment in the solution of pH7.4 for 4 h. Addition of cellulose to the solution of pH 6.4 would cause marked increase of BSA from the microsphers, from 1.9% to over 50% after 120 min.
     To prepare uniform double-walled microspheres, microfluid control was employed. Chitosan microspheres with diameter 100-200μm and distribution efficiency≤6% could be obtained with 2% (w/v) chitosan and liquid paraffin (5% Span 80). This work will be useful for the development of chitosan/NaCS complex in the technology of pharmaceutics.
引文
[1]沈熊,吴伟,徐惠南,口服结肠定位给药系统评价方法,中国临床药学杂志,2004,13(4):250-253
    [2]安峰,程刚,周星,口服结肠定位给药系统的新进展及体内外评价方法,中国药剂学杂志,2003,1(3):117-123
    [3]Chourasia M.K., Jain S.K., Pharmaceutical approaches to colon targeted drug delivery systems, Journal of Pharmacy and Pharmaceutical Science,2003,6(1):33-66
    [4]Jose S., Prema M.T., Chacko A.J., Thomas A.C., Souto E.B., Colon-specific chitosan microspheres for chronotherapy of chronic stable angina, Colloids and Surfaces B: Biointerfaces,2011,83(2):277-283
    [5]Watts J. P., Ⅲum L., Colonic drug delivery, Drug Development and Industrial Pharmacy, 1997,23(9):893-913
    [6]Kinget R., Kalala W., Vervoort L., Colonic drug targeting, Drug Targeting,1998,6 (2): 129-149
    [7]Edwards C., Physiology of the colorectal barrier, Advanced Drug Delivery Reviews,1997, 28:173-190
    [8]Rubinstein A., Tirosh B., Baluom M., Nassar T., David A., Radai R., Gliko-Kabir I., Friedman M., The rationale for peptide drug delivery to the colon and the potential of polymeric carriers as effective tools, Journal of Controlled Release,1997,46:59-73
    [9]Rubinstein A., Colonic drug delivery, Drug Discovery Today. Technologies,2005,2(1): 33-37
    [10]Chadwick R.W., George S.E., Claxton L.D., Role of the gastrointestinal mucosa and microflora in the bioactivation of dietary and environmental mutagens or carcinogens. Drug Metabolism Reviews,1992,24:425-492
    [11]Macy J.M., Farrand J.R., Montgomery L., Cellulytic and non-cellulolytic bacteria in rat gastrointestinal tracts. Applied and Environmental Microbiology,1982,44(6):1428-1434
    [12]Robert C, Bernalier-Donadille A., The cellulolytic microflora of the human colon:evidence of microcrystalline cellulose-degrading bacteria in methane-excreting subjects, FEMS Microbiology Ecology,2003,46(1):81-89
    [13]Yang L., Chu J.S., Fix J.A., Colon-specific drug delivery:new approaches and in vitro/in vivo evaluation, International Journal of Pharmaceutics,2002,235:1-15
    [14]Sinha V.R., Kumria R., Colonic drug delivery:prodrug approach, Pharmaceutical Research, 2001,18 (5):557-564
    [15]陈清元,沈家瑞,陈建海,偶氮聚合物作为结肠靶向给药载体的研究进展,中国医药工业杂志,2002,33(8):412-416
    [16]Klotz U., Clinical pharmacokinetics of sulphasalazine, its metabolites and other prodrugs of 5-Aminosalicylic acid, Clinical Pharmacokinetics,1985,10:285-302
    [17]Muraoka M, Kimura G, Hu Z.P., Ulcerative colitis-colon delivery of 5-aminosalicylic acid, Nippon Rinsho,1998,56(3):788-794
    [18]Sinha V.R., Kumria R., Coating polymers for colon specific drug delivery:a comparative in vitro evalution, Acta Pharmaceutica,2003,53(1):41-47
    [19]Marvola M, Nykanen P., Rautio S., Enteric polymers as binders and coating materials in multiple unit site speific drug delivery systems, European Journal of Pharmaceutical Science,1999,7(3):259-267
    [20]Rodriguez M., Vila-Jatto J.L., Torres D., Design of a new multiparticulate system for potential site-specific and controlled drug delivery to the colonic region, Journal of Controlled Release,1998,55(1):67-77
    [21]Fell J.T., Targeting of drugs and delivery systems to specific sites in the gastrointestinal tract, Journal of Anatomy,1996,189:517-519
    [22]Sinha V.R., Kumria R., Microbially triggered drug delivery to the colon, European Journal of Pharmaceutical Sciences,2003,18:3-18
    [23]Saffran, M., Kumar, G.S., Savarioar, C, Burnham, J.C., Williams, F., Neekers, D.C., A new approach to the oral administration of insulin and other peptide drugs, Science,1986,233: 1081-1084
    [24]Saffran, M., Bedra, C, Kumar, G.S., Neekers, D.C., Vasopressin:A model for the study of effects of additives on the oral and rectal administration of peptide drugs, Journal of Pharmaceutical Science,1988,77:33-38
    [25]Tozaki H., Komoike J., Tada C, Maruyama T., Terabe A., Suzuki T., Yamamoto A. Muranishi S., Chitosan capsules for colon-specific drug delivery:Improvement of insulin absorption from the rat colon, Journal of Pharmaceutical Sciences.,1997,86:1016-1021
    [26]Tozaki H., Odoriba T., Okada N., Fujita T., Terabe A., Suzuki T., Okabe S., Muranishi S., Yamamoto A., Chitosan capsules for colon-specific drug delivery:enhanced localization of 5-aminosalicylic acid in the large intestine accelerates healing of TNBS-induced colitis in rats, Journal of Controlled Release,2002,82(1):51-61
