用户名: 密码: 验证码:
深水平台锚泊定位系统动力特性与响应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,我国的海洋油气资源开采主要集中在渤海海域,而占我国领海面积3/4比例的南海海域,油气资源开发近乎空白。据初步估计,整个南海海域的石油地质储量大约在230亿~300亿吨之间,约占我国总资源量的1/3,属于世界四大海洋油气聚集中心区域之一,具有“第二个波斯湾”的美称。我国油气资源开发目前主要集中在200m水深以下的近海海域,油气开发的最大钻探水深为500多米,最大作业水深仅为300多米,深水油气开发技术储备严重不足,与国外海洋工程技术水平差距明显。令人遗憾的是,在我国南海和周围国家有所争议的海域,越南和菲律宾等国家已经率先开始在这些争议海域开始了石油开采,加快南海区域海洋油气开采的步伐已经迫在眉睫。
     深海采油平台一般均需要通过锚泊定位系统来保持其在一个相对固定的位置,所以锚泊定位系统设计是海上浮式结构物整体设计过程中绝不可忽视的重要环节。锚泊定位系统性能主要取决于海洋环境条件、浮式结构物和锚泊线所受的环境荷载作用、锚泊线的材料及其动力性能、锚泊线布置形式、海水水深等因素的影响。建立合适的数值计算模型和相应的分析技术可从机理上研究锚泊定位系统的动力特性、预测锚泊定位性能,并能够进一步的指导设计及施工。
     锚泊定位系统的分析主要包括两部分内容:锚泊线自身的性能研究和对浮式结构物的作用。锚泊线自身的性能研究包括其静动力性能、疲劳性能、锚泊基础性能三部分。对浮式结构物的作用主要表现在:锚泊阻尼的影响、与浮式结构物的耦合作用。这些问题的解决途径仍然是数值模拟与模型试验两种方法,但在具体的实施过程中仍然存在很多的问题需要解决。本文主要研究工作包括以下几部分内容:
     1.利用分段外推法进行锚泊系统静力特性分析,计算中考虑竖向位移对复合锚泊线回复力特性的影响;采用非线性有限元方法进行锚泊线动力响应计算;对复合锚泊线自振频率和刚度等动力特性进行比较分析,其中对聚酯纤维锚泊线的材料特性进行了总结。
     2.采用非线性有限元时域方法针对深水锚泊线为浮式平台的阻尼贡献进行计算;针对不同参数的影响进行研究并得到一些规律性认识,并对这些规律性认识分别进行统一化的公式拟合;对复合锚泊线的锚泊阻尼特性进行比较。
     3.针对HYSY-981半潜式平台,在哈尔滨工业大学大气边界层风洞及波浪模拟水槽中进行物理模型试验;基于静力等效设计等效水深截断锚泊系统;获得半潜式平台及其锚泊系统的运动响应试验数据;根据模型试验与数值模拟的比较结果,提出利用粘滞阻尼器补偿截断锚泊线和全水深锚泊线动力性能差别的新概念;对具有粘滞阻尼器补偿截断锚泊系统的半潜式平台运动响应及锚泊张力进行数值计算,并与原计算结果进行比较。
     4.对DDMS平台及其锚泊系统进行各短期海况下的运动响应计算,计算分别采用钢链-钢索-钢链系统和钢链-聚酯纤维系缆-钢链系统两种具有相同静回复力特性的锚泊系统;采用雨流计数法对锚泊线顶端张力时程进行统计得到疲劳载荷谱;采用基于S-N曲线的Palsren-Miner线性累计损伤理论对这两种锚泊线在长期海况下的疲劳寿命进行比较计算。
     5.采用ABAQUS建立拖曳锚极限抗拔力分析的数值计算模型及具体计算流程;研究埋深、锚胫和锚爪夹角以及锚泊力作用角度对静极限抗拔力的影响;研究埋深、荷载循环次数对循环极限抗拔力的影响,并与静极限抗拔力进行比较。
At present, the exploitation of offshore oil and gas resources is concentrated in the Bohai sea area of China territorial waters. While South China Sea as three fourths of our territorial water, the gas and oil resources development is nearly empty. According to preliminary estimate, the oil reserves in the South China Sea approaches 23 billion to 30 billion tons, accounting for one third of China's total amount of resources. As the center of the world's four major offshore oil and gas accumulation, this area gets high reputation of“The Second Persian Gulf”. In China, gas and oil resources exploitation is primarily in the 200m water depth. The development of maximum drilling depth comes near 500 meters and maximum operating depth comes up to 300 meters. Compared with foreign ocean engineering technology, there is still a gap between theirs and our deepwater oil and gas development. Unfortunately, Vietnam, Philippines and other neighboring countries have begun their exploitation in advance in the disputed areas of South China Sea. Therefore, it’s momentous to accelerate the pace of oil exploitation in South China Sea.
     Deepwater oil platforms are generally required by mooring positioning system to maintain it at a relatively fixed position, so the design of mooring positioning system plays an overwhelming role in the overall design process of floating structure. Mooring positioning system performance depends mainly on the ocean environmental conditions, the environmental loads acting on floating structure and mooring lines, the material and dynamic performance of mooring line, the arrangement of mooring lines, water depth and other factors. Establishing an appropriate model and obtaining corresponding numerical analysis techniques can help study from the mechanism of the dynamic characteristics of mooring positioning system, predict mooring positioning performance, and further guide the design and construction.
     The research on mooring positioning system analysis mainly consists of two parts: performance investigation of mooring system and influence to floating structure. Performance investigation of mooring system mainly includes: static and dynamic characteristic, fatigue and anchor system. Influence to floating structure mainly includes: influence of mooring damping and coupled effect with floating structure. The two methods of solving these problems are still based on numerical simulation and model test, but there are many other new problems in the procedure. The main works of this dissertation are as follows:
     1. The piecewise extrapolating method is employed to the static characteristic analysis of mooring system, and the influence of vertical displacement to restoring force of hybrid mooring line is also estimated. The dynamic response analysis of mooring line is conducted through nonlinear finite element method. Then the analysis of natural frequency and stiffness of hybrid mooring line are compared, and the material characteristics of polyester mooring line are summarized
     2. The damping contribution of mooring line to floating platform is calculated by the nonlinear finite element method in time domain. The influences of various parameters to mooring damping are studied and the results show some regularity. The regularity is respectively fitted by uniform formula. The mooring damping characteristic of hybrid mooring line is compared.
     3. The model tests of HYSY-981 semi-submersible platform are conducted in the Joint Laboratory of Wind Tunnel & Wave Flume at Harbin Institute of Technology. A truncated mooring system is designed based on the static equivalent principle. Then the motion responses of semi-submersible platform and its mooring system are obtained from experimental results. Base on the comparative results of model test and numerical simulation, the viscous damper compensated system in truncated mooring lines is proposed in the paper. The numerical simulations for truncated model tests of semi-submersible platform with viscous damper compensated system in mooring lines are conducted and the motion responses of semi-submersible and its mooring line are compared with the primary results.
     4. The motion responses of DDMS platform and its mooring system are calculated under each short-term sea state, and the results are based two mooring systems which have the same static restoring force characteristic. The two mooring systems respectively consist of chain-wire-chain and chain-polyester-chain. The Rain Flow counting method is employed to obtain the fatigue load spectrum in each short-term sea state based on the time series of mooring line tension. The Palsren-Miner linear cumulative law model is used to compare the fatigue damage of the hybrid mooring lines in long-term sea state.
