用户名: 密码: 验证码:
豌豆蚜地理种群遗传多样性及其种群调控机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
豌豆蚜(Acyrthosiphon pisum)是苜蓿上的重要害虫之一,对苜蓿的产量和品质均有严重的影响。豌豆蚜种下分化现象已引起理论和实践层面上的高度关注。对其种群遗传结构和数量调控机制的探索有助于制定适宜的防治策略和有效的防治措施。本文利用SSR技术研究了豌豆蚜不同地理种群的遗传多样性,从两种瓢虫对其捕食功能反应和四个苜蓿品种对其抗性评价及机理两个角度,探索了豌豆蚜种群的调控机制,结果如下:
     1.豌豆蚜不同地理种群的遗传多样性
     应用SSR分子标记技术对豌豆蚜10个地理种群的基因组DNA进行了遗传多样性和遗传分化分析。选取19对引物扩增300个个体,共检测到45个多态性位点,多态性条带百分率PPB为100%。10个豌豆蚜地理种群观测等位基因数Na为1.5889,有效等位基因数Ne为1.35333,Nei′s基因多样性指数为0.20496,Shannon信息指数I为0.30538,多态位点百分率P为58.89%。呼图壁、杨陵、郑州种群的遗传多样性较高,呼和浩特、济南、民和种群相对较低。种群聚类分析结果显示,在遗传相似系数0.60附近,全部豌豆蚜种群明显聚为两大类群,济南、郑州种群为一大类群,其余为另一大类群。AMOVA分析结果表明,种群间变异占49%,种群内占51%,种群间的变异与种群内的变异相当。Mentel检测表明,遗传分化与地理距离、海拔无显著相关性。
     2.两种瓢虫对豌豆蚜的捕食功能反应
     七星瓢虫四个龄期幼虫和雌雄成虫对豌豆蚜的捕食功能反应均符合Holling-Ⅱ型;七星瓢虫雌成虫的攻击率最大,处置时间最短;同一发育时期的七星瓢虫在豌豆蚜不同密度下的捕食量差异显著;根据捕食功能反应数据,该模型预测了七星瓢虫一、二、三、四龄幼虫及雄、雌成虫对豌豆蚜的日最大捕食量分别是5.7、11.5、32.1、59.5、57.1和76.9头。
     龟纹瓢虫四个龄期幼虫和雌雄成虫捕食豌豆蚜的数量与豌豆蚜密度呈负加速曲线关系,符合Honing-Ⅱ型功能反应模型。龟纹瓢虫雌成虫的日捕食量最大,其次是第四龄幼虫和雄虫。模型预测了龟纹瓢虫一、二、三、四龄幼虫及雄、雌成虫对豌豆蚜的日最大捕食量分别是5.5、14.1、29.2、45.1、42.3、51.5头。
     在同一龄期两种瓢虫的攻击率、处置猎物所用时间、日最大捕食量均有差别,其中在同一龄期七星瓢虫的日最大捕食量高于龟纹瓢虫,而处置猎物所用时间低于龟纹瓢虫。
     3.四个苜蓿品种对豌豆蚜的抗性评价
     甘农5号(G5)在大田和室内的抗性植株百分率均显著高于其它品种,分别为50.3%、48.9%,而猎人河的抗性植株百分率在大田和室内均较低,分别为4.0%、4.3%;4个苜蓿品种在大田的抗性级别为甘农5号(G5)高抗(HR),甘农3号(G3)、金皇后(JH)、猎人河(Hu)均为感虫(S);而4个苜蓿品种在室内的抗性级别为甘农5号(G5)抗虫(R),金皇后(JH)、甘农3号(G3)低抗(LR),猎人河(Hu)感虫(S)。
     4.四个苜蓿品种对两种色型豌豆蚜的抗生性
     两种色型豌豆蚜在JH上的发育历期、净生殖率、平均世代周期差异显著(P<0.05),在G5上的内禀增长率、周限增长率、种群加倍时间差异显著(P<0.05)。以内禀增长率作为测定抗生性的指标,四个苜蓿品种对两种色型豌豆蚜的抗性表现不同,其中JH对绿色豌豆蚜的抗性较高,G5对红色豌豆蚜的抗性较高,Hu对两种色型豌豆蚜的抗性均较低,四个苜蓿品种对绿色豌豆蚜抗性的大小顺序为Hu     5.苜蓿品种对豌豆蚜的生理生化抗性机制
     在蚜虫刺吸诱导的过程中,感虫品种猎人河(Hu)的超氧化物歧化酶(SOD)和过氧化物酶(POD)活性低于抗虫品种甘农5号(G5)和低抗品种甘农3号(G3)、金皇后(JH);接蚜前抗虫品种(G5)的多酚氧化酶(PPO)活性高于感虫品种(Hu)和低抗品种(G3、JH),接蚜后迅速下降,其活性低于感虫品种;抗虫品种(G5)的过氧化氢酶(CAT)活性和总酚含量始终高于低抗品种和感虫品种;抗虫品种(G5)的MDA含量低于低抗品种(G3)和感虫品种(Hu);感虫品种(Hu)的叶绿素含量高于低抗品种(G3、JH),但低于抗虫品种(G5);感虫品种和抗虫品种的可溶性蛋白含量低于低抗品种(除第三天高于G3);抗虫品种(G5)和感虫品种(Hu)的单宁含量高于低抗品种(G3、JH),四个苜蓿品种品种的SOD和POD活性均表现先上升后下降的趋势,过氧化氢酶活性、叶绿素含量、可溶性蛋白含量均呈下降趋势,总酚含量呈上升趋势,而MDA和单宁含量变化无规律。因此,MDA、SOD、POD、CAT、总酚与苜蓿的抗蚜性密切相关,可作为苜蓿抗蚜性生理指标,而叶绿素、可溶性蛋白、PPO、单宁与苜蓿抗蚜性的关系有待进一步研究。
Pea aphid, Acyrthosiphon pisum Harris (Homoptera: Aphididae), is one of most devastating insect pests of leguminous forage, which affect the quality and quantity of herbage production. Intraspecies differentiation of pea aphid has already caused the theoretical and practical attention. The exploration of this pest population genetic structure and quantity control mechanism helps formulating appropriate control strategy and effective prevention measures. Genetic diversity of A. pisum populations from different geographic regions in China was studied by SSR technology. From functional response of two coccinellid predators to A. pisum and the resistant evaluation and mechanism of four alfalfa varieties to A. pisum, the mechanism of the population regulation was explored. All results show as follows:
     1. Genetic diversity of A. pisum populations from different geographic regions in China
     The genetic diversity among ten geographic populations of A. pisum in China was investigated using Simple Sequence Repeat (SSR) markers in this study. The result showed that 45 polymorphic locus were detected using 19 pairs of SSR primers in the 300 individuals of 10 populations,percentage of polymorphic bands were 100%. The number of observed alleles was 1.5889, and that of effective alleles was1.35333, the Nei’s genetic diversity and Shannon-Wiener diversity indexes were respectively 0.20496 and 0.30538, percentage of polymorphic locus were 58.89%. The population genetic diversity of Hutubi, Yangling and Zhengzhou were higher, Huhehaote, Jinan and Minhe was lower. A cluster analysis showed that genetic similarity coefficient around 0.60, the populations could be divided into two groups, one containing Jinan and Zhengzhou populations, and one containing the rest of the populations. Analysis of AMOVA showed that there were about 49% of the total variations among populations, 51% presented within populations. Mantel-test showed that genetic distances had no significant correlation with geographic distance and also with the gap of elevation among populations.
     2. Functional response of two coccinellid predators, Coccinella septempunctata and Propylaea japonica, to A. pisum
     Plotting prey density against prey killed by four larval instars, and adult males and females of C. septempunctata fit well with the type-II. The adult females had the highest attack rate and shortest handling time. The prey consumption differences of C. septempunctata in the same stage under various prey densities were significant. Based on the functional response data, the model predicted a maximum of 5.7, 11.5, 32.1, 59.5, 57.1, and 76.9 nymphs to be consumed per day by individual first, second, third, fourth instars, adult male, and adult female, respectively.
     Plotting prey density against prey killed by four larval instars, and adult males and females of P. japonica fit well with the typeⅡmodel of Holling’s disc equation. Adult females consumed the highest number of prey, followed by fourth instars and Adult males. Based on the functional response data, the model predicted a maximum of 5.5, 14.1, 29.2, 45.1, 42.3 and 51.5 nymphs to be consumed per day by and individual first, second, third, fourth instars, adult male and adult female, respectively.
