用户名: 密码: 验证码:
爆炸水雾降除爆破拆除粉尘的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市建筑物拆除爆破所产生的粉尘是爆破拆除有害效应之一,它具有扩散速度快、突发性强、颗粒细小、在室外环境下悬浮时间长、影响范围大等特点,给爆破工点周围的环境造成了严重污染。随着建筑物爆破技术在城市中的普遍应用,爆破工程中造成的粉尘污染公害得到全社会的重视。本文利用炸药爆炸能量驱动水将其抛撒、雾化,形成极小的雾滴,在高速运动中与建筑物爆破粉尘相互作用,达到高效率降尘的目的。本研究设计了爆炸水雾发生器、爆破粉尘卷扬装置以及除尘系统,采用理论分析和试验的方法研究爆炸水雾和爆破粉尘的相关特性,分析了爆炸水雾各因素对爆破粉尘的降除效率的影响。
     本论文的主要工作及结论如下:
     (1)根据实验结果,所选择拆除爆破粉尘材料中,土粉的浸润速度最快为2.81 mm·min-1,砂浆粉次之,砖粉再次之,混凝土最慢为1.41 mm·min-1,故四种粉尘的浸润性分别为:砖粉、混凝土粉和砂浆粉为憎水性粉尘,而土粉为中等强度亲水性粉尘;
     (2)根据爆破粉尘的特征,确立了模拟粉尘的材料和扬尘方式。测试结果表明:粉尘的浓度随时间和距离变化较明显,高浓度区随着时间的变化向远处运动,且浓度越来越低。
     (3)利用测尘仪和激光粒度仪,对模拟粉尘的浓度、粒度的动态分布特性进行了测定,测试结果表明:粒径大于100um的粉尘先沉降,沉降距离为1~2m;10~100um的粉尘沉降较慢,沉降距离在2-3m;粒径在1.83~2.2um范围的微粒几乎不沉降。
     (4)利用高速摄影法,对水雾的扩散半径、扩散速度和飘散时间进行了研究,水在爆炸作用下,水的抛撒过程可分为近场阶段、中场阶段和远场阶段。在水雾运动的中场阶段,水从中心装药爆轰获取较高的动能,由连续体裂解成离散质团,并在向外扩散中与空气混合,破裂成更小的液滴,它是液滴破碎的主要阶段。水雾抛撒的三个不同阶段有不同力学特征。
     (5)设计了适宜于高速流动速度场测量的DPIV系统,并实现了对粒子场粒径分布的测量;通过对水雾粒径的测试得出:在本试验条件下爆炸水雾粒度范围为0.15~1.05mm,其中大部分集中在0.3mm至0.5mm左右。
     (6)利用爆炸水雾装置及粉尘卷扬装置,研究了影响爆炸水雾降尘效率的因素。实验结果表明,爆炸水雾具有较好的降尘效果,爆炸水雾的降尘效率随着距离增加而减小,随着比药量的增加而增加,随长径比的增加先增加后较小,随着相互作用时间的延长而增加。爆炸水雾的降尘效率与粉尘浓度有关,随着粉尘浓度的增大,降尘效率先增大后减小,水的单位体积极限捕尘量为600-700mg。同时,粉尘的类别不同,粉尘的降尘效率也不同。粉尘的吸湿性越大,爆炸水雾的降尘效率越高。
     图92表34参110
Dust resulting from blasting demolition of city building is one of damaging effects of blasting,there are lots of chracteristics in dust resulting from blasting demolition that diffuse velocity very fast,abrupt strong,suspended time in outdoor enviroment long,and influencing range large,thus blasting demolition dust can seriously pollute circumance around spot of blasting engineering. Along with explosion technology building demoliton has been widely applied in the city, enviromental pollution resulting from dust in blasting engineer have been pay attention by total social.This project used explosion energy driving water,made it scattering and atomizing,and formed fine droplets,these droplets could interact with building blasting demoliton dust in movement of high speed,the aim that dust could be captured by water mist at high efficiency would be realized.This paper designed devices of bringing about explosion water mist,set-ups of raising blasting demolition dust,and systems of capturing dust.Adopting theoreical analysis and experimental methods to reseach correlated features of water mist poduced by explosion and blasting demolition dust,this project overally analysized every factor of water mist resulting from explosion influencing on caputuring efficiency of blasting demolition dust.