     5. The numerical model and specified calculation flow for ultimate pullout load of drag embedment anchor are established by ABAQUS. The influence of depth, fluke/shank angle and mooring angle to static ultimate pullout load of drag embedment anchor are studied. The influence of depth and load cycle times to dynamic ultimate pullout load of drag embedment anchor are studied and the results are compared with static ultimate pullout load.
引文
1.李润培,谢永和,舒志.深海平台技术的研究现状与发展趋势.中国海洋平台, 2003, 18(3):1-5.
    2.廖谟圣.国外超深水钻采平台的发展给我们的启迪.中国海洋平台, 2003, 18(5):1-5.
    3. R. Garside, R. O. Snell, H. Cook. Deepwater Technology and Deepwater Developments. Proceedings of the Eleventh International Offshore and Polar Engineering Conference, Stavanger, Norway, June, 2001, 4:1-5.
    4. L. Wanvik, J. M. Johnsen. Deep Water Moored Semi-submersible with Dry Wellheads and Top Tensioned Well Risers. Offshore Technology Conference, Houston, May, 2001:OTC12986.
    5. N. Ellis, J. Tetlow, F. Anderson, A. Woodhead. Hutton TLP Vessel-Structural Configuration and Design Features. Offshore Technology Conference, Houston, May, 1982: OTC4427.
    6. E. Huang, S. Bhat, Y. Luo, J. Zou. Evaluation of Dry Tree Platform Concepts. Offshore Technology Conference, Houston, May, 2000: OTC11899.
    7. S. Kibbee, S. Leverette, K. Davies, R. Matten. Morpeth Sea-Star Mini-TLP. Offshore Technology Conference, Houston, May, 1999: OTC10855.
    8. F. William. Unlimited Depth Minimal TLP Gets First Application on Prince. Offshore, 2001, 61(10):82-160.
    9. A. Sorensen, S. Sagatuna, T. Fossen. Design of a Dynamic Positioning System Using Model-Based Control. Control Engineering Practice, 1996, 4(3):359-368.
    10. F. H. Fisher, F. N. Spiess. Flip-floating Instrument Platform. Journal of Acoustical Society of America, 1963, 35(10):1633-1644.
    11. A. Neale. Organisational Learning in Contested Environments: Lessons from Brent Spar. Business Strategy and the Environment, 1997, 6(2):93-103.
    12. R. D. Vatdeman, S. Richardson, C. R. Mccandless. Neptune Project: Overview and Project Management. Offshore Technology Conference, Houston, May, 1997: OTC 8381.
    13. M. Irani., L. Finn. Improved Strake Design for Vortex Induced Motions of Spar Platform. Proceedings of 24th International Conference on Offshore Mechanics and Arctic Engineering. Halkidiki, Greece, June, 2005:767-773.
    14. M. Irani, S. Perryman. Vortex Induced Motions of the Horn Mountain Truss Spar. Proceedings of 27th International Conference on Offshore Mechanics andArctic Engineering. Esroril, Portugal, June, 2008: 967-973.
    15. W. C. Young, B. C. May and B. R. Varnado. Genesis Development Project-Overview. Offshore Technology Conference, Houston, May, 1999:OTC10796.
    16. J. B. Bates, W. C. Kan, A. P. Allegra, C. A. Yu. Dry Tree and Drilling Riser System for Hoover DDCV. Offshore Technology Conference, Houston, May, 2001:OTC13084.
    17. C. Dunbar, J. Cotton Sirena. Dotada Truss Spar Design for East Central Gulf of Mexico. MTS/IEEE Biloxi - Marine Technology for Our Future: Global and Local Challenges, OCEANS, 2009, No.5422408.
    18. B. Theckumpurath, Y. Ding. Numerical Simulation of the Truss-spar‘Horn Mountain’. Proceedings of the Sixteenth International Offshore and Polar Engineering Conference. California, USA, June, 2006.
    19. T. Liu, X. Chen. Global Performance and Mooring Analysis of a Truss Spar. Proceedings of the Thirteenth International Offshore and Polar Engineering Conference. Hawaii, USA, June, 2003.
    20. H. P. He, A. W. Troesch, M. Perlin. Hydrodynamics of Damping Plates at Small KC Numbers. IUTAM Symposium on Fluid-Structure Interaction in Ocean Engineering, Germany, Springer, 2008, 8:93-104.
    21.滕斌,郑苗子,姜胜超,勾莹,吕林. Spar平台垂荡板水动力系数计算与分析.海洋工程, 2010, 28(3):1-8.
    22. L. B. Tao, B. Molin, Y. M. Scolan, K. P. Thiagarajan. Spacing Effects on Hydrodynamics of Heave Plates on Offshore Structures. Journal of Fluids and Structures, 2007, 23(8):1119-1136.
    23. L. B. Tao, D. Dray. Hydrodynamic Performance of Solid and Porous Heave Plates. Ocean Engineering, 2008, 35(10):1006-1014.
    24. A. S. Bangs, J. A. Miettinen, T. J. Mikkola, I. Silvola, S. M. Beattie. Design of the Truss Spars for the Nansen/Boomvang Field Development. Offshore Technology Conference, Houston, May, 1999: OTC14090.
    25. T. DeMerchant, A. Magee, J. Penn, Z. Li, et.al.. Holstein Spar Hard Tank Strake Structural Design. Offshore Technology Conference, Houston, May, 2005: OTC17300.
    26. D. Snyder, B. Townsley. Perdido Development: World’s First Ultra-deepwater Drilling and Production Facility. Offshore Technology Conference, Houston, May, 2010: OTC20887.
    27. M. Lamey, P. Hawley, J. Maher. Red Hawk Project: Overview and Project Management. Offshore Technology Conference, Houston, May, 2005:OTC17213.
    28. Y. Shimamura. FPSO/FSO: State of the Art. Journal of Marine Science and Technology, 2002, 7(2):59-70.
    29. P. Cassidy. FPSO Fabrication: Pitfalls in Risk Assignment, Project Component Execution. Offshore, 2001, 61(7):82-145.
    30. M. W. J. Wyllie. Fast Track FPSOs for Deepwater and Ultra-Deepwater. Offshore Technology Conference, Houston, May, 2004:OTC16708.
    31. A. John. Lane, R. Bryans, R. Preston. Conversion of the TT Sahara to FPSO Fluminense, a Low Cost Solution for the Bijupira and Salema Field Development, Offshore Brazil. Offshore Technology Conference, Houston, May, 2004:OTC16707.
    32.孙攀,王磊,王亮.深水半潜平台锚泊辅助动力定位系统功率消耗研究.海洋工程, 2010, 28(3):24-30.
    33. F. Kaster, M. Barros, R. Rossi, et. al.. DICAS - a New Mooring Concept for FPSO's. Offshore Technology Conference, Houston, May, 1997:OTC8439.
    34.余龙,谭家华.深水中悬链线锚泊系统设计研究进展.中国海洋平台, 2004, 19(3):24-29.
    35. R. L. Webster. On the Static Analysis of Structures with Strong Geometrical Nonlinearity. Computers & Structures, 1980, 11:137-145.
    36. J. I. Gobat, M. A. Grosenbaugh. Time-domain Numerical Simulation of Ocean Cable Structures. Ocean Engineering, 2006, 33:1373-1400.
    37. G. Oded, C. S. Yim Solomon. Nonlinear Oscillations, Bifurcations and Chaos in a Multi-point Mooring System with a Geometric Nonlinearity. Applied Ocean Research, 1992, 14(4):241-257.
    38. Y. M. Low, R. S. Langley. Time and Frequency Domain Coupled Analysis of Deepwater Floating Production Systems. Applied Ocean Research, 2006, 28(6): 371-385.