     Rate of attack, handling time and the daily maximum amount were differences between C. septempunctata and P. japonica in the same instar. The daily maximum amount of C. septempunctata were higher than P. japonica, while the handling time of C. septempunctata were lower than P. japonica, when two ladybirds were in the same stages.
     3. Evaluation on resistance of 4 Medicago cultivars to A. pisum
     Resistance of 4 alfalfa cultivars to A. pisum was evaluated by mass-infesting young seedlings in field and lab, in order to select high resistant material to pea aphid. The result showed that % of resistant plant of Gannong No.5(HA-3)was significantly higher than the others in field and lab, 50.3%,48.9%, respectively. However, % of resistant plant of Hunter River was low in field and lab, 4.0%, 4.3%, respectively. Resistant class of 4 alfalfa cultivars in field were Gannong No.5 (High Resistance, HR), Gannong No.3(Susceptible, S), Golden Empress (Susceptible, S), Hunter River (Susceptible, S), while resistant class of 4 alfalfa cultivars in lab were Gannong No.5 (Resistance, R), Gannong No.3(Low Resistance, LR), Golden Empress(Low Resistance, LR), Hunter River(Susceptible, S).
     4. Antibiosis of alfalfa cultivars to two color morphs of A. pisum
     Biology of two color morphs of A. pisum was studied on four cultivars of alfalfa (Medicago sativa L.) in order to identified antibiosis of alfalfa cultivars to two color morphs of pea aphids. The results showed that two color morphs of pea aphids were different in mean development time, net reproductive rate, generation time on JH, in intrinsic rate of increase, population doubling time, infinite rate of increase on G5. Using the innate capacity of increase (r_m) as the index of alfalfa antibiosis to the aphid, antibiosis of four alfalfa cultivars were different to two color morphs of pea aphid, resistance of JH to green aphid was higher and resistance of G5 to pink aphid was higher, while resistance of Hu was lower to two morphs of pea aphids. The level of alfalfa resistance to green aphid and to pink aphid were in order of Hu     5. Physiological and biochemical resistance mechanism of M. sativa to A. pisum
     The SOD and POD activities in the susceptible variety (Hu) appeared lower than that of the resistant variety (G5) and low resistant varieties (G3, JH) when their leaves were piercing-sucked by the aphid. The activities of PPO of resistant variety (G5) were higher than that of the susceptible variety (Hu) and low resistant varieties (G3, JH) before invaded by pea aphids, whereas the activities of PPO of resistant variety (G5) decreased rapidly, were lower than that of the susceptible variety (Hu) after damaged by pea aphids. In the period of the aphid attacks, the MDA contents of resistant variety (G5) were lower than that of the susceptible variety (Hu) and low resistant varieties (G3), the total phenolic content and CAT activity of resistant variety (G5) were higher than that of the susceptible variety (Hu) and low resistant varieties (G3, JH), the chlorophyll content of the susceptible variety (Hu)was higher than that of low resistant varieties (G3, JH), lower than that of resistant variety (G5), and that the soluble protein content of resistant variety (G5) and the susceptible variety (Hu) were lower than that of low resistant cultivars (G3, JH), except on the third day were higher than soluble protein content of G3, the Tannin contents of resistant variety (G5) and the susceptible variety (Hu) displayed lower than that of the low resistant ones (G3 and JH). Throughout the period of the aphid attacks, the activities of SOD and POD of all varieties rose firstly and then declined, while PPO of all varieties rose firstly and then declined. The chlorophyll and soluble protein contents and the activities of CAT displayed a decreasing trend in all of the varieties, while total phenolic content appeared increasing trend. The dynamics of MDA and Tannin contents of four alfalfa cultivars showed irregular. It indicated that the SOD, POD, CAT, MDA and total phenolic content were positive correlation with the resistance of M. sativa to pea aphid, while the chlorophyll, soluble protein contents, Tannin contents, PPO were not explicit correlation with that.
引文
[1]白文辉,刘爱萍,宋银芳,等.我国北方主要栽培牧草害虫种类的调查[J].中国草地, 1990, (5): 58-60.
    [2]曹毅,崔志新,陈文胜,等.七星瓢虫对百合桃蚜的捕食功能反应[J].佛山科学技术学院学报(自然科学版), 2003,21(2):74-76.
    [3]查迈.史密斯著.植物抗虫性的研究与应用[M].北京:中国农业科技出版社,1992,23-35.
    [4]程茂高,乔卿梅,原国辉.昆虫体色分化研究进展[J].昆虫知识, 2005, 42(5): 502-505.
    [5]陈倩,沈佐瑞,王永模,蚜虫的表型可塑性及其遗传基础[J].昆虫学报, 2006, 49(5):859- 866.
    [6]陈文胜,崔志新,杨长举.六斑月瓢虫捕食萝卜蚜的功能反应[J].华中农业大学学报, 2005, (04): 50-56.
    [7]陈润田,陈育汉,黄明度.亚非草蛉的生物学及其对柑桔潜叶蝇幼虫的捕食效应研究[J].生态学报, 1987, 7(1):57-64
    [8]程璐,贺春贵,胡桂馨,等.苜蓿斑蚜为害对5种苜蓿品种(系)PAL、POD、PPO酶活性的影响[J].植物保护, 2009, 35(6):87-90
    [9]陈巨莲,倪汉祥,丁红建,等.麦长管蚜全纯人工饲料的研制[J].中国农业科学, 2000, 33(3):54-59.
    [10]丁秀英,张军,苏宝林,徐惠风.水杨酸在植物抗病中的作用[J].植物学通报, 2001, 18(2):163-168.[73]
    [11]董应才,汪世泽.七星瓢虫幼虫对两种麦蚜的数值反应[J].生态学报,1994,(04):25-31.
    [12]杜志辉,赵政阳,王雷存.七星瓢虫对苹果蚜的田间捕食控害效果研究[J].中国农学通报, 2005, 21(4):261-263.
    [13]杜志辉,赵政阳,王雷存.七星瓢虫对苹果蚜的田间捕食控害效果研究[J].中国农学通报, 2005,(04):48-22.
    [14]冯光翰,陈青,胡发成,等.甘肃中部及邻近地区豆科草地昆虫与天敌名录[A].王素香,金巨和,余优森.甘肃中部种草养畜农牧结合研究[C].北京:气象出版社,1991,236-249.
    [15]付煜荣,张万明,陈桂敏,白雪梅.景天三七中没食子酸和总酚酸含量测定[J].中成药, 2006, 28(7):1016-1018.
    [16]高有华,刘长仲.多异瓢虫对豆无网长管蚜捕食作用研究[J].植物保护, 2006, 32(6): 51-53.
    [17]高有华.苜蓿田豆无网长管蚜的消长动态研究[D]: [学位论文].甘肃兰州:甘肃农业大学, 2006.
    [18]高有华,刘长仲.不同温度下的豌豆蚜实验种群生命表研究[J].植物保护, 2008 34(4):57-59.
    [19]高孝华,时爱菊.龟纹瓢虫捕食棉蚜的功能反应与寻找效应研究[J].山东农业大学学报:自然科学版, 2001, 32(4):457-460.
    [20]耿华珠,吴永敷,曹致中,等.中国苜蓿[M].北京:中国农业出版社, 1995, 90-91, 114-143.
    [21]龚鹏,张孝羲,杨效文,等.用微卫星引物PCR分析棉蚜不同蚜型的DNA多态性[J].昆虫学报, 2001, 44(4):416-421.
    [22]国伟.麦长管蚜地理种群时空动态的分子特征分析. [博士学位论文].北京:中国农业大学, 2005.
    [23]郝树广,张孝羲,程逻年.稻田节肢动物营养层及优势功能集团的组成与多样性动态[J].昆虫学报, 1998, 41(4):343-352.
    [24]郝丹青,郝丹东.七星瓢虫对桃蚜的捕食功能反应研究[J].农业科学研究, 2005, 26(2): 18 -20.
    [25]贺春贵,王森山,曹致中,等. 40个苜蓿品种(系)对蓟马田间抗性评价[J].草业学报, 2007, 16(5):79-83.
    [26]贺春贵.苜蓿病虫草鼠害防治[M].北京:中国农业出版社.2004, 1-33.
    [27]贺春贵,曹致中,吴劲锋,王森山.我国苜蓿害虫研究的历史、成就及展望[J].草业科学, 2005, 22(4):79-80.