    [27]Zhang H., Alsarra I.A., Neau S.H., An in vitro evaluation of a chitosan-containing multiparticulate system for macromolecule delivery to the colon, International Journal of Pharmaceutics,2002,239(1-2):197-205
    [28]Fetih G, Lindberg S., Itoh K., Okada N., Fujita T., Habib F., Artersson P., Attia M., Yamamoto A., Improvement of absorption enhancing effects of n-dodecyl-p-D-maltopyranoside by its colon-specific delivery using chitosan capsules, International Journal of Pharmaceutics,2005,293(1-2):127-135
    [29]Liu H., Yang X.G., Nie S.F., Wei L.L., Zhou L.L., Liu H., Tang R., Pan W.S., Chitosan-based controlled porosity osmotic pump for colon-specific delivery system:Screening of formulation variables and in vitro investigation, International Journal of Pharmaceutics, 2007,332(1-2):115-124
    [30]Liu X., Chen D.W., Xie L.P, Zhang R.Q., Oral colon-specific drug delivery for bee venom peptide:development of a coated calcium alginate gel beads-entrapped liposome, Journal of Controlled Release,2003,93(3):293-300
    [31]Bajpai S.K., Sharma S., Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca21and Ba2+ ions, Reactive and Functional Polymers,2004,59(2): 129-140
    [32]Liu L.S., Fishman M.L., Kost J., Hicks K.B., Pectin-based systems for colon-specific drug delivery via oral route, Biomaterials,2003,24(19):3333-334
    [33]Chambin O., Dupuis G., Champion D., Voilley A., Pourcelot Y, Colon-specific drug delivery: Influence of solution reticulation properties upon pectin beads performance, International Journal of Pharmaceutics,2006,321(1-2):86-93
    [34]Ashford ML, Fell J., Attwood D., Sharma H., Woodhead P., An evaluation of pectin as a carrier for drug targeting to the colon, Journal of Controlled Release,1993a,26(3):213-220
    [35]Krishnaiah Y.S.R., Satyanarayana S., Prasad Y.V.R., Rao S.N., Evaluation of guar gum as a compression coat for drug targeting to colon, International Journal of Pharmaceutics,1998, 171(2):137-146
    [36]Simonsen L., Hovgaard L., Mortensen P.B., Brandsted H., Dextran hydrogels for colon-specific drug delivery. V. Degradation in human intestinal incubation models, European Journal of Pharmaceutical Sciences,1995,3(6):329-337
    [37]Basan H., Gumusderelioglu M., Orbey M.T., Release characteristics of salmon calcitonin from dextran hydrogels for colon-specific delivery, European Journal of Pharmaceutics and Biopharmaceuticsss,2007,65(1):39-46
    [38]Freire C, Podczeck F., Veiga F., Sousa J., Starch-based coatings for colon-specific delivery. Part II:Physicochemical properties and in vitro drug release from high amylose maize starch films, European Journal of Pharmaceutics and Biopharmaceuticss,2009,72(3):587-594
    [39]Rubinstein A., Nakar D., Sintov A., Chondroitin sulfate:A potential biodegradable carrier for colon-specific drug delivery, International Journal of Pharmaceutics,1992,84(2):141-150
    [40]Hu Z.P., Mawatari S., Shimokawa T, Colon delivery efficiencies of intestinal pressure-controlled colon delivery capsules prepared by a coating machine in human subjects, Journal of Pharmacy and Pharmacology,2000,52(10):1187-1193
    [41]Hu Z.P., Kimura G., Mawatari S., New preparation method of intestinal pressure-controlled colon delivery capsules by coating machine and evaluation in beagle dogs, Journal of Controlled Release,1998,56:293-302
    [42]陈建海,陈清元,陈志良,结肠定位黏附释药系统聚合物载体研究与进展,中国药学杂志,2001,36(6):294-297
    [43]Rubintein A., Tiros B., Mucus gel thickness and turnover in the gastrointestinal tract of the rat:response to cholinergic stimulus and implication for mucoadhesion, Pharmaceutical Research,1994,11:794-799
    [44]Bernkop-Schnurch A., Pasta M., Intestinal peptide and protein delivery:Novel bioadhesive drug-carrier matrix shielding from enzymatic attack, Journal of Pharmaceutical Science, 1998,87(4):430-434
    [45]Wakerly Z., Fell J., Attwood D., Parkins D., Studies on amidated pectins as potential carriers in colonic drug delivery, Journal of Pharmacy and Pharmacology,1997,49(6): 622-625
    [46]Coombes A.G.A., Tasker S., Lindblad M., Holmgren J., Hoste K., Toncheva V., Schacht E., Davies M.C., Ⅲum L., Davis S.S., Biodegradable polymeric microparticles for drug delivery and vaccine formulation:the surface attachment of hydrophilic species using the concept of poly(ethylene glycol) anchoring segments, Biomaterials,1997,18(17): 1153-1161
    [47]Elzatahry A.A., Mohy Eldin M.S., Soliman E.A., Hassan E.A., Evaluation of alginate-chitosan bioadhesive beads as a drug delivery system for the controlled release of theophylline, Journal of Applied Polymer Science,2009,111(5):2452-2459