    39. M. B. Rosales, C. P. Filipich. Full Modeling of the Mooring Non-linearity in a Two-dimensional Floating Structure. International Journal of Non-Linear Mechanics, 2006, 41(1):1-17.
    40. S. H. Kim, J. Kim, H. Park, N. Park. Effects of Bubble Size and Diffusing Area on Desertification Efficiency in Bubble Plumes of Two-Layer Stratification. Journal of Hydraulic Engineering, 2010, 136(2):106-115.
    41. G. Luca, D. K. Armen. Tail-Equivalent Linearization Method in Frequency Domain and Application to Marine Structures. Marine Structures, 2010, 23(3):322-338.
    42. Y. M. Low. Prediction of Extreme Responses of Floating Structures Using aHybrid Time/Frequency Domain Coupled Analysis Approach. Ocean Engineering, 2008, 35(14-15):1416-1428.
    43. J. Wang, H. Li, P. Li, K. Zhou. Nonlinear Coupled Analysis of a Single Point Mooring System. Journal of Ocean University of China, 2007, 6(3):310-314
    44. F. Wang, G. Huang, D. Deng, X. Tu. A Study on Dynamic Response of Cable-seabed Interaction. Journal of Shanghai Jiaotong University (Science), 2009,14(4):443-449
    45. C. Edward, B. P. America, J. Paul, et. al. Investigation of Riser Seafloor Interaction Using Explicit Finite Element Methods. Offshore Technology Conference, Houston, May, 2008:OTC19432.
    46. M.S. Hodder, B.W. Byrne. 3D Experiments Investigating the Interaction of a Model SCR with the Seabed. Applied Ocean Research, 2010, 32(2):146-157.
    47. I. Jason. Gobat, Mark A. Grosenbaugh. Dynamics in the Touchdown Region of Catenary Moorings. Proceedings of the Eleventh International Offshore and Polar Engineering Conference. Stavanger, Norway, June, 2001.
    48. L. Yu, J. Tan. Numerical Investigation of Seabed Interaction in Time Domain Analysis of Mooring Cables. Journal of Hydrodynamics Ser. B, 2006, 18(4): 424-430.
    49. D. T. Brown, S. Mavrakos. Comparative Study on Mooring Line Dynamic Loading. Journal of Marine Structure, 12:131-151, 1999.
    50.马汝建,高学仕.悬链线锚链的非线性恢复系数.中国海洋平台, 1994, 21:180-183.
    51. P. Dove, D. Weisinger, F. Abbassian, J. Hooker. The Development and Testing of Polyester Moorings for Ultra-deep Drilling Operations. Offshore Technology Conference Proceedings, Houston, May, 2000: OTC 12172.
    52. H. Haslum, J. Tule, M. Huntley, S. Jatar. Red Hawk Polyester Mooring System Design and Verification. Offshore Technology Conference, Houston, May, 2005:OTC17247.
    53.刘海笑,黄泽伟.新型深海系泊系统及数值分析技术.海洋技术, 2007, 26(2):6-10.
    54. A. C. Christian, S. B. Shankar. Fiber Mooring for Ultra- Deepwater Applications. Proceedings of the Twelfth International Offshore and Polar Engineering Conference, Kitatyusgu, Japan, May, 2002.
    55.蒋凯辉.防风系船水鼓系列研究.天津大学博士论文, 2005.
    56. S. Huang. Stability Analysis of the Heave Motion of Marine Cable-Body Systems. Ocean Engineering, 1999, 26:531-546.
    57. R. H. Plaut, J. C. Archilla. Snap Loads in Mooring Lines During LargeThree-dimensional Motions of a Cylinder. Nonlinear Dynamics, 2000, 23:271-284.
    58. V. Dracos, S. Huang. Experimental Investigation of Snap Loading of Marine Cables. Proceedings of the 14th International Offshore and Polar Engineering Conference, Toulon, France, 2004.
    59. Z. H. Zhu, S. A. Meguid. Elasticdynamic Analysis of Low Tension Cables Using a New Curved Beam Element. International Journal of Solids and Structures, 2006, 43(6):1490-1504.
    60. R. Pascoal, S. Huang, N. Barltrop, C. Guedes Soares. Assessment of the Effect of Mooring Systems on the Horizontal Motions with an Equivalent Force to Model, Ocean Engineering, 2006, 33:1644-1668.
    61. Z. Ran, M. H. Kim, J. M. Niedzwecki, R. P. Johnson. Responses of a Spar Platform in Random Waves and Currents (Experiments vs. Theory). Proceedings of Fifth International Offshore and Polar Engineering Conference, Hague, Netherlands, 1995:363-371.
    62. NDE/TTI Joint Industry Study. Engineers Design Guide for Deepwater Fiber Moorings. Design Practice Document and Engineering Commentary, First Edition, January, 1999.
    63. L. C. Meniconi, C. J. M. Del Vecchio. Deepwater Mooring Systems Using Fiber Ropes. Second International Conference on Composite Materials for Offshore Operations, Univ. of Houston, 1997:56.
    64. D. Peter, W. Don, A. Fereidoun. The Development and Testing of Polyester Moorings for Ultra-deep Drilling Operations. Offshore Technology Conference, Houston, May, 2000:OTC12172.
    65. D. J. Petruska, J. F. Geyer, A. Z. Ran. Mad Dog Polyester Mooring - Prototype Testing and Stiffness Model for Use in Global Performance Analysis. Offshore Technology Conference, Houston, May, 2004:OTC16589.
    66. D. Petruska, S. Rijitema, N. Wylie, J. Geyer. Mad Dog Polyester Mooring Installation. DOT Conference Proceeding, Pennwell, 2005.
    67. J. Geyer, D. Petruska, S. Rijitema, N. Wylie. Polyester Mooring System Makes Debut with Truss Spar. Offshore Magazine, Pennwell, June, 2005.
    68. F. F. John, J. B. Stephen, B. Chris. Polyester Mooring Lines on Platforms and MODUs in Deep Water. Offshore Technology Conference Proceedings, Houston, May, 2007:OTC18768.
    69. F. Michel, D. Peter. Characterization of Polyester Mooring Lines. Proceedings of 27th International Conference on Offshore Mechanics and Arctic Engineering. Esroril, Portugal, June, 2008.
    70. A. C. Fernandes, C. J. M. Del Vecchio, G. V. A. Castro. Mechanical Properties of Polyester Mooring Cables. International Journal of Offshore and Polar Engineering, 1999, 9(3):208-213.
    71. P. Davies, R. Baizeau, F. Grosjean, M. Francois. Testing of Large Cables for Mooring Line Applications. Proceedings of Ninth International Offshore and Polar Engineering Conference, Brest, France, 1999:369-375.
    72. J. F. Flory, S. P. Banfield, D. J. Petruska. Defining, Measuring, and Calculating the Properties of Fiber Rope Deepwater Mooring Lines. Offshore Technology Conference, Houston, May, 2004:OTC16151.
    73. N. F. Casey, S. J. Banfield. Factors Affecting the Measurement of Axial Stiffness of Polyester Deepwater Mooring Rope under Sinusoidal Loading. Offshore Technology Conference, Houston, May, 2005:OTC17068.
    74. E. Chailleux, P. Davies. A Non-linear Viscoelastic Viscoplastic Model for the Behavior of Polyester Fibers. Mechanics of Time-Dependent Materials, 2005, 9:147-160.
    75. J. F. Flory, C. M. Leech, S. J. Banfield, D. J. Petruska. Computer Model to Predict Long-Term Performance of Fiber Rope Mooring Lines. Offshore Technology Conference, Houston, May, 2005:OTC17592.