    [28]何琬,李学芬,等.豌豆蚜天敌--阿尔蚜茧蜂繁殖与利用[J].植物保护学报, 1983, 3 : 25-28.
    [29]侯军,贺春贵. 6种杀虫剂对苜蓿常见害虫的生物活性测定[J].陕西农业科学, 2006, (1): 5-6.
    [30]侯成香,李木旺,张月华,等.利用SSR标记进行家蚕部分品种资源的指纹图谱分析[J].中国农业科学, 2006, 39(10): 2124-2131.
    [31]侯美珍.六斑月瓢虫和八斑鞘腹蛛对玉米蚜的功能反应[J].广西植保, 1998, (04):88-93.
    [32]胡桂馨,师尚礼,王森山,等.不同苜蓿品种对牛角花齿蓟马的耐害性研究[J].草地学报, 2008, 17(4):505-509.
    [33]胡桂馨.苜蓿对牛角花齿蓟马的抗性机理研究.兰州:甘肃农业大学博士学位论文. 2007, 32-33.
    [34]胡桂馨,贺春贵,王森山,等.不同苜蓿品种对牛角花齿蓟马的抗性机制初步研究[J].草业科学, 2007, 24 (9):86-89.
    [35]胡雅辉,郭建英,万方浩.杂草地和苜蓿田节肢动物群落时序动态[J].作物研究, 2005, 19(3):174-178.
    [36]胡清泉,玉永雄.转基因苜蓿研究进展[J].中国草地, 2005, 27(5):58-62.
    [37]黄伟,贾志宽,韩清芳.蚜虫危害胁迫对不同苜蓿品种体内丙二醛含量及防御性酶活性的影响[J].生态学报, 2007, 27(6):2177-2183.
    [38]黄伟.不同紫花苜蓿品种抗蚜性鉴定及抗性机理初步研究[D]: [学位论文].陕西杨凌:西北农林科技大学, 2007.
    [39]黄绍兴,吕德扬,邵嘉红,等.紫花苜蓿原生质体转基因植株再生[J].科学通报, 1991, (17): 1345-1347.
    [40]黄斌,陈乾锦,李志胜,等.龟纹瓢虫对烟蚜的捕食功能反应及寻找效应[J].武夷科学, 2001,17:39-43.
    [41]姜双林.草间钻头蛛对苜蓿苔螨捕食作用的研究[J].植物保护, 2007, 33(4): 54-57.
    [42]贾彪,贺春贵,钱瑾.十三星瓢虫和多异瓢虫对苜蓿斑蚜的捕食作用研究[J].草原与草坪, 2007, (1): 56-59.
    [43]康天芳,刘长仲,马文生,等.几种药剂对苜蓿斑蚜的室内毒力及田间药效试验[J].植物保护, 2005, 31(4):90-92.
    [44]兰仲雄.天敌-害虫系统两种天敌与一种害虫相互作用形式的几个数学模型[J].生态学报, 1985, 5(1):43-53.
    [45]兰金娜,刘长仲.苜蓿斑蚜刺吸胁迫对苜蓿幼苗的生理影响[J].植物保护, 2007, 33 (6):74-77.
    [46]李国庆,段金花,秦志峰.龟纹瓢虫对菊小长管蚜的捕食功能反应[J].湘潭师范学院学报:自然科学版, 2003, 25(3):77-79.
    [47]李超.草间小黑蛛对棉铃虫幼虫的捕食作用及模拟模型的研究Ⅰ,捕食者-单种猎物系统的研究[J],生态学报, 1982, 2(3):239-254.
    [48]李超.草间小黑蛛对棉铃虫幼虫的捕食作用及模拟模型的研究Ⅱ,捕食者-多种猎物系统的研究[J],生态学报, 1982, 2(4):363-374.
    [49]李彦忠,南志标,王彦荣,等.苜蓿品种对蓟马的抗性评价[J].草业科学, 2006, 23(7):9-14.
    [50]李忠杰,曹永强,牛登林.宁夏固原地区苜蓿病虫害的发展趋势及防治对策[J].草业科学, 2002, 19(9): 58-60.
    [51]李金枝,田方文.滨州紫花苜蓿田蚜虫天敌种类调查与分析[J].安徽农业科学, 2007, 35(23): 7211-7212.
    [52]李梦钗,温秀军,赵志新,等.河北省黄骅市紫花苜蓿病虫害的调查及防治[J].草业科学, 2005, 22(3):81-83.
    [53]李向东,李怀方,范在丰,裘维蕃.玉米矮花叶病毒HC-Pro在蚜虫传毒过程中的作用机制[J].植物病理学报, 2000, 30(3): 217-221.
    [54]李向东,范在丰,李怀方,裘维蕃.麦二叉蚜传播玉米矮花叶病毒的机制[J].植物保护学报, 2002, 29(1):62-66
    [55]李合生.植物生理生化实验原理和技术[M].高等教育出版社, 2000, 184-187
    [56]刘玉良,米福贵,特木尔布和,等.苜蓿蓟马抗性与生理活性相关性研究[J].安徽农业科学, 2009, 37(18):8569-9571.
    [57]刘锦乾,李玉英,张海江,等.七星瓢虫成虫对狭冠网蝽的捕食功能反应研究[J]. 2006, 34(3):111~114.
    [58]刘乾,刘长仲,孙鹭,等.七星瓢虫和多异瓢虫对三叶草彩斑蚜的功能反应研究[J].植物保护, 2009, 35(2):78-80.
    [59]刘长仲,兰金娜.苜蓿斑蚜对三个苜蓿品种幼苗氧化酶的影响[J].草地学报, 2009, 17(1):32-35.
    [60]刘长仲.二斑叶螨实验种群生命表的组建与分析[J].植物保护, 2000, 26(4):15-17.
    [61]刘绍友,侯有明,周靖华,安英鸽,胡作栋,胡美绒, 1999.桃蚜不同体色生物型的寄主适应性[J].西北农业学报, 8(4):1-4.
    [62]刘绍友,侯有明,周靖华,安英鸽,李增义,胡作栋,胡美绒, 2000.桃蚜体色生物型与寄主关系的研究[J].西北农业学报, 28(3):11-14.
    [63]刘裕强,江玲,孙立宏,等.褐飞虱刺吸诱导的水稻一些防御性酶活性的变化[J].植物生理与分子生物学学报, 2005, 31(6):643-650.
    [64]刘金平,张新全,刘瑾,等.苜蓿产业化生产中蚜虫危害及防治方法研究[J].草业科学, 2005, 22(10):74-77.
    [65]刘永刚,漆永红,李惠霞,郭满库,吕和平,张俊莲,贺春贵.甘肃不同地理种群桃蚜的遗传相似性[J].中国农业科学, 2010, 43(15):1-9.
    [66]罗会华.异色瓢虫对小米蚜密度的功能反应试验初报[J].昆虫天敌, 1987, 9(2):84-87.
    [67]罗梅浩,郭线茹,张宏亮,王雪芬,熊建伟.烟田烟青虫和棉铃虫幼虫体色变化及遗传规律初步研究.河南农业大学学报, 1999,33 (3): 263-266.
    [68]林晓萍.白粉病侵染对苜蓿叶片叶绿素含量的影响[J].甘肃农业科技, 2007, (7): 63-64
    [69]罗娟. CpTI和ChiA基因的克隆,双价表达载体构建及其农杆菌介导的紫花苜蓿遗传转化的研究[D]:[学位论文].陕西杨凌:西北农林科技大学, 2008.
    [70]卢广,张青文,田颖川.转抗蚜GNA基因苜蓿的研究[J].植物保护, 2004, 30(6): 23-26.
    [71]陆宴辉,杨益众,印毅,等.棉花抗蚜性及抗性遗传机制研究进展[J].昆虫知识, 2004, 41(4):291-294
    [72]龙丘陵,叶正襄,彭志平,等.苜蓿优势种害虫种群数量动态初步研究[J].江西畜牧兽医杂志, 1992a, (3):16-18.
    [73]龙丘陵,叶正襄,彭志平,等.江西栽培牧草主要害虫种群动态与防治研究[J].草业科学, 1992b, 9(3):23-28.
    [74]龙丘陵.苜蓿害虫群落结构及其多样性研究[J].江西农业学报, 1998, 10(2):24-25.
    [75]娄永根,程家安.植物的诱导抗虫性[J].昆虫学报, 1997, 40(3): 320-331.
    [76]陆宴辉,杨益众,印毅,等.棉花抗蚜性及抗性遗传机制研究进展[J].昆虫知识, 2004, 41(4):291-294.