    [48]Miyazaki Y., Ogihara K., Yakou S., Nagai T., Takayama K., In vitro and in vivo evaluation of mucoadhesive microspheres consisting of dextran derivatives and cellulose acetate butyrate, International Journal of Pharmaceutics,2003,258(1-2):21-29
    [49]刘阳,张志荣,韩静,任科,龚涛,6-巯基嘌呤结肠黏附缓释微丸的处方筛选及体外释放的研究,中国新药杂志,2008,17(17):1515-1518
    [50]Gabor F., Stangl M, Wirth M., Lectin-mediated bioadhesion:binding characteristics of plant lectins on the enterocyte-like cell lines Caco-2, HT-29 and HCT-8, Journal of Controlled Release,1998,55(2-3),131-142
    [51]Kakoulide E.P., Smart J.D., Tsibauklis J., Azocrosslinked poly(acrylic acid) for colonic delivery and adhesion specificity:In vitro degradation and preliminary ex vivo bioadhesion studies, Journal of Controlled Release,1998(54):95-109
    [52]Zaman M., Zuberi T., Martini G, The bioadhesive properties of hydrophobized polyvinylpyrrolidone, Journal of Pharmacy and Pharmacology,1998,50(S9):160
    [53]Kalala W., KingetR./Van der Mooter G, Samyn C, Colonic drug-targeting:in vitro release of ibuprofen from capsules coated with poly(ether-ester) azopolymers, International Journal of Pharmaceutics,1996,139(1-2):187-195
    [54]Ashford M.. Fell J.T.. Attwood D., Sharma H., Woodhead P.J., An in vivo investigation into the suitability of pH-dependent polymers for colonic targeting, International Journal of Pharmaceutics.1993b,95:193-199
    [55]Vandelli M.A., Leo E., Forni F., Bernabei M.T., In vitro evaluation of a potential colonic delivery system that releases drug after a controllable lag-time, European Journal of Pharmaceutics and Biopharmaceutics,1996,43:148-151
    [56]Krishnamachari Y., Madan P., Lin S.S., Development of pH- and time-dependent oral microparticles to optimize budesonide delivery to ileum and colon. International Journal of Pharmaceutics,2007,338:238-247
    [57]Mastiholimath V.S., Dandagi P.M., Jain S.S., Gadad A.P, Kulkarni A.R., Time and pH dependent colon specific, pulsatile delivery of theophylline for nocturnal asthma, International Journal of Pharmaceutics,2007,328:49-56
    [58]Zhao X.L., Li K.X., Zhao X.F., Pang D.H., Chen D.W., Study on colon-specific 5-Fu pH-enzyme Di-dependent chitosan microspheres, Chemical and Pharmaceutical Bulletin, 2008,56(7):963-968
    [59]Nunthanid J., Huanbutta K., Luangtana-Anan M., Sriamornsak P., Limmatvapirat S., Puttipipatkhachorn S., Development of time-, pH-, and enzyme-controlled colonic drug delivery using spray-dried chitosan acetate and hydroxypropyl methylcellulose, European Journal of Pharmaceutics and Biopharmaceutics,2008,68:253-259
    [60]Nakamura J., Asai K., Nishida K., Sasaki H., A novel prodrug of salicylic acid, salicylic acid-glutamic acid conjugate utilizing hydrolysis in rabbit intestinal microorganisms, Chemical and Pharmaceutical Bulletin,1992,40:2164-2168
    [61]Nakamura J., Kido M., Nishida K., Sasaki H., Hydrolysis of salicylic acid-tyrosine salicylic acid-methionine prodrugs in rabbits, International Journal of Pharmaceutics.1992,87: 59-66
    [62]Nakamura J., Kido M., Nishida K., Sasaki H., Effect of oral pretreatment with antibiotics on the hydrolysis of salicylic acid tyrosine and salicylic acid methionine prodrugs in rabbit intestinal microorganisms, Chemical and Pharmaceutical Bulletin 1992,40:2572-2576
    [63]Nakamura J., Tagami C, Nishida K., Sasaki H., Unequal hydrolysis of salicylic acid-D-alanine and salicylic acid-L-alanine conjugate in rabbit intestinal microorganisms, Chemical and Pharmaceutical Bulletin,1992,40:547-549
    [64]Jung Y.J., Lee J.S., Kim H.H., Kim Y.M., Han S.K., Synthesis and evaluation of 5-aminosalicyl-glycine as a potential colon specific prodrug of 5-aminosalicyclic acid, Archives of Pharmacal Research,1998,21:174-178
    [65]Leopold C.S., Friend D.R., In vitro study for the assessment of poly(L-Aspartic acid) as a drug carrier for colon-specific drug delivery, International Journal of Pharmaceutics,1995, 126:139-145
    [66]Friend D.R., Chang G.W., Drug glycosides:Potential prodrugs for colon-specific drug delivery, Journal of Medicinal Chemistry,1985,28:51-57
    [67]Simpkins J.W., Smulkowski M., Dixon R., Tuttle R., Evidence for the delivery of narcotic antagonists to the colon as their glucuronide conjugates, Journal of Pharmacology and Experimental Therapeutics,1988,244:195-205
    [68]Haeberlin B., Rubas W., Nolen H.W., Friend D.R., In vitro evaluation of dexamethasone-β-D-glucuronide for colon specific drug delivery, Pharmaceutical Research, 1993,10:1553-1562
    [69]Cui N., Friend D.R., Fedorak R.N., A budesonide prodrug accelerates treatment of colitis in rats, Gut,1994,35:1439-1446
    [70]Mcleod A.D., Friend D.R., Tozer T.N., Synthesis and chemical stability of glucocorticoid-dextran esters:potential prodrugs for colon-specific delivery, International Journal of Pharmaceutics,1993,92:105-114