    76. J. F. Flory, V. Ahjem, S. J. Banfield. A New Method of Testing for Change-in-Length Properties of Large Fiber-Rope Deepwater Mooring Lines. Offshore Technology Conference, Houston, May, 2007:OTC18770.
    77. J. W. Kim, J. H. Kyoung, A. Sablok. Application of a Viscoelastic Model for Polyester Mooring. Proceedings of the 29th International Conference on Ocean, Offshore and Arctic Engineering, Shanghai, China, June, 2010.
    78. D. P. Huard, F. Grosjean, M. Francois. Creep and Relaxation of Polyester Mooring Lines. Offshore Technology Conference, Houston, May, 2000:OTC12176.
    79.李飒,韩志强,王圣强,董艳秋,要明伦.深海石油平台及其锚固基础形式评述.海洋工程, 2008, 26(2):147-154.
    80. P. S. Partha. Ultimate Capacity of Suction Caisson in Normally and Lightly Overconsolidated Clays. Texas A&M University Master Thesis, 2004.
    81. H. O. Berteaux. Buoy Engineering. New York: Wiley Interscience Publication, 1976.
    82.谬国平.挠性部件力学导论.上海交通大学出版社, 1995.
    83. T. R. Mcnatt. Catenary Ocean Mooring Systems-Approaches to Analysis and Testing. Oceans, Washington, DC, USA, 1982:513-518.
    84. R. J. Smith, C. J. MacFarlane. Statics of a Three Component Mooring Line.Ocean Engineering, 2001, 28:899-914.
    85. K. A. Ansari, N. V. Khan. The Effect of Cable Dynamics on the Stationkeeping Response of a Moored Offshore Vessel. Journal of Energy Resources Technology, 1986, 108:52-58.
    86. J. W. Leonard, J. H. Nath. Comparison of Finite Element and Lumped Parameter Methods for Oceanic Cables. Engineering Structures, 1981, 3(3):153-167.
    87. J. W. Leonard. Newton-Raphson Iterative Method Applied to Circularly Towed Cable-Body System. Engineering Structure, 1979, 1(2):73-80.
    88. R. L. Webster. Nonlinear Static and Dynamic Response of Underwater Cable Structures Using Finite Element Approach. Offshore Technology Conference, Houston, May, 1975:OTC2322.
    89. F. A. Papoulias, M. M. Bernitsas. Mooring: A Program for Static Analysis of Mooring Lines. Report to the University of Michigan/Sea Grant/Industry Consortium in Offshore Engineering, and Department of Naval Architecture and Marine Engineering. The University of Michigan Ann Arbour, Publication 309. 1988.
    90. A. Rothwell. A Graphical Procedure for the Stiffness of a Catenary Mooring. Applied Ocean Research, 1979, 1: 217-219.
    91. R. K. Jain. A Simple Method of Calculating the Equivalent Stiffnesses in Mooring Cables. Applied Ocean Research, 1980, 2: 139-142.
    92. B. W. Oppenheim, P. A. Wilson. Static 2-D Solution of a Mooring Line of Arbitrary Composition in the Vertical and Horizontal Operating Modes. International Shipbuilding Progress, 1982, 29: 142-153.
    93. G. Orgill, J. F. Wilson, G. R. Schmertmann. Static Design of Cable Mooring Arrays for Offshore Guyed Towers. Applied Ocean Research, 1985, 7:166-174.
    94. Y. Ogawa. Fundamental Analysis of Deep Sea Mooring Line in Static Equilibrium. Applied Ocean Research, 1984, 6:140-147.
    95. R. A. Skop. Mooring Systems -a State of the Art Review. Journal of Offshore Engineering and Arctic Engineering, 1988, 110:365-372.
    96. D. T. Brown. Convergence of Non-linear Wave Loading on a Catenary Moored Floating Production System Design. International Shipbuilding Progress, 1997, 44:161-176.
    97. S. A. Mavrakos, et. al.. Deep Water Mooring Dynamics. Marine Structures, 1996, 9: 181-209.
    98. Y. Sun, J. W. Leonard. Dynamics of Ocean Cables with Low Local-tension Regions. Ocean Engineering, 1998, 25: 443-463.
    99. F. V. Pangalila, J. P. Martin. A Method of Estimating Line Tensions and Motions of a Semi-submersible Based on Empirical Data and Model Basis Results. Offshore Technology Conference, Houston, May, 1969, 2: 90-96.
    100. A. J. Gault, W. R. Cox. Method for Predicting Geometry and Loading Distribution in an Anchor Chain from a Single Point Mooring Buoy to A Buried Anchorage. Offshore Technology Conference, Houston, May, 1973, 1: 309-318.
    101. T. M. Smith, M. C. Chen, A. M. Radwan. Systematic Systems. Proceedings of the Fourth International Offshore for the Preliminary Design of Mooring Mechanics and Arctic Engineering. 1985, 1:403-407.
    102. R. J. Smith, C. J. MacFarlane. Statics of a Three Component Mooring Line. Ocean Engineering. 2001, 28:899-914.
    103.王冬姣.索-链-浮子/沉子组合锚泊线的静力分析.中国海洋平台, 2007, 16(5):16-20.
    104.张火明,范菊,杨建民.深水系泊系统静力特性快速计算方法研究.船海工程, 2007, 36(2):64-68.
    105.余龙,谭家华.深水多成分悬链线锚泊系统优化设计及应用研究.华东船舶工业学院学报(自然科学版), 2004, 18(5):8-13.
    106.余龙,谭家华.基于准静定方法的多成分锚泊线优化.海洋工程, 2005, 23(1):l69-173.
    107.黄剑,朱克强.半潜式平台两种锚泊系统的静力分析与比较.华东船舶工业学院学报(自然科学版), 2004, 18(3):1-5.
    108.陈徐均,汤雪峰等.系泊浮体布链方式优劣的理论分析.河海大学学报, 2001, 29(5):1-9.
    109.郝春玲,滕斌.不均匀可拉伸单锚链系统的静力分析.中国海洋平台, 2003, 18(4):19-22.
    110.韩凌,滕斌. Chebyshev多项式在海岸工程中的应用.第十七届全国水动力学研讨会暨第六届全国水动力学学术会议论文集, 2003: 822-829.
    111.郝春玲,张亦飞,滕斌等.流速分布及锚链自身刚度对弹性单锚链系统变形和受力的影响.海洋学研究, 2006, 24(3):90-95.
    112. A. Bliek. Dynamic Analysis of Single Span Cables. Ph.D. thesis, MIT, Cambridge, MA, U.S.A., 1984.
    113. F. S. Hover, M. A. Grosenbaugh, M. S. Triantafyllou. Calculation of Dynamic Tension in Towed Underwater Cable. IEEE Journal of Oceanic Engineering, 1994, 19:449-457.
    114. Y. G. Liu, L. Bergdahl. Frequency-Domain Dynamic Analysis of Cables, Engineering Structure. 1997, 19(6):497-504.
    115. L. P. Krolikowski, T. A. Gay. An Improved Linearization Technique for Frequency Domain Riser Analysis, Offshore Technology Conference, Houston, May, 1980:OTC3777.
    116. J. B. Roberts, P. D. Spanos. Random Vibration and Statistical Linearization, Wiley, Chichester, UK, 1990:164-176.
    117. Y. G. Liu, L. Bergdahl. An Influence of Current and Seabed Friction on Mooring Cable Response: Comparison between Time-domain and Frequency-domain Analysis. Engineering Structures, 1997, 19:945-953.