    [77]马建华,张蓉,吴晓燕.苜蓿蚜虫田间药剂防治效果[J].甘肃农业科技, 2003, (9): 44-45.
    [78]马建华,朱猛蒙,张蓉,等.苜蓿斑蚜的生物药剂筛选试验及对其天敌的安全性[J].农药, 2008, 47(8):614-616.
    [79]马建华,张蓉,先晨钟,等. 7种药剂对苜蓿草地螟的田间防治效果[J].甘肃农业科技, 2004, (2): 43-44.
    [80]莫建初,周丽君.油桐叶品质对油桐尺蠖生长发育的影响[J].昆虫知识, 1995, 32(2): 100-102
    [81]慕卫,刘峰,张文吉.甲胺基阿维菌素对甜菜夜蛾、棉铃虫、粘虫和苜蓿夜蛾的活性研究[J]. 2002, 43(8): 27-28.
    [82]慕卫,刘峰,赵德,吴孔明. 14种杀虫剂对苜蓿夜蛾的毒力比较[J].植物保护学报, 2004, 31 (3): 333-334.
    [83]牛永浩,周长勇,花蕾, 2008.二斑叶螨在4种寄主植物上的实验种群生命表组建与分析.西北农林科技大学学报(自然科学版), 36(3):166-170.
    [84]庞钰,袁庆华.植物源药剂对苜蓿蓟马的防效研究[J].草业科学, 2007, 24(3): 101-103.
    [85]潘伟彬.植物单宁及其对牧草品质的影响研究进展Ⅰ.植物单宁的性质与作用[J].漳州职业技术学院学报, 2008, 10(3):58-61.
    [86]乔建江,王堃,杨青川.苜蓿转基因的研究现状和前景[J].中国草地学报, 2006, 28(5): 98-103.
    [87]邱凤兰,曾亚茹,兰清秀,等.多异瓢虫对豆无网长管蚜捕食作用[EB OL].中国科技论文在线, http://www.paper.edu.cn, 2006-06-21.
    [88]钦俊德.植食性昆虫的食性和营养[J].昆虫学报, 1962, 11:169-185.
    [89]钦俊德.植食性昆虫食性的生理基础[J].昆虫学报, 1980, 23:106-122.
    [90]钦俊德.昆虫与植物的关系[M].北京:科学出版社, 1987.
    [91]区焯林,崔志新.六斑月瓢虫对豆蚜捕食功能反应研究[J].佛山科学技术学院学报(自然科学版), 2005, (03):43-53.
    [92]秦秋菊,高希武.昆虫取食诱导的植物防御反应[J].昆虫学报, 2005, 48(1): 125-134.
    [93]任月萍,刘生祥.龟纹瓢虫对麦蚜的捕食功能反应及寻找效应研究[J].农业科学研究, 2006.
    [94]任月萍,胡忠庆.宁夏枸杞主要病虫害化学防治研究进展[J].宁夏农学院学报, 2004, 25(3): 88-91.
    [95]任广伟,申万鹏,马剑光.异色瓢虫对烟蚜捕食作用的研究[J].中国烟草科学, 1998, (04): 66-74.
    [96]孙四台,倪汉祥,丁红建,曲振刚,张淑芬.小麦对麦红吸浆虫生化抗性机制的研究[J].中国农业科学, 1998, 31(2)36-10.
    [97]苏加楷等.优良牧草栽培技术[M].北京:中国农业出版社,1993.
    [98]特木尔布和,双全,特古斯,乌兰.抗蓟马苜蓿新品种的植物学特征的观察研究[J].内蒙古草业, 2003, 15 (4):9-12.
    [99]特木尔布和,双全,宝乐儿.苜蓿抗蓟马新品系地上营养器官的解剖构造研究[J].内蒙古草业, 2002, 14 (4):38-39.
    [100]特木尔布和,乌日图,金小龙,等.蚜虫对苜蓿危害的初步研究[J].内蒙古草业, 2005, 17(4):56-59.
    [101]涂小云.温度和寄主植物对瓢虫柄腹姬小蜂自身干扰反应的影响[J].昆虫知识, 2005, (03): 55-59.
    [102]田方文,王本琢,王者勇,等.山东滨州市紫花苜蓿田蝗虫种类调查与分析[J].草业科学,2003, 20(7):63-64.
    [103]王进忠,王熠,孙淑玲.七星瓢虫对刺槐蚜和绣线菊蚜的功能反应[J].北京农学院学报, 1999, 14(1):19-23.
    [104]王占松.寿星桃对桃蚜(Myzus persicae Sulzer)的抗性评价及抗性机理的初步研究[D].北京:中国农业大学, 2005, 3-5.
    [105]王林霞,田长彦,马英杰,张祥林.十一星瓢虫的生物学特性[J].干旱区研究, 2005, (03): 63-74.
    [106]王国红,涂小云.瓢虫柄腹姬小蜂对茄二十八星瓢虫功能反应的研究[J].生态学杂志, 2005, (07)13-24.
    [107]王国利,刘长仲.苦豆子和铁棒锤提取物对苜蓿蚜和二斑叶螨的毒力测定[J].甘肃科技, 2001,(4):32.
    [108]王永模,沈佐锐,高灵旺.微卫星标记及其在蚜虫种群生物学研究中的应用[J].昆虫学报, 2007, 50(6): 621-627
    [109]王素琴,宋秀雯,等.北京地区苜蓿害虫发生危害特点与防治策略[J/OL]. http://www. Zhibao. net/jjzwlwj/bj3.htm,2002-07.
    [110]王森山,许永霞,曹致中,等.苜蓿品种(系)对苜蓿斑蚜存活率和生殖力的影响[J].昆虫学报, 2008, 51(7):774-777.
    [111]王茜,刘荣堂,胡桂馨,等.牛角花齿蓟马为害对苜蓿株高和分枝的影响[J].草原与草坪, 2008, (4):39-41.
    [112]王茜.牛角花齿蓟马为害对不同苜蓿品种生长的影响[D]:[学位论文].兰州:甘肃农业大学, 2008.
    [113]王曼玲,胡中立,周明全,等.植物多酚氧化酶的研究进展[J].植物学报, 2005, 22(2): 215-222
    [114]魏彦武,冯庆付.防治苜蓿蓟马的田间药效对比试验[J].现代畜牧兽医, 2006, (1):26.
    [115]吴永敷等.苜蓿对蓟马的抗源筛选实验[J].中国草地, 1990,(5).
    [116]吴永敷等.抗蓟马苜蓿无性系配合力测试实验[J].中国草地,1990, (7).
    [117]武德功,贺春贵,吴廷娟,等.不同紫花苜蓿品种对蚜虫抗性的比较试验[J].草原与草坪, 2007, (4):54-57.
    [118]吴青君,龚佑辉,徐宝云.西花蓟马主要寄主植物可溶性糖和蛋白质含量测定[J].中国蔬菜, 2007(10): 20-22.
    [119]吴进才,陆自强,杨金生,等.稻田主要天敌的栖境生态位与捕食作用分析[J].昆虫学报, 1993, 36(3):323-331.
    [120]吴步梅,李玲.七星瓢虫对苹果黄蚜的捕食功能研究[J].甘肃农业科技, 2000, 12:39-40.
    [121]吴云锋,魏宁生.桃蚜口针中病毒附着位点的免疫荧光定位研究[J].西北农业大学学报, 1995, 23(2):28-30.
    [122]吴云锋.蚜虫与病毒间的分子识别及传毒专化性[J].世界农业, 1998, (3):39-40.
    [123]吴云锋编.植物病毒学原理与方法[M].西安:西安地图出版社, 2000.
    [124]熊恒硕.根癌农杆菌介导的Bt和PTA基因转化紫花苜蓿“中苜蓿一号”的初步研究[D]: [学位论文].扬州:扬州大学, 2006.
    [125]熊恒硕,康俊梅,杨青川,等.双价抗虫植物表达载体p3300-bt-pta转化苜蓿的初步研究[J].中国草地学报, 2008, 30(1):21-26.
    [126]徐林波,刘爱萍,王慧,等.龟纹瓢虫对苜蓿蚜的捕食效应[J].草地学报, 2007, 15(3):296-298.
    [127]许永霞,何英,贺春贵.不同抗蚜苜蓿品种(系)对苜蓿斑蚜耐害性的初步研究[J].草原与草坪, 2008, (4):63-66.
    [128]许永霞.苜蓿品种(系)对苜蓿斑蚜的抗性机制[D]: [学位论文].兰州:甘肃农业大学, 2008.