    [71]McLeod A.D., Friend D.R., Tozer T.N., Glucocorticoid-dextran conjugate as potential prodrug for colon-specific delivery:hydrolysis in rat gastrointestinal tract contents, Journal of Pharmaceutical Sciences,1994,83:1284-1288
    [72]Hirayama F., Minami K., Uekama K., In vitro evaluation of Biphenylyl acetic acid-β-cyclodextrin conjugates as colon-targeting prodrugs:Drug Release Behaviour in rat biological media, Journal of Pharmacy and Pharmacology,1996,48:27-31
    [73]谈金辉,刘文涵,单胜艳,药物微胶囊技术及其应用,天津化工,2003,17(6):4-7
    [74]刘红,沈灵佳,周利娟,余修祥,艾鸣哲,罗顺德,萘普生肠溶微丸的制备及其体外特性研究,中国医院药学杂志,2004,24(2):84-86
    [75]Rubinstein A., Radai R., Ezra M., Pathak S., Rokem J.S., In vitro evaluation of calcium pectinate:a potential colon-specific drug delivery carrier, Pharmaceutical Research,1993, 10(2):258-263
    [76]Van den Mooter, G., Samyn, C., Kinget, R., The relation between swelling properties and enzymatic degradation of azo polymers designed for colon-specific drug delivery, Pharmaceutical Research,1994,11 (12):1737-1741
    [77]Cheng C.L., Gehrke S.H., Ritschel W.A.A., Development of an azopolymer based colonic release capsule for delivering proteins/macromolecules, Methods and Findings in Experimental and Clinical Pharmacology,1994,16(4):271-278
    [78]邹梅娟,程刚,口服结肠定位给药系统,沈阳科大学学报,2001,(5):376-380
    [79]韩翠艳,王钊红,药物制剂技术,哈尔滨:哈尔滨工程大学出版社,2008,179
    [80]许时婴,张晓鸣,夏书芹,张文斌,微胶囊技术-原理与应用,北京:化学工业出版社,2006,31-78
    [81]Yu C.Y., Yin B.C., Zhang W., Cheng S.X., Zhang X.Z., Zhuo R.X., Composite microparticle drug delivery systems based on chitosan, alginate and pectin with improved pH-sensitive drug release property, Colloids and Surfaces B:Biointerfaces,2009,68:245-249
    [82]Lin W.C., Yu D.G., Yang M.C., pH-sensitive polyelectrolyte complex gel microspheres composed of chitosan/sodium tripolyphosphate/dextran sulfate:swelling kinetics and drug delivery properties, Colloids and Surfaces B:Biointerfaces,2005,44:143-151
    [83]Krishnamachari Y., Madan P., Lin S., Development of pH-and time-dependent oral microparticles to optimize budesonide delivery to ileum and colon, International Journal of Pharmaceutics,2007,338:238-247
    [84]Mladenovska K., Raicki R.S., Janevik E.I., Ristoski T., Pavlova M.J., Kavrakovski Z., Dodov M.G., Goracinova K., Colon-specific delivery of 5-aminosalicylic acid from chitosan-Ca-alginate microparticles, International Journal of Pharmaceutics,2007,342: 124-136
    [85]李林军,黄桂华,席延卫,杨心督,顾纪锋,氟尿嘧啶pH依赖-时滞型结肠定位微丸的制备及释药特性研究,中国药学杂志2007,5(42):357-361
    [86]Martin T.M., Bandi N., Shulz R., Roberts C.B., Kompella U.B., Preparation of budesonide and budesonide-PLA microparticles using supercritical fluid precipitation technology, AAPS PharmSciTech,2002,3(3):16-26
    [87]Wang L.Y., Ma G.H., Su Z.G., Preparation of uniform sized chitosan microspheres by membrane emulsification technique and application as carrier of protein drug, Journal of Controlled Release,2005,106(1-2):62-75
    [88]Claudia S.L., Dorothee E., Eudragit(?) E as coating material for the pH-controlled drug release in the topical treatment of inflammatory bowel disease(IBD), Journal of Drug Targeting,1998,6(2):85-94
    [89]Takeuchi H., Yasuji T., Yamamoto H., Kawashima Y., Spray-dried lactose composite particles containing an ion complex of alginate-chitosan for designing a dry-coated tablet having a time-controlled releasing function, Pharmaceutical Research,2000,17:94-99
    [90]Vishal K.G., Thomas E.B., James C.P., A novel pH-and time-based multi-unit potential colonic drug delivery system Ⅰ. Development, International Journal of Pharmaceutics,2001, 213:83-91
    [91]Hawksworth G., Drasar B.S., Hill M.J., Intestinal bacteria and hydrolysis of glycosidic bonds, Journal of Medical Microbiology,1971,4:451-459
    [92]Hovgaard L., Brondsted H., Dextran hydrogels for colon-specific drug delivery, Journal of Controlled Release,1995,36(1-2):159-166
    [93]Liu L., Fishman M.L., Kost J., Hicks K.B., Pectin-based systems for colon-specific drug delivery via oral route, Biomaterials,2003,24(19):3333-3343
    [94]Orienti I., Cerchiara T., Luppi B., Bigucci F., Zuccari G., Zecchi V., Influence of different chitosan salts on the release of sodium diclofenac in colon-specific delivery, International Journal of Pharmaceutics,2002,238(1-2):51-59
    [95]Damiana E., Van Den Mooter G., Samynb C., Kinget R., In vitro biodegradation study of acetyl and methyl inulins by Bifidobacteria and inulinase, European Journal of Pharmaceutics Biopharmaceutics,1999,47(3):275-282
    [96]Gliko-Kabir I., Yagen B., Baluom M., Rubinstein A., Phosphated crosslinked guar for colon-specific drug delivery:Ⅱ. In vitro and in vivo evaluation in the rat, Journal of Controlled Release,2000,63(1-2):129-134