    118. E. Passano, H. Brennodden. Model for Pipe/Sea Floor Interaction. FPS2000/Flexible Risers and Pipes, Report 2.1-9, Sintef, Trondheim, Norway, 1980.
    119. P. P. A. Ong, P. Sergio. Modeling of Seabed Interaction in Frequency Domain Analysis of Mooring Cables, Proceedings of 22nd International Conference on Offshore Mechanics and Arctic Engineering, Cancun, Mexico, June, 2003.
    120.黄祥鹿,陈小红,范菊.锚泊浮式结构波浪上运动的频域算法.上海交通大学学报, 2001, 35(10):1470-1476.
    121. A. Sarkar, R. E. Taylor. Dynamics of Mooring Cables in Random Seas. Journal of Fluids and Structures, 2002, 16(2):193-212.
    122. N. Toshio. A Study of the Mooring Dynamics of Various Types by Lumped Mass Method. Ph. D. Thesis, University of Tokyo, 1991.
    123. H. J. J. Van Den Boom. Dynamic Behavior of Mooring Lines. Behavior of Offshore Structures, 1985:359-368.
    124. N. Nakamura, W. Koterayama, Y. Kyozuka. Slow Drift Damping to Drag Forces Acting on Mooring Lines. Ocean Engineering, 1991, 18:283-296.
    125. S. Huang. Dynamic Analysis of 3-D Marine Cables. Ocean Engineering, 1994, 21:587-605.
    126. C. G. Koh, Y. Zhang, S. T. Quek. Low-tension Cable Dynamics: Numerical and Experimental Studies. Journal of Engineering Mechanics, 1999, 125:347-354.
    127. I. K. Chatjigeorgiou, S. A. Mavrakos. Comparative Evaluation of Numerical Schemes for 2D Mooring Dynamics. International Journal of Offshore and Polar Engineering, 2000, 10(4): 301-309.
    128. T. Igor, E. Oleg, P. Walter, C. Barbaros. Numerical Modeling of Nonlinear Elastic Components of Mooring Systems. IEEE Journal of Oceanic Engineering, 2005, 30(1):37-46.
    129. G. Caroline, N. C. Perkins. Numerical Simulations of Cable/Seabed Interaction. Proceedings of the Thirteenth International Offshore and Polar Engineering Conference. Honolulu, Hawaii, USA, May, 2003.
    130.余龙,谭家华.深水二维对称式布置两成分锚泊线时域动力分析.江苏科技大学学报(自然科学版), 2006, 20(4):6-10
    131.潘斌,高捷,陈小红,陈家鼎.浮标系泊系统的静力计算.重庆交通学院学报, 1997, 16(1):68-73.
    132.于定勇.水下锚泊系统计算.青岛海洋大学学报, 1995,(专辑):100-105.
    133.罗德涛,陈家鼎.锚泊定位系统的静力计算.船舶工程, 1982, 3:12-17.
    134. G. Chaudhury, Y. H. Cheng. Coupled Dynamic Analysis of Platforms, Risers, and Moorings. Offshore Technology Conference, Houston, May, 2000:OTC12084.
    135.石亦平,周玉蓉. ABAQUS有限元分析实例详解.北京:机械工业出版社, 2006:2-4.
    136.范庆来.软土地基上深埋式大圆筒结构稳定性研究.大连:大连理工大学博士学位论文, 2006.
    137.赵腾伦. ABAQUS6.6在机械工程中的应用.北京:中国水利水电出版社, 2007:244.
    138. C. J. M. Del Vecchio. Light Weight Materials for Deep Water Moorings. University of Reading, UK, 1992.
    139. A. C. Fernandes, C. J. M. Del Vecchio, G. A. V. Castro. Mechanical Properties of Polyester Mooring Cables. International Journal of Offshore and Polar Engineering, 1998, 9(3):248-254.
    140. M. Kim, Y. Ding, J. Zhang. Dynamic Simulation of Polyester Mooring Lines. Deepwater Mooring Systems: Concepts, Design, Analysis, and Materials, Houston, 2003:101-114.
    141. W. C. Webster. Mooring Induced Damping. Ocean Engineering, 1995, 22(6):571-591.
    142. J. Lars, G. H. Smith, J. Wolfram. Measurements of Static and Dynamic Mooring Line Damping and Their Importance for Floating WEC devices. Ocean Engineering, 2007, 34:1918-1934.
    143. D. O. Thomas, G. E. Hearn. Deep Water Mooring Line Dynamics with Emphasis on Seabed Interaction Effects. Offshore Technology Conference, Houston, May, 1994:OTC7488.
    144. E. Huse. FPS 2000 Research Program-Mooring Line Damping, Part 1.5 of Marintek Report, 1991.
    145. M. S. Triantafyllou, R. Gopalkrishnan, M. A. Grosenbaugh. Vortex Induced Vibrations in a Sheared Flow: a New Predictive Method. Proceedings of the International Conference on Hydroelasticity in Marine Technology, Trondheim,Norway: Balkema, Rotterdam, 1994:31-37.
    146.苏志勇,陈刚,杨建民,李欣.深海浮式结构物锚泊阻尼参数研究.海洋工程, 2009, 27(2):21-28.
    147. X. Chen , J. Zhang , W. Ma. On Dynamic Coupling Effects between a Spar and Its Mooring Lines. Ocean engineering, 2001, 28:863-887.
    148. J. A. Pinkster and J. E. W. Wichers. The Statistical Properties of Low-frequency Motions of Non-linearly Moored Tankers. Offshore Technology Conference, Houston, May, 1987:OTC5457.
    149. B. Molin.Second Order Hydrodynamics Applied to a Moored Structure-a State of the Art Survey. Schiffstechnik 1994, 4:59-84.
    150. D. T. Brown, G. J. Lyons, H. M. Lin. Advances in Mooring Line Damping. Journal of Society for Underwater Technology, 1995, 21:5-12.
    151. E. Huse. Influence of Mooring Line Damping upon Rig Motions. Offshore Technology Conference, Houston, May, 1986:OTC5204.
    152. E. Huse, O. Matsumotk. Practical Estimation of Mooring Line Damping. Offshore Technology Conference, Houston, May, 1988:OTC5676.
    153. E. Huse, K. Matsumoto. Mooring Line Damping due to First and Second Order Vessel Motion. Offshore Technology Conference, Houston, May, 1989:OTC6137.
    154. E. Huse. New Developments in Prediction of Mooring System Damping. Offshore Technology Conference, Houston, May, 1991:OTC6593.
    155. Y. Liu, L. Bergdahl. Improvement on Huse’s Model for Estimating Mooring Cable Induced Damping. Proceedings of the 17th International Conference on Ocean, Offshore and Arctic Engineering, Lisbon, Portugal, July, 1998.
    156. C. Bauduin, M. Naciri. A Contribution on Quasi-Static Mooring Line Damping. Journal of Offshore Mechanics and Arctic Engineering, 2000, 122:125-133.
    157. Y. L. Hwang. Numerical Model Tests for Mooring Damping. Proceedings of the 17th International Conference on Ocean, Offshore and Arctic Engineering, Lisbon, Portugal, July, 1998.
    158. X. Bompais, M. Le Boulluec, F. Dekindt, S. Marin, B. Molin. Slow-Drift Motion: Practical Estimation of Mooring Line Damping, Proceedings of the 13th International Conference on Ocean, Offshore and Arctic Engineering, Houston, Texas, 1994.
    159. C. M. Larsen. Flexible Riser Analysis Comparison of Results from Computer Programs. Marine Structure, 1992, 5:103-119.