    [129]薛明,李照会,李强,等.七星瓢虫对萝卜蚜和桃蚜捕食功能的初步研究[J].山东农业大学学报, 1996, 27(2):171-175.
    [130]信善林,刘瑞荣,王勇.我国杨扇舟蛾生物防治研究综述[J].防护林科技, 2010, (6): 77-79.
    [131]姚世鸿.云斑车蝗绿色个体和褐色个体的核型和C-带[J].贵州科学, 2005, 23 (2): 40-44.
    [132]严林,梅吉人.青海省紫花苜蓿病虫种类及害虫天敌调查[J].植物保护, 1991, 22(5): 24-25.
    [133]杨青川.苜蓿生产与管理指南[M].北京:中国林业出版社.162-165.
    [134]杨彩霞,张蓉,刘浩,等.宁夏苜蓿昆虫资源的调查[J].宁夏农林科技, 2002, (1): 11-13.
    [135]杨效文,张广学,陈晓峰.棉蚜微卫星DNA的克隆及其多态性检测.昆虫学报, 2001, 44: 586- 589.
    [136]杨广勇,曹丽霞,束月征,等.扎兰屯市紫花苜蓿草地螟危害的调查及防治[J].内蒙古草业,2004,16(2):54-56.
    [137]杨芳,王芳,张蓉,等.小十三星瓢虫对苜蓿斑蚜捕食功能反应的研究[J].草业科学, 2007, 24(10): 80-84.
    [138]应小芳,刘鹏.铝胁迫对大豆叶片光合特性的影响[J].应用生态学报,2005, 16(1):166-170.
    [139]袁忠林,洪流.红点唇瓢虫对矢尖蚧雌成虫的捕食功能反应[J].甘肃农业科技, 1994, (03):13-19.
    [140]赵琦,韦党扬,马骁,黄琼,李兴忠.双带盘瓢虫对桔蚜捕食作用的研究[J].昆虫敌, 1998, (01): 53-60.
    [141]赵海泉.基础生物学实验指导-植物生理学分册[M].中国农业大学出版社,2008
    [142]赵福庚,何龙飞,罗庆云.植物逆境生理生态学[M].北京:化学工业出版社, 2004. 93-99
    [143]赵伶俐,范崇辉,葛红,等.植物多酚氧化酶及其活性特征的研究进展[J].西北林学院学报, 2005, 20(3): 156-159
    [144]赵桂琴,慕平,张勃.紫花苜蓿基因工程研究进展[J].草业学报, 2006,15(6):9-18.
    [145]张世泽,花保祯,许向利.龟纹瓢虫捕食玉米蚜的功能反应与寻找效应研究[J].西北农林科技大学学报(自然科学版), 2005, 33(05): 85-87, 94.
    [146]张广学,张润志.麦双尾蚜的发生与防治[J].昆虫知识, 1994, 31(4):248-252.
    [147]张广学.西北农林蚜虫志昆虫纲同翅目蚜虫类.北京:中国环境出版社, 1999,343.
    [148]张春玲,孙爱香,冯惠琴,王士伟,等.龟纹瓢虫对麦长管蚜和棉蚜的功能反应及种内的干扰作用[J].山东农业大学学报, 1994, (04):63-74.
    [149]张改娜,贾敬芬.豌豆清蛋白1(PA1)基因的克隆及对苜蓿的转化[J].草业学报, 2009, 18(3): 117-125.
    [150]张学勇,李大勇.小麦及其近亲基因组中的DNA重复序列研究进展[J].生物技术, 2004, 14(2):60-61.
    [151]张海英,许勇,王永健.分子标记技术概述[J].长江蔬菜, 2001, 4-6, 15-16.
    [152]张学祖.新疆苜蓿害虫及其综合防治[J].新疆农业科学,1962,(4):5-8.
    [153]张志勇.河南栽培牧草害虫初录[J].河南农业科学,1990,10(2):27-30.
    [154]张志勇,连二普,康业斌.河南栽培牧草害虫调查的研究[J].草业科学, 1993, 10(2):41-44.
    [155]张蓉,马建华,杨芳,等.多种药剂防治苜蓿蓟马的田间药效试验[J].草业科学,2004, 21 (1): 20-21.
    [156]张纯胄,胡丽秋,扬捷,等.阿维菌素苯甲酸盐和苜蓿银纹夜蛾核型多角体病毒对斜纹夜蛾幼虫和卵的毒力试验[J].昆虫知识, 2006, 43(2): 248-250.
    [157]张蓉,杨芳,马建华.小十三星瓢虫对苜蓿斑蚜的捕食功能反应[J].昆虫知识, 2007, 44(2): 280-282.
    [158]张蓉,杨芳,马建华.七星瓢虫对苜蓿斑蚜捕食作用的研究[J].植物保护, 2007, 33(4): 42-45.
    [159]张润志,张军,初孟林,等.四种天敌对麦双尾蚜的功能反应[J].昆虫学报(增刊), 1999, (42): 92-96.
    [160]张瑛,严福顺.虫害诱导的植物挥发性次生物质及其在植物防御中的作用[J].昆虫学报, 1998, 41(2):204-214.
    [161]张新瑞,刘长仲,严林,等.苜蓿田主要节肢动物种群数量研究[J].草地学报, 2007, 15(6): 556-560
    [162]张纵圆,李茂华,张涛.新疆紫花苜蓿单宁提取工艺优化探讨[J].生物技术, 2009, 19(1): 61-63
    [163]郑光宇.基因工程防治蚜虫研究进展[J].喀什师范学院学报, 2006, 27(3):54-60.
    [164]周集中.捕食者对猎物选择性的数量测定[J].生态学报, 1986, 7(1):50-56.
    [165]周军,贺春贵.景泰第一茬苜蓿昆虫群落及数量动态[J].草原与草坪, 2005, (5): 69-71.
    [166]周玉峰,杨茂发,等.龟纹瓢虫成虫对苜蓿豌豆蚜的捕食功能反应[J].安徽农业科学, 2008, 36 (8) :3264-3265.
    [167]周明牂.作物抗虫性原理及应用[M].北京:北京农业大学出版. 1992, 85-107.
    [168]朱晓锋,赵莉,刘倩.苜蓿叶象啮小蜂寿命及产卵量的研究[J].环境昆虫学报, 2008, 30(1): 83-85.
    [169]朱晓锋,赵莉.紫花苜蓿叶象甲寄生蜂种群数量消长初步研究[J].植物保护, 2008, 34(4): 50-53.
    [170]中国科学院动物研究所.中国农业昆虫[M].北京:中国农业出版社, 1986, 276.
    [171] Alexandre de Almeidae Silva, Elenice Mouro Varanda, JoséRicardo Barosela. Resistance and susceptibility of alfalfa (Medicago sativa L.) cultivars to the aphid Therioaphis maculata (Homoptera: Aphididae): insect biology and cultivar evaluation[J]. Insect Science, 2006, 13:55-60.
    [172] Agrawal A A, Kobayashi C, and Thaler J S. Influence of prey availability and induced host plant resistance on omnivory by western flower thrips[J]. Ecology, 1999, 80(2): 518-523.
    [173] Agrawal A A. Induced responses to herbivory in wild radish: effects on several herbivores and plant fitness[J]. Ecology, 1999, 80(5):1713-1723.
    [174] Agrawal A A, Lafomch C, Tollnan R. Transgenerational induction of defenses in animals and plants[J]. Nature, 1999, 401(6748):60-63.
    [175] Agrawal A A, Karban R. Why induced defenses may be favored over constitutive strategies in plants. In: The Ecology and Evolution of Inducible Defenses (ed. by R Tollrian & C D Harvell), 1999, pp. 45–61. Princeton University Press, Princeton.
    [176] Agrawal A A, Thaler B J D. Induced response to herbivory in the neotropical ant plant assoiation between Azteca ants and Cercropia trees: response of ants to potential inducing cues[J]. Behav Ecol Sociobiol, 1999, 45:47-54.
    [177] Agrawal A A. Induced responses to herbivory and increased plant performance[J]. Science, 1998, 279(5354):1201-1202.
    [178] Ansell J Hu J T, Gilbert S C, et al. Improved method for distinguishing the human source of mosquito blood meals between close family members[J]. Transactions of the Royal Society of Tropical Medicine and Hyniene, 2000, 94(5):572-574.
    [179] Auclair J L. Biotypes of the pea ahid, Acyrthosiphon pisum, in relation to host plants and chemically defined diets[J]. Ent. exp. & appl,1978, 24:12-16.