    [97]Minami K., Hirayama F., Uekama K., Colon-specific drug delivery based on a cyclodextrin prodrug:release behavior of biophenylylacetic acid from its cyclodextrin conjugates in rat intestinal tracts after oral administration, Journal of Pharmaceutical Sciences,1998,87(6): 715-720
    [98]Van Den Mooter G., Samyn C., Kinget R., In vivo evaluation of a colon-specific drug delivery system:an absorption study of theophylline from capsules coated with azo polymers in rats, Pharmaceutical Research,12(2):244-247
    [99]Leopold C.S., Friend D.R., In vivo pharmacokinetic study for the assessment of poly(L-aspartic acid) as a drug carrier for colon-specific drug delivery, Journal of Pharmacokinetic and Pharmacodynamics,23(4):397-406
    [100]谭琰,邹开芳,钱伟,三硝基苯磺酸/乙醇与免疫复合物联合诱导的结肠炎动物模型,胃畅病学和肝病学杂志,2008.17:46-49
    [101]Krishnaiah Y.S.R., Satyanarayana V., Kumar B.D., Karthikeyan R.S., Bhaskar P., In vivo pharmacokinetics in human volunteers:oral administered guar gum-based colon-tareted 5-fluorouracil tablets, European Journal of Pharmaceutical Sciences,2003,19(5):355-362
    [102]Macleod, G.S., Fell, J.T., Collett, J.H., Sharma, H.L., Smith, A.M. Selective drug delivery to the colon using pectin:chitosan:hydroxypropryl methlcellulose film coated tablets, International Journal of Pharmaceutics.1999,187(2):251-257
    [103]姚善泾,叶子坚,NaCS的制备方法及工艺条件的研究,化学反应工程与工艺,1999,15(3):307-313
    [104]Yao S.J., An improved process for the preparation of sodium cellulose sulphate, Chemical Engineering Journal,2000,78:199-204
    [105]章小忠,梅乐和,姚善泾,纤维素硫酸钠的制取反应过程研究及由其制备的微胶囊性能,化学反应工程与工艺2003,19(3):254-259
    [106]方磊,吴小立,林东强,姚善泾,硫酸/丙醇法制备高取代度纤维素硫酸钠,化学反应工程与工艺2008,24(6):541-544
    [107]Mansfeld J., Forster M., Schellenberger A., Dautzenberg H., Immobilization of invertase by encapsulation in polyelectrolyte complexes, Enzyme and Microbial Technology,1991, 13(3):240-244
    [108]Bohlmann J.T., Schneider C., Andresen H., Optimized production of sodium cellulose sulfate (NaCS) for microencapsulation of cell cultures, Engineering Life Sciences,2002, 2(12):384-388
    [109]梅乐和,章小忠,姚善泾,纤维素硫酸钠的批量制备及其NaCS-PDMDAAC微胶囊固定化黄色短杆菌培养过程研究,纤维素科学与技术,2003,11(2):1-7
    [110]Zhang J., Yao S.J., Guan Y.X., Preparation of macroporous sodium cellulose sulphate/ poly(dimethyldiallylammonium) chloride capsules and their characteristics, Journal of Membrane Science,2005,255:89-98
    [111]陈国,姚善泾,方柏山,彭益强,纤维素硫酸钠-聚二甲基二烯丙基氯化铵微胶囊固 定化Candida krusei产甘油条件优化,生物加工过程,2008,6(1):41-46
    [112]Weber W., Rinderknecht M., Baba M.D.E., Glutz F.N., Aubel D., Fussenegger M. CellMAC:A novel technology for encapsulation of mammalian cells in cellulose sulfate/PDADMAC capsules assembled on a transient alginate/Ca2+ scaffold, Journal of Biotechnology,2004,114:315-326
    [113]Stiegler P.B., Stadlbauer V., Schaffellner S., Halwachs G., Lackner C., Hauser O., Iberer F., Tscheliessnigg K., Cryopreservation of insulin-producing cells microencapsulated in sodium cellulose sulfate, Transplantation Proceedings,2006,38:3026-3030
    [114]Dautzenberg H., Schuldt U., Grasnick G., Karle P., Muller P., Lohr M., Pelegrin M., Piechaczyk M., Rombs K.V., Gunzburg W.H., Salmons B., Saller R.M., Development of cellulose sulfate-based polyelectrolyte complex microcapsules for medical applications, Annals of the New York Academy of Sciences,1999,875:46-63
    [115]Wang M.J., Xie Y.L., Zheng Q.D., Yao S.J., A novel potential microflora-activated carrier for a colon-specific drug delivery system and its characteristics, Industrial & Engineering Chemistry Research,2009,48(11):5276-5284
    [116]Fluri D.A., Kemmer C., Baba, M.D., Fussenegger M, A novel system for trigger-controlled drug release from polymer capsules, Journal of Controlled Release,2008, 131(13):211-219
    [117]Lohr M., Hummel F., Faulmann G., Ringel J., Saller R., Hain J., Gunzburg W. H., Salmons B, Microencapsulated, CYP2B1-transfected cells activating ifosfamide at the site of the tumor:the magic bullets of the 21st century, Cancer Chemotherapy and Pharmacology, 2002,49(1):21-24
    [118]赵旭升,刘光华,干建群,壳聚糖化学改性(Ⅰ),纤维素科学与技术,2009,17(2):51-59
    [119]Gong H.P., Zhong Y.H., Gong Y.D., Zhao N.M., Zhang X.F., Studies on nerve cell affinity of chitosan-derived materials, Journal of Biomedical Materials Research,2000, 52(2):285-295
    [120]Hirano S., Seino H., Akiyama Y., Nonaka I., Chitosan:a biocompatible material for oral and intravenous administrations, In:Gebelein, C.G., Dunn, R.L. (Eds.), Progress in Biomedical Polymers, New York:Plenum Press,1990,283
    [121]Zhang H., Neau S.H, In vitro degradation of chitosan by bacterial enzymes from rat cecal and colonic contents, Biomaterials,2002,23:2761-2766