    160. J. A. Witz. A Case Study in the Cross-section Analysis of Flexible Risers. Marine Structure, 1996, 9:885-904.
    161. J. Hamilton, N. Kitney. An Alternative Mooring Line Damping Methodology for Deep Water. Proceedings of the Fourteenth International Offshore and Polar Engineering Conference, Toulon, France, May, 2004.
    162.范菊,黄祥鹿.锚泊线的动力分析.中国造船, 1999, 144(1):13-20.
    163. R. M. Raaijmakers, J. A. Battjes. An Experimental Verification of Huse’s Model on the Calculation of Mooring Line Damping. Proceeding of the Eighth BOSS Conference, 1997, 2:439-452.
    164. V. J. Papazoglou, S. A. Mavrakos, M. S. Triantafyllou. Non-linear Cable Response and Model Testing in Water. Journal of Sound and Vibration, 1990,140 (1): 103-115.
    165. L. Johanning, G. H. Smith, J. Wolfram. Mooring Design Approach for Wave Energy Converter. Proceedings of the Institution of Mechanical Engineers, Part M, Journal of Engineering for the Maritime Environment (JEME), 2006, 220(4):159-174.
    166. L. Johanning, J. Wolfram, G. H. Smith, R. E. Harris. Importance of Mooring Line Damping for WECs. WMTC Conference, London, UK, 2006.
    167. S. Moxnes, K. Larsen. Ultra Small Scale Model Testing of a FPSO Ship. Proceedings of the 17th International Conference on Ocean, Offshore and Arctic Engineering, Lisbon, Portugal, July, 1998.
    168. Proceedings of 22nd ITTC, September, 1999.
    169. Proceedings of 23rd ITTC, September, 2002.
    170. C. T. Stansberg, O. Oritsland, G. Kleiven. Verideep: Reliable Methods for Laboratory Verification of Mooring and Stationkeeping in Deep Water. Offshore Technology Conference, Houston, May, 2000:OTC12087.
    171. E. Huse, G. Kleiven, F. G. Nielsen. Large Scale Model Testing of Deep Sea Risers. Offshore Technology Conference, Houston, May, 1998:OTC8701.
    172. R. G. Grant, R. W. Litton, P. Mamidipudi. Highly Compliant (HCR) Riser Model Tests and Analysis, Offshore Technology Conference, Houston, May, 1999:OTC10973.
    173. C. T. Stansberg, H. Ormberg, O. Oritsland. Challenges in Deep Water Experiments: Hybrid Approach. Journal of Offshore Mechanics and Arctic Engineering, 2002, 124(2): 90-96.
    174. E. G. Ward. Model-the-model: Validating Analysis Models of Deepwater Structures with Model Tests. Offshore Technology Conference, Houston, May, 2004:OTC16586.
    175. C. T. Stansberg. Model Testing for Ultradeep Waters. Offshore Technology Conference, Houston, May, 2004:OTC16587.
    176. S. Hong, J. H. Kim, S. W. Hong, et. al.. A Hybrid Model Test of a Deepwater OTEC Mooring System. Proceeding of the Fourteenth International Offshore and Polar Engineering Conference, Toulon, France, 2004:183-188.
    177. B. Rolf, G. P. Fabio. Hybrid Verification of a DICAS Moored FPSO. Proceeding of the Fourteenth International Offshore and Polar Engineering Conference, Toulon, France, 2004:307-314.
    178. Y. H. Su, J. M. Yang, L. F. Xiao. A Comparative Analysis of Dynamic Characteristics of Truncated Mooring Lines in Deepwater Platform Model Test. The Ocean Engineering, 2009, 27(1):17-21.
    179. T. E. Kendon. Ultra-deepwater Model Testing of a Semi-submersible and Hybrid Verification. Proceedings of the 27th International Conference on Offshore Mechanics and Arctic Engineering, Estoril, Portugal, 2008.
    180. R. Baarholm, I. Fylling, C. T. Stansberg, et. al.. Model Testing of Ultra-deepwater Floater Systems: Truncation and Software Verification Methodology. Proceeding of 25th International Conference on Offshore Mechanics and Arctic Engineering, Hamburg, Germany, 2006.
    181. Y. H. Su, J. M. Yang, L. F. Xiao, et. al.. Model Test Verification of a Cell Truss Spar Using Hybrid Model Testing Technique. Proceeding of 25th International Conference on Offshore Mechanics and Arctic Engineering, San Diego, USA, 2007.
    182. Y. Luo, S. Baudic. Predicting FPSO Responses Using Model Tests and Numerical Analysis. Proceeding of the Thirteenth International Offshore and Polar Engineering Conference. Hawaii, USA, 2003:167-174.
    183.苏一华,杨建民,肖龙飞.基于垂向截断和水平截断的深水系泊系统等效设计研究.中国造船(增刊), 2006, 47:286-292.
    184. X. Chen, J. Zhang, P. Johnson, et. al.. Studies on the Dynamics of Truncated Mooring Line. Proceeding of the Tenth International Offshore and Polar Engineering Conference. Washington, WA, USA, 2000: 94-101.
    185. X. Chen, J. Zhang. Dynamic Analysis of Mooring Lines by Using Three Different Methods. Proceeding of the Eleven International Offshore and Polar Engineering Conference. Stavanger, Norway, 2001: 635-642.
    186.朱航,马哲,翟钢军,等. HYSY-981半潜式平台风载荷数值模拟与风洞实验.船海工程, 2010, 38(5):149-152.
    187. W. E. Cummins. The Impulse Response Function and Ship Motions, DTMB Report 1661, Washington D.C, 1962.
    188. G. V. Oortmerssen. The Motions of a Moored Ship in Waves, NSMB Publication No. 510, 1976.
    189.滕斌,李玉成,董国海.双色入射波下二阶波浪力响应函数.海洋学报, 1999, 21(2):115-123.
    190.李玉成,滕斌.波浪对海上建筑物的作用(第二版).北京:海洋出版社, 2002.
    191. I. E. Tebbett. The Last Five Year’s Experience in Steel Platform Repairs. Offshore Technology Conference, Houston, May, 1987:OTC5385.
    192.谢彬,段梦兰,秦太验.海洋深水立管的疲劳断裂与可靠性评估研究进展.石油学报, 2004, 25(3):95-100.
    193.孙友义,陈国明.超深水钻井系统隔水管波致疲劳研究.石油学报, 2009, 30(3):460-464.
    194. H. Kevin, C. Hamn-Ching, C. Chia-Rong. Riser VIV Induced Fatigue Assessment by a CFD Approach. Proceedings of the Eighteenth International Offshore and Polar Engineering Conference, Vancouver, BC, Canada, July, 2008.
    195.杨和振,李华军.深海钢悬链立管时域疲劳寿命预估研究.振动与冲击, 2010, 29(3):22-25.
    196.陈鹏耀,薛鸿祥,唐文勇,张圣坤. Truss Spar平台桁架管节点疲劳分析.海洋工程, 2007, 25(2):15-20.
    197.刘翔,李刚,刘圆,岳前进.复杂节点冰激疲劳分析的高效谱分析方法(英文).计算力学学报, 2010, 27(3):403-408.
    198. Q. Yue, Y. Liu, R. Zhang, et. al.. Ice-induced Fatigue Analysis by Spectral Approach for Offshore Jacket Platforms with Ice-breaking Cones. China Ocean Engineering, 2007, 21 (1):1-10.
    199. J. H. Vugts. Fatigue Damage Assessments and the Influence of Wave Directionality. Applied Ocean Research, 2005, 27(3):173-185.