    [180] Baldwin IT, Zhang Z P, Diab N, Ohnmeiss TE, Cloud ES, Lynds GY, Schmelz E A. Quantification correlation and manipulations of wound induced changes in jasmonic acid and nicotine in Nicotiana sylvestris[J]. Plant, 1997, 201:397-404.
    [181] Bailly C, Benamar A, Corbineau F, et al. Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seed as related to deterioration during accelerated aging[J]. Plant Physiology, 1996, 97:104-110
    [182] Barton K A, Whiteley H R, Yang N S. Bacillus thuringiensisδ-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to Lepidopteran insects[J]. Plant Physiol, 1987, 85:1103-1109.
    [183] Beckman J S, Sollermerm. Toward a unified approach to the genetic mapping of eukaryotes based on sequence-tagged microsatellite sites[J]. Bio-Technology, 1990, 8: 930-932.
    [184] Bell E A, Charlwood B V. Secondary plant products[M]. New York, 1980.
    [185] Blackman R L. The inheritance of life-cycle differences in Myzus persicae[J]. Bulletin ofEntomological Research, 1972, 62:281-294.
    [186] Blackman R L. Morphological discrimination of a tobacco feeding form from Myzus persicae (Sulzer) (Hemiptera: Aphididae), and a key to New World Myzus (Nectarosiphon) species[J]. Bulletin Entomological Research, 1987, 77: 713-730.
    [187] Blackman R L, Eastop V F. Aphids on the World’s Crops: An Identification and Information Guide[M]. John Wiley & Sons, Chichester, 2000, UK.
    [188] Blanc S, Lopez-Moya J J, Wang R, Garcia-Lampasona S, Thornbury D W, Pirone T P. A specific interaction between coat protein and helper component correlates with aphid transmission of a potyvirus[J]. Virology, 1997, 231: 141-147.
    [189] Buchner P. Endosymbiosis of animals with plant microorganisms[M]. John Wiley & Sons(editors), Interscience, New York, 1965.
    [190] Bowler C, Montagu M V, Inze D. Superoxide dismutase and stress tolerance. Annual Review of Plant[J]. Physiology and Plant Molecular Biology, 1992, 43:83-116.
    [191] Bruce R J, West C A. Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of caster bean [J]. Plant Physiology, 1989, 91: 889-897.
    [192] Boeckh J , Ernest K D, Sass H and Waldow U. Anatomical and physiological characteristics of inidividual neurones in the central antennal pathway of insects[J].Insect Physiol. 1984, 30:15-26.
    [193] Bournoville R. Enquete sur les insectes nuisibles a la luzerneen production de fourrage. Comptes-rendus reunion Eucarpia, groupe Medicago sativa, Piestany, Tchecoslovaquia, 1976, 83-86.
    [194] Bournoville R. Insectes ravageurs des legumineuses[M]. In: G.Raynal, J. Gondran, R. Bournoville & M. Courtillot (Eds.), Ennemiset maladies des prairies, 1989, 179-195.
    [195] Caillaud M C, Losey J E. Genetics of color polymorphism in the pea aphid, Acyrthosiphon pisum[J]. Journal of Insect Science, 2010, 10:95. available online: insectscience. org/10.95.
    [196] Cartier J J, Isaak A, Painter R H, Sorensen E L. Biotypes of Pea Aphid Acyrthosiphon pisum (Harris) in Relation to Alfalfa Clones[J]. Canad. Ent.1965, 97:754-760.
    [197] Chen Z, Klessig D F. Identification of a soluble salicylic acid binding protein that may function in signal transduction in the plant disease resistance response[J]. Proc. Natl Acad. Sci USA, 1991, 81: 8179-8183.
    [198] Cheng YQ, Liu ZM, Xu J, Zhou T, Wang M, Chen YT, Li HF and Fan ZF, 2008. HC-Pro protein of Sugarcane mosaic virus specifically interacts with maize ferredoxin-5 in vitro and in planta[J]. Gen. Virol., 2008, 84(7): 2046-2054.
    [199] Coote T, Bruford M W. Human microsatellites applicable for analysis of genetic variation in apes and Old World monkeys[J]. Hered, 1996, 87:406-410.
    [200] De Ponti O M B. Resistance to insects promotes the stability of integrated pest control.1983, 211-255. In: Durable resistance in crops[M]. F Lamberti, J M Waller and N A van der Graff, eds. Plenum Press, New York.
    [201] Degooyer T A, Pedigo L P, & Rice M E. Effect of alfalfa-grass intercrops on insect populations [J].Environmental Entomology, 1999, 26(4):703-710.
    [202] Delmotte F, Leterme N, Gauthier J P, Rispe C, Simon J C. Genetic architecture of sexual and asexual populations of the aphid Rhopalosiphum padi based on allozyme and microsatellite markers[J]. Molecular Ecology, 2002, 11:711-723.
    [203] Donis-keller H, Green P, Helms C, et al. A genetic linkage map of the human genome[J]. Cell, 1987, 51(2): 319-337.
    [204] Dixon A F G. Insect predator-prey dynamics ladybird beetles and biological control [M]. Cambridge University Press, Cambridge, 2000, 275pp.
    [205] Ellegren H T, et al. DNA typing of museum birds[J]. Nature, 1991, 354: 113.
    [206] England P R, Briscoe D A, Frankham R. Microsatellite polymorphisms in a wild population of Drosophila melanogaster[J]. Genetical Research, 1996, 67:1-55.
    [207] Eisen J A. Mechanistic basis for microsatellite instability[M]// GOLDSTEN D B, SCHLOTTERER C. Microsatellites evolution and applictions Oxford: Oxford University, 1999:34-48.
    [208] Elhag E T, Zaitoon A A. Biological parameters for four coccinellid species in central Saudi Arabia[J]. Biological Control, 1996, 7(3): 316-319.
    [209] Estoup A, Garney L, Solignac M, et al. Microsatellite variation in honey bee(Apismellifera L) populations hierarchical genetic structure and test of the infinite alletle and step wise mutation models[J]. Genetics, 1995, 140(2):679-695.
    [210] Evans J D. Competition and relatedness between queens of the facultatively polygynous ant Myrmica tahoensis[J]. Anim. Behav, 1996, 51:831–840.
    [211] Fan G H, Zhao J F. Functional response of Adonia variegata to cotton aphids[J]. Natural Economic Insect, 1988, 10(4):187-190.
    [212] Farmer E E, Ryan C A. Octadecanoid precursor of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors[J]. Plant Cell,1992,4:129-134.
    [213] Fondon J W, Garner H R, Molecular origins of rapid and continuous morphological evolution[J]. PNAS, 2004, 101(52):18058-18063.
    [214] Fenton B, Woodford J A T, Malloch G. Analysis of clonal diversity of the peach-potato aphid, Myzus persicae(Sulzer), in Scotland, UK and evidence for the existence of a predominant clone[J]. Molecular Ecology, 1998, 7:1475-1487.
    [215] Fernández-Arhex V, Corley J C. The functional response of parasitoids and its implications for biological control[J]. Biocontrol Science and Technology, 2003, 13: 403–413.
    [216] Frazer B D. Population dynamics and recognition of biotypes in the pea aphid (Homoptera: Aphididae)[J]. Can. Ent., 1972, 104:1729-1733.
    [217] Franck P, Coussy H, Conte Y LE, et al. Microsatellite analysis of sperm admixture in honeybee[J]. Insect Molecular Biology, 1999, 8(3):419-421.
    [218] Frantz A, Plantegenest M, Mieuzet L, Simon J C. Ecological specialization correlates with genotypic differentiation in sympatric host-populations of the pea aphid[J]. Evol. Biol., 2006, 19 ,392–401.
    [219] Fuller S J, Chavigny P, Lapchin L, Vanlerberghe-Masutti F. Variation in clonal diversity in glasshouse infestations of the aphid, Aphids gossypii Glover in southern France[J]. Molecular Ecology, 1999, 8:1867-1877.
    [220] Gorz H J, Manglitz G R, Haskins FA. Selection for Yellow Clover Aphid and Pea Aphid Resistance in Red Clover[J]. Crop Science, 1979, 256-260.
    [221] Glover DV, Stanford E H. Tetrasomic inheritance of resistance in alfalfa to the pea aphid[J]. Crop Sci, 1966, 6: 161–165.
    [222] Gray S M, Banerjee N. Mechanisms of arthropod transmission of plant and animal viruses[J]. Microbio.Mol.Biol.Rev.,1999,63:128-148.