    [122]Li J., Du Y., Liang H.B., Influence of molecular parameters on the degradation of chitosan by a commercial enzyme, Polymer. Degradation and Stability,2007,92:515-524
    [123].Xia W.S., Liu P., Liu J., Advance in chitosan hydrolysis by non-specific cellulases, Bioresource Technology,2008,99:6751-6762
    [124]Onishi H., Machida Y., Biodegradation and distribution of water-soluble chitosan in mice, Biomaterials,1999,20:175-182
    [125]靳美霞,胡巧红,壳聚糖的性质及其在生物黏附药物传输系统中的应用,中南药学,2008,6(3):324-327
    [126]王志国,张敏卿,邢爱华,杨林,壳聚糖在靶向制剂中的研究发展,化工进展,2004,23(4):375-379
    [127]Feit O., Buri P., Gurny R., Chitosan:a unique polysaccharide for drug delivery, Drug Development and Industrial Pharmacy,1998,24(11):979-993
    [128]Illum L., Farraj N.F., Davis S.S., Chitosan as a novel nasal delivery system for peptide drugs, Pharmaceutical Research,1994,11(8):1186-1189
    [129]Illum L., Jabbal-Gill I., Hinchcliffe M., Fisher A.N. Davis S.S., Chitosan as a novel nasal delivery system for vaccines, Advanced Drug Delivery Reviews,2001,51:81-96
    [130]Illum L., Nasal drug delivery-possibilities, problems and solutions, Journal of Controlled Release,2003,87:187-198
    [131]Miyazaki S., Nakayama A., Oda M., Takada M., Attwood D., Drug release from oral mucosal adhesive tablets of chitosan and sodium alginate, International Journal of Pharmaceutics,1995,118:257-263
    [132]Aksungur P., Sungur A., Unal S., Iskit A.B., Squier C.A., Senel S., Chitosan delivery systems for the treatment of oral mucosistis:in vitro and in vivo studies, Journal of Controlled Release,2004,98:269-279
    [133]Guggi D., Krauland A.H., Bernkop-Schnurch A., Systemic peptide delivery via the stomach:in vivo evaluation of an oral dosage form for salmon calcitonin, Journal of Controlled Release,2003,92:125-135
    [134]Kotze A.F., Lueβen H.L., de Boer A.G., Verhoef J.C., Junginger H.E., Chitosan for enhanced intestinal permeability:Prospects for derivatives soluble in neutral and basic environments, European Journal ofPharmaceutical Sciences,1999,7(2):145-151
    [135]Bigucci F., Luppi B., Cerchiara T., Sorrenti M., Bettinetti G, Rodriguez L., Zecchi V., Chitosan/pectin polyelectrolyte complexes:Selection of suitable preparative conditions for colon-specific delivery of vancomycin, European Journal of Pharmaceutical Sciences, 2008,35(5):435-441
    [136]Fernandez-Hervas M.J., Fell J.T., Pectin/chitosan mixtures as coatings for colon-specific drug delivery:an in vitro evaluation, International Journal of Pharmaceutics, 1998,169(1):115-119
    [137]Aiedeh, K., Taha, M.O., Synthesis of chitosan succinate and chitosan phthalate and their evaluation as suggested matrices in orally administered colon-specific drug delivery systems, Archiv Der Pharmazie,1999,332(3):103-107
    [138]Tozaki, H., Fujita, T., Odoriba, T., Terabe, A., Suzuki, T., Tanaka, C., Okabe, S., Muranishi, S., Yamamoto, A., Colon-specific delivery of R68070, a new thromboxane synthase inhibitor, using chitosan capsules, Therapeutic effects against 2,4,6-trinitrobenzene sulfonic acid-induced ulcerative colitis in rats, Life Sciences,1999, 64(13):1155-162
    [139]Lorenzo-Lamosa, M.L., Remunan-Lopez, C., Vila-Jato, J.L., Alonson, M.J. Design of microencapsulated chitosan microspheres for colonic drug delivery. Journal of Controlled Release,1998,52:109-118
    [140]Zhang, H., Alsarra, I.A., Neau, S.H. An in vitro evaluation of a chitosan-containing multiparticulate system for macromolecule delivery to the colon, International Journal of Pharmaceutics.2002,239:197-205
    [141]Xie Y.L., Wang M.J., Yao S.J., Preparation and characterization of biocompatible microcapsules of sodium cellulose sulfate/chitosan by means of layer-by-layer self assembly, Langmuir,2009,25(16):8999-9005
    [142]Tan J.Y., Ren Y.R., Yao S.J., Preparation of Micro-scaled Multilayer Capsules of Poly-dimethyl-diallyl-ammonium chloride and Sodium Cellulose Sulfate by Layer-by-layer Self-assembly Technique, Carbohydrate Polymers,2011,84:351-357
    [143]沈或,姚善泾,叶子坚,纤维素硫酸钠的制备方法及工艺条件的研究,化学反应工 程与工艺1999,15(3):307-313
    [144]张惟杰,糖复合物生化研究技术(第二版),杭州:浙江大学出版社,1999,91-92
    [145]王明君,纤维素硫酸钠用于药用植物胶囊及结肠靶向给药胶囊的研究,浙江大学博士论文,2010,44-46
    [146]丛建波,王长振,李妍,吴可,褐藻硫酸多糖硫酸基含量测定-硫酸钡比浊法研究,解放军药学学报,19(3):181-183
    [147]邱芳萍,张玲,于键,硫酸钡比浊法对鹿茸多糖中硫酸基含量的测定,长春工业大学学报,26(4):268-270
    [148]Robert, C., Bernalier-Donadille, A. The cellulolytic microflora of the human colon: Evidence of microcrystalline cellulose-degrading bacteria in methane-excreting subjects, FEMS Microbiology Ecology,2003,46(1):81-89
    [149]Donbrow M., Friedman M., Enhancement of permeability of ethyl cellulose films for drug penetration. Journal of Pharmacy and Pharmacology,1975,27:633-646
    [150]Suyatma N.E., Copinet A., Tighzert L., Coma V., Mechanical and barrier properties of biodegradable films made from chitosan and poly (lactic acid) blends, Journal of Polymers and the Enviroment,2004,12(1):1-6