    200. I. D. Jan. Fatigue Reliability-Measured Response of the Heidrun TLP Tethers. Marine Structures, 1997, 10 (8-10):611-628.
    201. P. J. M. Timo, S. Ilari, A. Jyri-Pekka, et. al.. Fatigue Design of Offshore Floating Structures. Proceedings of the 13th International Offshore and Polar Engineering Conference. Hawaii, USA, 2003:186-193.
    202.鲍莹斌,李润培,顾永宁.张力腿平台系索疲劳可靠性研究.上海交通大学学报, 2000, 34(1):87-90.
    203.曾晓辉,沈晓鹏,吴应湘.张力腿平台拉索的疲劳损伤.船舶工程, 2006, 8(3):18-21.
    204. ISO. Petroleum and Natural Gas Industries. Specific Requirements for Offshore Structures-Part 7: Station Keeping Systems for Floating Offshore Structures andMobile Offshore Units, 2005.
    205. API. Recommended Practice for Design and Analysis of Station Keeping Systems for Floating Structures. API RP 2SK, 2005.
    206. DNV. Offshore Standard - Position Mooring. DNV OS-E301, 2004.
    207. L. Julien, M. Torgeir, G. Zhen. Fatigue Reliability of Catenary Mooring Lines under Corrosion Effect. Proceedings of the 27th International Conference on Offshore Mechanics and Arctic Engineering, Estoril, Portugal, June, 2008.
    208. L. Kjell, M. Jan. Reliability-based Fatigue Analysis of Mooring Lines. Proceedings of the 15th International Conference on Offshore Mechanics and Arctic Engineering, Florence, Italy, June, 1996.
    209. J. Mathisen, T. H?rte, V. Moe, W. Lian. DEEPMOOR - Design Methods for Deep Water Mooring Systems, Calibration of a Fatigue Limit State. DNV Report, 1999, No. 98-3110.
    210. J. Mathisen, K. Larsen. Risk-based Inspection Planning for Mooring Chain. Journal of Offshore Mechanics and Arctic Engineering, 2004,126:250-257.
    211. T. Lassen, J. L. Arana, L. Canada, J. Henriksen, N. K. Holthe. Crack Growth in High Strength Chain Steel Subjected to Fatigue Loading in a Corrosive Environment. Proceedings of the 24th International Conference on Offshore Mechanics and Arctic Engineering, Halkidiki, Greece, 2005.
    212. Z. Gao, T. Moan, S. E. Heggelund. Time Variant Reliability of Mooring System Considering Corrosion Deterioration. Proceedings of the 24th International Conference on Offshore Mechanics and Arctic Engineering, Halkidiki, Greece, 2005.
    213. I. Rychlik. A New Definition of the Rainflow Cycle Counting Method. International Journal of Fatigue, 1987, 9(2):119-21.
    214. ASTM. Standard Practices for Cycle Counting in Fatigue Analysis. ASTM International 2005.
    215. Y. Luo. Tension Response Statistics and Fatigue Analysis of Catenary Mooring Lines. Proceeding of First 90 European Offshore Mechanics Symposium, 1990:213-220.
    216. V. Alberto Omar, E. Gilberto Bruno, S. Luis Volnei Sudati. Fatigue Analysis and Reliability of Floating Production Systems Mooring Lines in Deepwater. Proceedings of the 17th International Conference on Ocean, Offshore and Arctic Engineering, Lisbon, Portugal, July, 1998.
    217. G. Zhen, M. Torgeir .Wave-Induced Fatigue Damage of Mooring Chain under Combined Non-Gaussian Low and Wave Frequency Loads. Proceedings of 25th International Conference on Offshore Mechanics and Arctic Engineering,Hamburg, Germany, 2006.
    218. L. H. M. Alves, B. P. Jacob, et. al.. An Analysis Procedure for the Tendons of A Tension Leg Platform. Proceedings of the Seventh International Offshore and Polar Engineering Conference, Honolulu, Hawaii, USA, May, 1997.
    219. T. Lassen, K. Syvertsen. Fatigue Reliability and Life Cycle Cost Analysis of Mooring Chain. Proceedings of the Sixth International Offshore and Polar Engineering Conference, 1996.
    220. G. O. Hovde. Fatigue and Overload Reliability of Offshore Structural Systems, Considering the Effect of Inspection and Repair. The University of Trondheim, Norway, 1995.
    221. O. H. Geir, M. Torgeir. Fatigue and Overload Reliability of Mooring Systems. Proceedings of the Seventh International Offshore and Polar Engineering Conference, Honolulu, Hawaii, USA, May, 1997.
    222.王佳颖,张世联,徐伟,王文明.超期服务浮式平台锚链疲劳寿命安全评估.上海交通大学学报, 2008, 42(11): 1888-1891.
    223. B. B. Li, J. P. Ou. Numerical Simulation on the Hydrodynamic and Kinetic Performance of a New Deep Draft Platform. Proceeding of the Nineteenth International Offshore and Polar Engineering Conference, Osaka, Japan, 2009.
    224.方钟圣,金承仪,缪泉明.西北太平洋波浪统计集.北京:国防工业出版社, 1996:123.
    225.欧进萍,李彬彬.一种DDMS深吃水立柱平台:中国,CN101475049. 2009-07-08.
    226.欧进萍,李彬彬.一种DDMS深吃水立柱平台:中国, ZL200920010371.2. 2009-11-18.
    227. B. B. Li, J. P. Ou, B. Teng. Fully Coupled Effects of Hull, Mooring and Risers Model in Time Domain Based on An Innovative Deep Draft Multi-Spar. China Ocean Engineering, 2010, 24(2):219-233.
    228. American Petroleum Institute. Recommended Practice for Design, Manufacture, Installation, and Maintenance of Synthetic Fiber Ropes for Offshore Mooring Upstream Segment. API Recommended Practice 2SM, First Edition, 2001:12.
    229. N. E. Dowling. Fatigue Failure Predictions for Complicated Stress-strain Histories. Journal of Materials, 1972, 7(1):71-87.
    230. Vryhof Anchors. Anchor manual. Krimpen and Yssel, Netherlands, 2005.
    231. E. Sarah, L. Breyden, F. Mark. Randolph Installation and Pull-Out Capacities of Drag-In Plate Anchors. Proceedings of the 12th International Offshore and Polar Engineering Conference, Kitakyushu, Japan, May, 2002.
    232. R. Ruinen, G. Degenkamp. First Application of 12 Stevmanta Anchors (VLA) inthe P27 Taut Leg Mooring System. Proceedings of Deep Offshore Technology, 1999.
    233. T. Agnevall. Installation and Performance of the Petrobras P27 Stevmanta VLA anchors. Second Annual Conference on Mooring and Anchoring, Aberdeen, 1998.
    234. Naval Civil Engineering Laboratory. Drag Embedment Anchors for Navy Moorings. Techdata Sheet Report No. 83-08R, NCEL, Port Hueneme, California, 1987.
    235. R. Roderick, D. Gijs. Anchor Selection and Installation for Shallow and Deepwater Mooring Systems. Proceedings of the 11th International Offshore and Polar Engineering Conference, Stavanger, Norway, June, 2001.
    236. W. P. Stewart. Drag Embedment Anchor Performance Prediction in Soft Soils, Offshore Technology Conference, Houston, May, 1992:OTC6970.
    237. S. R. Neubecker, M. F. Randolph. The Performance of Drag Anchor and Chain Systems in Cohesive Soil. Marine Georesources and Geotechnology, 1996, 14:77-96.