    [223] Guillemaud T, Mieuzet L, Simon JC. Spatial and temporal genetic variability in French populations of the peach-potato aphid, Myzus persicae[J]. Heredity, 2003, 91:143-152.
    [224] Gomes F B, de Moraes J C, dos Santos C D, et al. Resistance induction in wheat plants by silicon and aphids[J]. Scientia Agricola, 2005, 62: 547-551
    [225] Hacker M, Kaibm, Baginerk N, et al. Unrelated queens coexist in colonies of the term ite Macrotermes michaelseni[J]. Molecular Ecology, 2005, 14(5):1527-1532.
    [226] Harris M K. Arthropod-plant interactions related to agriculture, emphasizing host plant resistance.1979, 23-25. In: Biology and breeding for resistance to arthropods and pathogens in agricultural plants[M], M K Harris, ed. Publication M P 1451.Texas A&M University, College Station, TX.
    [227] Hales D F, Tomiuk J, Sunnucks P. Evolutionary and genetic aspects of aphid biology: a review[J]. European Journal of Entomology, 1997, 94:1-55.
    [228] Hassell M P, Lawton J H, Beddington J R. Sigmoid functional responses by invertebrate predators and parasitoids[J]. Anim. Ecol. 1977, (46)249-262.
    [229] Hannonen M, Sledgem F, Turillazzis, et al. Queen reproduction, chemical signaling and worker behaviour in polygyne colonies of the ant Formica fusca[J]. Animal Behaviour, 2002, 69(4): 771- 776.
    [230] Hanson C. H. Alfalfa Science and Technology[M]. The American Society of Agronomy. 1972.
    [231] Han Y, Wang Y, Yang X Q, et al. Constitutive and induced activities of defense-related enzymes in selected wheat cultivars[J]. Journal of Chemical Ecology, 2009, 35:176-182
    [232] Harrington, C. D. Biological races of the pea aphid[J]. J. Econ. Entomol.1945, 38: 12-22.
    [233] Hardng R M, Boyce A J clecc J B. The evolution of tandemly repetitive DNA: recombination rules[J]. Genetics, 1992, 13(2):471-478.
    [234] Haukioja E. Induction of Defenses in Trees[J]. Ann Rev Entomol,1990,36:25-42.
    [235] He C G and Zhang X G. Field evaluation of Lucerne (Medicago sativa L.) for resistance to aphids in northern China[J]. Australian Journal of Agricultural Research, 2006, 57,471-475.
    [236] Henry W A. Feeds and feeding : a hand-book for the student and stockman[M]. 1898.
    [237] Holling C S. The components of predation as revealed by a study of small mammal predation ofEuropean pine sawfly[J]. Canadian Entomologist, 1959a, 91:293-320.
    [238] Holling C S. Some characteristics of simple types of predation and parasitism[J]. Canadian Entomologist, 1959b, 91:385-398.
    [239] Holling C S. Functional response of predators to prey density and its role in mimicry and population regulation[J]. Memoirs of Entomological Society of Canada, 1965, 45: 3-60.
    [240] Hori K, Atalay R. Biochemical changes in the tissue of Chinese cabbage injured by the bug Lygus clisponsi[J]. Appl.Ent.Zool., 1980, 15:234-241.
    [241] Hu Y S, Wang Z M, Ning C L, et al. The functional response of Harmonia (Leis) axyridis to their prey of Cinara sp[J]. Natural Enemies of Insects, 1989, 11: 164-168.
    [242] Hughes R D, Woolcok L T, Hughes M A. Laboratory evaluation of the parasitic Hymenoptera used in attempts to biologically control aphid pests of crops in Australia[J]. Entomologia Experimentalis et Applicata, 1992, 63: 177–185.
    [243] International Aphid Genomics Consortium. Genome Sequence of the Pea Aphid Acyrthosiphon pisum[J]. PLOS Biol,2010, Dol 10.1371/joumal.pbio. 1000313.
    [244] Irwin J A, Lloyd K L, Lowe K F. Lucerne biology and genetic improvement-an analysis of past activities and future goals in Australia[J]. Australian Journal of Agricultural Research. 2001, 52:699-712.
    [245] Irwin J A, Lloyd K L, Lowe K F. Lucerne biology and genetic improvement-an analysis of past activities and future goals in Australia[J]. Australian Journal of Agricultural Research, 2001, 52:699-712.
    [246] Jones L G, Briggs F N, Blanchard R A. Inheritance of resistance to the pea aphid in alfalfa hybrids[J]. Hilgardia, 1950, 20: 9-17.
    [247] Juliano S A. Non-linear curve fitting: Predation and functional response curves. In: Scheiner S M and Gurevitch J, editors. Design and analysis of ecological experiments[M]. 2nd edition, 2001, 178-196. New York: Chapman and Hall.
    [248] Jiang M Y, Jin J H. Generation of hydroxyl radical in plants and its ration to the initiation of lipid peroxidation[J]. Plant Physiology Communication,1993,29(4): 300-305
    [249] Jimenez D R, Yokomi R K, Mayer R T, Shapiro J P. Cytology and physiology of silverleaf whitefly-induced squash silverleaf[J]. Physiol.Mol.Plant Path.,1995,46:227-242.
    [250] Kekarainen T, Savilahti H, Valkonen J. Functional Genomics on Potato Virus A: Virus Genome-Wide Map of Sites Essential for Virus Propagation[J]. Genome Research, 2002, 12:584–594.
    [251] Kugler J L, Ratcliffe R H. Resistance in alfalfa to the red form of the pea aphid (Homoptera: Aphididae)[ J]. Econ. Entomol., 1983,76:74-76.
    [252] Karban R, Baldwin IT. Induced Response to Herbivory[M]. Chicago: Chicago University Press, 1997.
    [253] Kontodimas D C, Stathas G J. Phenology, fecundity and life table parameters of the predator Hippodamia variegata reared on Dysaphis crataegi[J]. Biocontrol, 2005, 50(2): 223-233.
    [254] Kamau L, Mukabanaw R, Hawley W A, et al. Analysis of genetic variability in Anopheles arabiensis and Anopheles gambise using microsatellite loci[J]. Insect Molecular Biology, 1999, 8(2):287-297.
    [255] Kekarainen T, Savilahti H, Valkonen J. Functional Genomics on Potato Virus A: Virus Genome-Wide Map of Sites Essential for Virus Propagation[J]. Genome Research, 2002, 12:584-594.
    [256] Kogan M, Ortman E. Antixenosis-a new term proposed to replace Painter’s nonpreference modility of resistance[J]. Bull Entomol Soc. Am,1978, 24:175-176.
    [257] Levnson G, Gutman G A. Slipped-strand mispairing a major mechanism for DNA sequence evolution[J]. Molecular biology and Evolution, 1987, 4:203-221.
    [258] Liu Y Q, Jiang L, Sun L H, et al. Changes in some defensive enzyme activity induced by the piercing-sucking of brown plant hopper in rice[J]. Journal of Plant Physiology and Molecular Biology, 2005, 31(6): 643-650.
    [259] Libbrecht R, Gwynn D M, Fellowes M D E. Aphidius ervi Preferentially Attacks the Green Morph of the Pea Aphid, Acyrthosiphon pisum[J]. Journal of Insect Behavior, 2007, 20(1):25-32.
    [260] Lim, Shen L, Xu A, et al. Genetic diversity among silkworm(Bombyx mori L, Lep, Bombycidae) germplasms revealed by microsatellites[J]. Genome, 2005, 48(5):802-810.
    [261] Li Y C, Korol A B, Fahma T, et al. Microsatellites genomic distribution, putative functions and mutational mechanisms: a review[J]. Molecular Ecology, 2002, 11(12): 2453-2465.
    [262] Lir C, Korol A B, Fahma T, et al. Microsatellites within genes structure, function and evolution[J]. Molecular Biology and Evolution, 2004, 21(6):991-1007.
    [263] Llewellyn K S, Loxdale H D, Harrington R, Brookes C P, Clark S J, Sunnucks P. Migration and genetic structure of the grain aphid (Sitobion avenae)in Britain related to climate and clonal fluctuation as revealed using microsatellites[J]. Molecular Ecology, 2003, 12:21-34.
    [264] Losey J E, Ives A R, Harmon J, Ballantyne F, Brown C. A polymorphism maintained by opposite patterns of parasitism and predation[J]. Nature, 1997, 388: 269-272.