    [151]Miller M.D., Bruening M.L., Correlation of the swelling and permeability of polyelectrolyte multilayer films, Chemistry of Materials,2005,17:5375-5381
    [152]Pantaleone D., Yalpani M., Scollar M., Unusual susceptibility of chitosan to enzymatic-hydrolysis, Carbohydrate Research,1992,237:325-332
    [153]Kumar A.B.V., Tharanathan R.N., A comparative study on depolymerization of chitosan by proteolytic enzymes, Carbohydrate Polymers,2004,58(3):275-283
    [154]Roncal T., Oviedo A., de Armentia I.L., Fernandez L., Villaran M.C., High yield production of monomer-free chitosan oligosaccharides by pepsin catalyzed hydrolysis of a high deacetylation degree chitosan, Carbohydrate Research,2007,342(18):2750-2756
    [155]Ike M., Ko Y., Yokoyama K., Sumitani J.I., Kawaguchi T., Ogasawara W., Okada H., Morikawa Y., Cellobiohydrolase I (Cel7a) from Trichoderma reesei has chitosanase activity, Journal of Molecular Catalysis B-Enzymatic,2007,47(3-4):159-163
    [156]Liu J., Xia W.S., Purification and characterization of a bifunctional enzyme with chitosanase and cellulase activity from commercial cellulose, Biochemical Engineering Journal,2006,30(1):82-87
    [157]Beguin, P., Moledular-biology of cellulose degradation, Annual Review of Microbiology, 1990,44,219-248
    [158]Kumar B.A.V., Varadaraj M.C., Tharanathan R.N., Low molecular weight chitosan Preparation with the aid of pepsin, characterization, and its bactericidal activity, Biomacromolecules,2007,8(2):566-572
    [159]Okamoto Y., Nose M, Miyatake K., Sekine J., Oura R., Shigemasa Y., Minami S., Physical changes of chitin and chitosan in canine gastrointestinal tract, Carbohydrate Polymers,2001,44(3):211-215
    [160]Mansfield S.D., Meder R., Cellulose hydrolysis-the role of monocomponent cellulases in crystalline cellulose degradation, Cellulose,2003,10(2):159-169
    [161]Greathouse G.A., Microbiological degradation of cellulose, Textile Research Journal, 1950,20(4):227-238
    [162]Reese E.T., Siu R.G.H., Levinson H.S., The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis, Journal of Bacteriology,1950,59(4):485-497
    [163]Reese E.T., Biological degradation of cellulose derivatives, Industrial and Engineering Chemistry,1957,49(1):89-93
    [164]Gohdes M., Mischnick P., Determination of the substitution pattern in the polymer chain of cellulose sulfates, Carbohydrate Research,1998,309:109-115
    [165]Thomas M., Chauvelon G., Lahaye M., Saulnier L., Location of sulfate groups on sulfoacetate derivatives of cellulose, Carbohydrate Research,2003,338:761-770
    [166]Ghaffari.A., Navaee K., Oskoui M., Bayati K., Rafiee-Tehrani M., Preparation and characterization of free mixed-film of pectin/chitosan/Eudragit((R)) RS intended for sigmoidal drug delivery, European Journal of Pharmaceutics and Biopharmaceutics,2007, 67(1):175-186
    [167]Bernkop-Schnurch A., The use of inhibitory agents to overcome the enzymatic barrier to perorally administered therapeutic peptides and proteins, Journal of Controlled Release, 1998,52(1-2):1-16
    [168]Borchard G., Lueβen H., de Boer A.G., Verhoef J.C., Lehr C.M., Junginger H.E., The potential of mucoadhesive polymers in enhancing intestinal peptide drug absorption. Ⅲ: Effects of chitosan-glutamate and carbomer on epithelial tight junctions in vitro. Journal of Conlroled Release,39(2-3):131-138
    [169]Macleod G.S., Collett J.H., Fell J.T., The potential use of mixed films of pectin, chitosan and HPMC for bimodal drug release, Journal of Controlled Release,1999,58(3): 303-310
    [170]Akhgari A., Farahmand F., Garekani H.A., Sadeghi F., Vandamme T.F., Permeability and swelling studies on free films containing inulin in combination with different polymethacrylates aimed for colonic drug delivery, European Journal of Pharmaceutical Sciences,2006,28:307
    [171]Donbrow M., Friedman M., Enhancement of permeability of ethyl cellulose films for drug penetration. Journal of Pharmacy and Pharmacology,1975,27:633-646
    [172]Zentner G.M., Cardinal J.R., Kim S.W., Progestin permeation through polymer membranes Ⅱ:Diffusion studies on hydrogel membranes, Journal of Pharmaceutical Sciences,1978,67(10):1352-1355
    [173]Miller M.D., Bruening M.L., Correlation of the swelling and permeability of polyelectrolyte multilayer films, Chemistry of Materials,2005,17:5375-5381
    [174]Ofori-Kwakye K., Fell J.T., Biphasic drug release:the permeability of films containing pectin, chitosan and HPMC, International Journal of Pharmaceutics,2001,226(1-2): 139-145
    [175]Yao S.J., Guan Y.X., Lin D.Q., Mass transfer behavior of solutes in NaCS-PDMDAAC capsules, Industrial & Engineering Chemistry Research,2006,45: 1811-1816