    238. R. K. Rowe. Soil Structure Interaction Analysis and Its Application to the Prediction of Anchor Behavior. Sydney: University of Sydney, 1978.
    239. R. K. Rowe, E. H. Davis. The Behavior of Anchor Plates in Clay. Geotechnique, 1982, 32:9-23.
    240. C. M. Martin, M. F. Randolph. Application of the Lower and Upper Bound Theorems of Plasticity to Collapse of Circular Foundations. Computer Methods and Advances in Geomechanics, Tucson, Arizona, 2001, 2:1417-1428.
    241. M. P. O’Neill, M. F. Bransby, M. F. Randolph. Drag Anchor Fluke-soil Interaction in Clays. Canadian Geotechnique Journal, 2003, 40:78-94.
    242. R. S. Merifield, A. V. Lyamin, et. al.. Three-Dimensional Lower Bound Solutions for Stability of Plate Anchor in Clay. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(3):243-253.
    243. R. S. Merifield, S. W. Sloan, A. V. Lyamin. The Stability of Inclined Plate Anchors in Purely Cohesive Soil. Faculty of Engineering and Surveying Technical Report. Toowoomba: University of Queensland, 2003.
    244. S. Elkhatib, M. F. Randolph. The Effect of Interface Friction on the Performance of Drag-in Plate Anchors. Proceeding of International Symposium on Frontiers in Offshore Geotechnics, IS-FOG05, Taylor and Francis, Perth, Western Australia, 2005:171-177.
    245. C. P. Aubeny, C. Chi, Mechanics of Drag Embedment Anchors in a Soft Seabed. Journal of Geotechnical and Geoenvironmental Engineering, 2010,136(1):57-68.
    246. M. Yang, J. D. Murff, C. P. S. Aubeny. Undrained Capacity of Plate Anchors under General Loading. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(10):1383-1393.
    247. R. Ruinen, G. S. Degenkamp. Prediction of the Holding Capacity and Trajectory of Drag Embedment Anchors. Proceedings of the Annual Offshore Technology Conference, 2002:2687-2693.
    248. R. Ruinen. Penetration Analysis of Drag Embedment Anchors in Soft Clays. Proceedings of the Fourteenth International Offshore and Polar Engineering Conference, Toulon, France, May, 2004.
    249.刘君,吴利玲,孔宪京.成层地基中圆形锚板的抗拔承载力.第二届全球华人岩土工程论坛文集:南京, 2005:201-207.
    250.于龙,刘君,孔宪京.锚板在正常固结黏土中的承载力.岩土力学, 2007, 28(07):1427-1434.
    251.刘君,吴利玲,胡玉霞.正常固结黏土中圆形锚板抗拔承载力(英文).大连理工大学学报, 2006, 46(05):712-719.
    252.余生兵,黄茂松.基于上限法的条形锚板抗拔承载力分析.岩土力学, 2010, 31(S2):160-163.
    253.王立忠,舒恒.不排水黏土中深埋锚板的抗拔承载力.岩土工程学报, 2009,31(06):829-836.
    254. J. H. Prevost. Offshore Gravity Structures: Analysis. Journal of Geotechnical Engineering, ASCE, 1981, 107(GT2):143-165.
    255. F. Ivar, R. Dahlberg, T. Kvalstad, Det norske Veritas. Foundation Design for Gravity Structures with Respect to Failure in Cyclic Loading. Offshore Technology Conference, Houston, May, 1978:OTC3114.
    256.李驰,王建华,刘振纹.软土地基单筒基础循环承载力研究.岩土工程学报, 2005, 27(9):1040-1044.
    257.陈颖平,黄博,陈云敏.循环荷载作用下结构性软粘土的变形和强度特性.岩土工程学报, 2005, 27(9):1065-1071.
    258. K. L. Lee. Cyclic Strength of a Sensitive Clay of Eastern Canada. Canadian Geotechnical Journal, 1979, 16(1):163-176.
    259. K. Yasuhara, T. Yamanouchi, K. Hirao. Cyclic Strength and Deformation of Normally Consolidated Clay. Soils and Foundations, 1982, 22(3):77-91.
    260. M. Neven, V. Mladen. A Pore Pressure Model for Cyclic Straining of Clay. Soils and Foundations, 1992, 32(3):156-174.
    261. M. Neven, V. Mladen. Generalized Cyclic-Degradation Pore-PressureGeneration Model for Clays. Journal of Geotechnical Engineering, 1995, 121(1):33-42.
    262.要明伦,聂栓林.饱和软粘土动变形计算的一种模式.水利学报, 1994, 7:51-55.
    263.王建华,要明伦.软粘土不排水循环特性的弹塑性模拟.岩土工程学报, 1996, 18(3):11-18.
    264.周建,龚晓南.循环荷载作用下饱和软粘土应变软化研究.土木工程学报, 2000, 33(5):75-82.
    265.周建.饱和软粘土循环变形的弹塑性研究.岩土工程学报, 2000, 22(04):499-502.
    266.王军,陈张林,蔡袁强,刘飞禹.考虑软化特性的软黏土动应力-应变关系研究.浙江大学学报(工学版), 2007, 40(1):23-28.
    267.王军,蔡袁强,徐长节.循环荷载作用下软黏土刚度软化特征试验研究.岩土力学, 2007, 28(10):2138-2144.
    268.王建华,刘振纹,刘远峰.动静耦合效应对软土地基循环承载力的影响.水利学报, 2000, 6:1-5.
    269.刘振纹,秦崇仁,王建华.软粘土地基上循环承载力的计算模型研究.岩土力学, 2004, 25(增2):405-408.
    270. H. B. Seed, C. K. Chan. Clay Strength under Earthquake Loading Conditions. Journal of the Soil Mechanics and Foundations Division, 1966, SM2:53-78.
    271. H. B. Seed. Simplified Procedure for Estimating Dam and Embankment Earthquake Induce Deformation, ASCE, 1978, 104(GT7).
    272. M. Hyodo, K. Yasuhara, K. Hirao. Prediction of Clay Behavior in Undrained Strength and Partially Drained Cyclic Triaxial Tests. Soils and Foundations, 1992, 32(4):117-127.
    273. R. J. Mitchell, R. D. King. Cyclic Loading of an Ottawa Area Champlain Sea Clay. Canadian Geotechnical Journal, 1977, 14(1):52-63.
    274. K. H. Andersen. Cyclic Soil Data for Design of Gravity Structures. ASCE, 1988, 114(GT5):517-539.
    275. K. H. Andersen. Bearing Capacity for Foundations with Cyclic Loads, Journal of Geotechnical Engineering, 1988, 114(5):540-555.
    276.张学言.岩土塑性力学.北京:人民交通出版社,1993.
    277.屈智炯.土的塑性力学.四川:成都科技大学出版社,1987.
    278. B. Sukumaran, W. O. Mccarron, P. Jeanjean, H. Abouseeda. Efficient Finite Element Techniques for Limit Analysis of Suction Caissons under Lateral Loads. Computers and Geotechnics, 1999, 24:89-107.
    279.王晖,董玉才,李新超,刘海笑,张伟.法向承力锚极限抗拔力影响因素的二维有限元分析.天津大学学报, 2010, 43(11):964-970.
    280.陈惠发,詹世斌.极限分析与土体塑性.北京:人民交通出版社, 1995.
    281. J. H. Wang, C. Li, M. Kathryn. Cyclic Undrained Behavior of Soft Clays and Cyclic Bearing Capacity of a Single Bucket Foundation. Proceedings of the Fifteenth International Offshore and Polar Engineering Conference, Seoul, Korea, June, 2005, 2:392-399.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700