    [265] Madhusudhan V V, Miles P W. Mobility of salivary components as a possible reason for differences in the responses of alfalfa to the spotted alfalfa aphid and pea aphid[J]. Entomologia Experimentalis et Apllicata, 1998, 86:25-39.
    [266] Meiracker R A F van den, Hammond, W N O and van Alphen J J M. The role of kair- omone in prey finding by Diomus sp. And Exochomus sp., two coccinellid predators of the cassava mealybug, Phenacoccus manihoti[J]. Entomologia Experimentalis et Applicata, 1990, 56, 209- 217.
    [267] Moran N A, Jarvik T. Lateral Transfer of Genes from Fungi Underlies Carotenoid Production in Aphids[J]. Science, 2010,328.
    [268] Mousseau T A, Dingle H. Maternal effects in insect life histories[J]. Annual Review of Entomology ,1991, 36: 511 -534.
    [269] Nasser S M, Nesren A S B, Liu T X. Functional response of the lady, cydonia vicina nilotica tocowpea aphid, Aphis craccivora in the laboratory[J]. Insect science, 2006, 13: 49-54.
    [270] Narvaez-Vasguez J, Lorozco-Cardenas M L, Ryan C A. Differential expression of chime rice CaMV-tomato proteinase InhibitorⅠgene in leaves of transformed nightshade, tobacco and alfalfa plants [J]. Plant Mol. Bio, 1992, 20: 1149-1157.
    [271] Navajasm J, Thistlewood H M, Lagnel J, et al. Microstellite sequences are under- represented in two mite genomes[J]. Insect Molecular Biology, 1998, 7:249-256.
    [272] Nielson M W, Lehman W F. Multiple aphid resistance in CUF-101 alfalfa[J]. Jour. Econ. Entomol., 1977, 702:13-14.
    [273] Oliver K M, Russell J A, Moran N A, and Hunter M S. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps[J]. Proc. Natl. Acad. Sci. USA, 2003, 100:1803-1807.
    [274] Oliver KM, Moran N A, and Hunter M S. Variation in resistance to parasitism in aphids is due to symbionts and not host genotype[J]. Proc. Natl. Acad. Sci. USA, 2005, 102: 12975-12800.
    [275] Odjakova M, Hadjiivanova C. The complexity of pathogen defense in plants[J]. Bulg Plant Physiol[J], 2001,27(1-2):101-109.
    [276] Painter R H. Resistance of plants to insects[J]. Annual Review of Entomology, 1958, 3: 267-290.
    [277] Painter R H. Insect resistance in crop plants[M]. Macmillan, New York , 1951.
    [278] Peccoud J, Ollivier A, Plantegenest M, Simon J C. A continuum of genetic divergence from sympatric host races to species in the pea aphid complex[J]. Proceedings of the National Academy of Sciences, 2009, 106(18):7495-7500.
    [279] Peng R, Grabowski R, De Antoni A, Gallwitz D. Specific interaction of the yeast cis-Golgi syntaxin Sed5p and the coat protein complex II component Sec24p of endoplasmic reticulum-derived transport vesicles[J]. Proc Natl Acad Sci USA, 1998, 96: 3751-3756.
    [280] Pervez A, Omkar. Predation potential and handling time estimates of a generalist ladybird beetle, Propylea dissecta[J]. Biological Memories, 2003, 29: 91-97.
    [281] Pervez A, Omkar. Functional responses of coccinellid predators: An illustration of a logistic approach[J]. Journal of Insect Science, 2005, 5(5): 1-6.
    [282] Reddy K D, Abraham E G, Nagaraju J. Microsatellite in the silkworm, Bombyxmori: Abundance, polymorphism, and strain characterization[J]. Genome, 1999, 42:1057-1065.
    [283] Reza J, Shila G. Functional response of Hippodamia vaviegata(Goeze) (Coccinellidae) on Aphis fabae(Scopoli) (Homoptera:Aphididae) in laboratory conditions[J]. Acta entomologica serbica, 2009, 14(1): 93-100.
    [284] Roder M, Korzun V. A microsatellite map of wheat[J]. Genetica, 1998, 149: 2007-2023.
    [285] Rispe C, Pierre J S, Simon J C, Gouyou P H. Models of sexual and asexual coexistence in aphids based on constraints[J]. Journal of Evolutionary Biology, 1998, 11:685-701.
    [286] Rogers D. Random search and insect population models[J]. Anim. Ecol., 1972, 41: 369-383.
    [287] Schlotterer C, Tautz D. Slippage synthesis of simple sequence DNA[J]. Nucleic Acids Research, 1992, 20(2):211-215.
    [288] Tachida H, Iizuka M. Persistence of repeated sequences that evolve by replication slippage[J].Genetics, 1992, 131(2):471-478.
    [289] Simon J C, Blackman R L, Le Gallic. Local variability in the life cycle of the bird cherry-oat aphid, Rhopalosiphum padi (Homoptera: Aphididae) in western France[J]. Bulletin of Entomological Research, 1991, 81: 315-322.
    [290] Sneh B, Koncz C, Zilberstein A A. Synthetic CryⅠgene, encoding a Bacillus thuringiensis delta-endotoxin, confers Spodoptera resistance in alfalfa and tobacco[ J]. Proc.Natl Acad.Sci. USA.1996, 93: 15012-15022.
    [291] Sorensen E L, Painter R H, Harvey T L. Registration of Kanza alfalfa[J]. Crop Sci., 1969, 9:847.
    [292] Sorensen E L, Stuteville D L, Horber E K. Registration of KS189 alfalfa germplasm with resistance to five disease and three insects[J]. Crop Sci., 1986, 26(1):204-205.
    [293] Sorenson E L, Byers R A, Horber E K. Breeding for insect resistance[M]. In‘Alfalfa and alfalfa improvement’. (Eds AA Hanson, DK Barnes, RR Hill Jr.) 1988, pp. 859–902. (Agronomy No. 29). (ASA, CSSA, SSSA Publishers: Madison, Wisconsin, USA).
    [294] Sunnucks P, England P R, Taylor A C, et al. Microsatellite and chromosome evolution of parthenogentic Sitobion aphids in Australia[J]. Genetics, 1996a, 144:747-756.
    [295] Sunnucks P, Hales D F. Numerous transposed sequences of mitochondrial cytochrome oxidase i-ii in aphids of the genus Sitobion(Hemiptera:Aphididae)[J]. Molecular biological evolution, 1996b, 13: 510-523.
    [296] Tautz D, Renzm. Simple sequences are ubiquitous repetitive components of eukaryotic genomes [J]. Nucleic Acids Res, 1984, 12: 4127-4138.
    [297] Trexler J C, McCulloch C E, and Travis J. How can the functional response best be determined [J]. Oecologia, 1988, 76: 206-214.
    [298] Thomas J C, Wasmanm C C, Echt C, et al. Introduction and expression of insect proteinase inhibitor in alfalfa (Medicago sativa L.) [J]. Plant Cell Reports, 1994, 14: 31-36.
    [299] Anderson B, Trammell M, Reece P E. G77-357 Selecting Alfalfa Varieties for Nebraska. Historical Materials from University of Nebraska-Lincoln Extension. http://digitalcommons.unl. edu /extension hist/1302.
    [300] Usha Rani P, Jyothsna Y. Biochemical and enzymatic changes in rice plants as a mechanism of defense[J]. Acta Physiol Plant, 2010, 32(4):695-701
    [301] Van Dam N M, Baldwin I T. Costs of jasmonate-induced response in plants competing for limited resources[J]. Ecol.Lett., 1998, 1:30-33.
    [302] West J A. Geography and genetics of ecological speciation in pea aphids[D]. University of Maryland, Maryland, 2008.
    [303] Wilson ACC, Sunnucks P, Hales D F.Heritable genetics variation and potential for adaptive evolution in asexual aphids[J]. Biol. Linn. Soc., 2003, 79: 115-135·
    [304] Wilson A C C, Sunnucks P, Hales D F. Microevolution, low clonal diversity and genetic affinities of parthenogenetic Sitobion aphids in New Zealand[J]. Molecular Ecology, 1999, 8:1655-1666.
    [305] Wilson A C C, Sunnucks P, Hales D F. Random loss of X chromosome at male determination in an aphid, Sitobion near fragarise, detected using an X-linked polymorphic microsatellite marker[J]. Genetical Research (Cambridae), 1997, 69: 233-236.
    [306] Zheng L, Benedict M Q, Cornel A J, et al. An integated genetic map of the African human malaria vector mosquito Anopheles gambiae[J]. Genetics, 1996, 143:941-952.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700