    [176]Ramesh A., Hasegawa H., Sugimoto W., Maki T., Ueda K., Adsorption of gold (Ⅲ), platinum (Ⅳ) and palladium (Ⅱ) onto glycine modified crosslinked chitosan resin, Bioresource Technology,2008,99:3801-3809
    [177]Gupta K.C., Ravi Kumar M.N.V., Semi-interpenetrating polymer network beads of crosslinked chitosan-glycine for controlled release of chlorphenramin maleate, Journal of Applied Polymer Science,2000,76:672-683
    [178]Shu X.Z., Zhu K.J., The influence of multivalent phosphate structure on the properties of ionically cross-linked chitosan films for controlled drug release, European Journal of Pharmaceutics and Biopharmaceutics,2002,54:235-243
    [179]Mi F.L., Shyu S.S., Wong T.B., Jang S.F., Lee S.T., Lu K.T., Chitosan-polyelectrolyte complexation for the preparation of gel beads and controlled release of anticancer drug. I. Effect of phosphorous polyelectrolyte complex and enzymatic hydrolysis of polymer, Journal of Applied Polymer Science,1999,74:1868-1879
    [180]Shu X.Z., Zhu K.J., Controlled drug release properties of ionically cross-linked chitosan beads:the influence of anion structure, International Journal of Pharmaceutics, 2002,233:217-225
    [181]蒋新宇,周春山,张俊山,应用三聚磷酸钠为交联剂制备载药物纳米粒的研究,尹国现代医学杂志,2003,13(22):69-71
    [182]Wang L.Y., Gu Y.H., Su Z.G., Ma G.H., Preparation and improvement of release behavior of chitosan microspheres containing insulin, International Journal of Pharmaceutics,2006,311:187-195
    [183]杨文静,王婷,何农跃,CS/TPP纳米微胶囊的制备及其载药性能 高等学校化学学报,2009,30:625-628
    [184]刘凤霞,载蛋白药物双层微球的制备和性质研究(博士学位论文),中国协和医科大学,2006
    [185]黄琼瑜,张明霞,刘芳,肖秀峰,刘榕芳,壳聚糖/聚乙烯醇/三聚磷酸钠三元复合微球的制备及其表征,应用化学,2010,27(1):21-26
    [186]李建武,萧能庚,余瑞元,袁明秀,陈丽蓉,陈雅惠,陈来同,生物化学实验原理和方法,北京:北京大学出版社,171-173
    [187]Mi F.L., Shyu S.S., Lee S.T., Wong T.B., Kinetic study of chitosan-tripolyphosphate complex reaction and acid-resistive properties of chitosan-tripolyphosphate gel beads prepared by in-liquid curing method. Journal of Polymer Science:Part B:Polymer physics, 1999,37,1551-1564.
    [188]Duarate M.L., Ferreira M.C., Marvao M.R., Rocha J., An optimized method to determine the degree of acetylation of chitin and chitosan by FTIR spectroscopy, International Journal of Biological Macromolecules,2002,31:1-8
    [189]Pawlak A., Mucha M., Thermogravimetric and FTIR studies of chitosan blends, Thermochimica Acta,2003,396:153-166
    [190]Wang L.Y., Gu Y.H., Su Z.G., Ma G.H., Preparation and improvement of release behavior of chitosan microspheres containing insulin, International Journal of Pharmaceutics,2006,311:187-195
    [191]Zheng C.H., Gao J.Q., Zhang Y.P., Liang W.Q., A protein delivery system: biodegradable alginate-chitosan-poly(lactic-co-glycolic acid) composite microspheres, Biochemical and Biophysical Research Communications,2004,323:1321-1327
    [192]Kim T.H., Park Y.H., Kim K.J., Cho C.S., Release of albumin from chitosan-coated pectin beads in vitro, International Journal of Pharmaceutics,2003,250,371-383
    [193]Tong J., Nakajima M., Nabetani H., Kikuchi Y., Surfactant effect on production of monodispersed microspheres by microchannel emulsification method, Journal of Surfactants and Detergents,2000,3(2):285-293
    [194]Sugiura S., Nakajima M., Tong J., Nabetani H., Seki M., Preparation of monodispersed solid lipid microspheres using a microchannel emulsification technique, Journal of Colloid and Interface Science,2000,227(1):95-103
    [195]Kobayashi I., Nakajima M., Nabetani H., Kikuchi Y., Shohno A., Satoh K., Preparation of micron-scale monodisperse oil-in water microspheres by microchannel emulsification, Journal of the American Oil Chemists'Scociety,2001,78(8):797-802
    [196]Huang K.S., Lai T.H., Lin Y.C., Manipulating the generation of Ca-alginate microspheres using microfluidic channes as a carrier of gold nanoparticles, Lab Chip,2006, 6:954-957
    [197]Liu K., Ding H.J., Liu J., Chen Y., Zhao X.Z., Shape-controlled production of biodegradable calcium alginate gel mieroparticles using a novel microfluidic device, Langmuir,2006,22(22):9453-9457
    [198]Yang C.H., Huang K.S., Chang J.Y., Manufacturing monodisperse chitosan microparticles containing ampicillin using a microchannel chip, BiomedicaL Microdevices, 2007,9(2):253-259
    [199]Xu J.H., Li S.W., Tostado C., Lan W.J., Luo G.S., Preparation of monodispersed chitosan microspheres and in situ encapsulation of BSA in co-axial microfluidic device, Biomedical Microdevices,2008,11(1):243-249
    [200]Yang C.H., Huang K.S., Lin P.W., Lin Y.C., Using a cross-flow microfluidic chip and external crosslinking reaction for monodiperse TPP-chitosan microparticles, Sensors and Actuator B:Chemical,2007,124(2):510-516

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700