     The main work and conclusions of this thesis are as follows:
     (1) According to experiment results, velocity of impregnation of bentonite is the fastest that is 2.81 millimeter per minute, what is next is mortar power, the third is brickdust, and that of concrete dust is the slowest that is 1.41 millimeter per minute. As a result,birck dust,motar power and concrete power are hydrophobing dust,and bentonite is moderate strength dydrophicous dust.
     (2) This paper determined the components of simulative dust of blasting demolition and the way of raising dust,test results indicated concentration of blasting clearly varied with time and distance,the high concentration region moved towards to distant place along with time,and concentration of blasting dust more and more low.
     (3) Using the dust density detector and laser particle analyzer, this paper measured the dynamic distribution characteristics of concentration and particle size of simulative dust, test results indicated that dust greater than 100 micrometer fastly sudsided, and drift distance is from 1 meter to 2 meter, dust slowerly sudsided that their paticle size is from 10 micrometer to 100 micrometer, while dust hardly subsided that there particle size is less than 10 micrometer.
     (4) By super photography,the diffusing radium,diffusing velocity and water mist floating time of dust in air were studied,research results that that the horizontal dispersal of water mist could be distinctly divided into three stages, near field, mid field and far field under exploding effect of the explosives.In mid field stage,the water obtained higher kinetic energy from explosion of centre charge,the water ch;mged from non-individual body to dispersed body,it continually mixed with air when it spreaded towards outer,and fractured smaller drops. This is main stage that water drop frature.Three stages of diffusing of water mist have respective feature.
     (5)A system adapt to the high-speed flow field called DPIV is designed and makes it possible measure the distribution of particles in the particle field. Through measuring particle size of water mist resulting from explosion, research results indicated that range of particle size of water mist of resulting from explosion is from 0.15 millimeter to 1.05 millimeter, particle size of most of water drop focused on 0.3-0.5 millimeter.
     (6) Using devices of bringing about explosion water mist and set-ups of raising blasting demolition dust, this paper studied factors influencing on caputuring efficiency of water mist resulting from explosion.Experimental results showed explosion water mist had good caputuring effect, caputuring efficiency decreased with distance between devices of bringing about explosion water mist and set-ups of raising blasting demolition dust increased,increased with the specific explosive increased,increased and then decreased with increasing ratio of length and diameter,increased with increasing mutual effect time between water mist resulting from explosion and dust. Caputuring efficiency of water mist related to the concentration of dust, it increased and then decreased with increasing concentration of dust ratio of length and diameter,the maximum capacity of caputuring duat is from 600 to 700 milligram.The caputuring efficiency of water mist related to category of dust,as the hygroscopicity of dust was bigger and bigger, The caputuring efficiency of water mist was higher and higher.
     Figure 92 Table34 Reference 110
引文
[1]陈锋华,王小兵,袁绍国等.拆除爆破对环境的污染与防治[J].西部探矿工程,2005,3:137-139
    [2]颜事龙,薛里.拆除爆破粉尘控制研究现状与前景[J].工程爆破,2004,10(3):53-55
    [3]刘殿中,杨仕春.工程爆破实用手册(第二版)[M].北京:冶金工业出版社,2003:557-559
    [4]郑炳旭,魏晓林.城市拆除爆破拆除的粉尘预测和降尘措施[J].中国工程科学,2002,8(4):69-73
    [5]张兴凯,李怀宇.露天矿爆破烟尘云的计算机模拟[J].工业安全与防尘,1995,3:29-32
    [6]王坚.爆破有毒烟雾的预测[J].世界采矿快报,1992,7:10-13
    [7]杨国彦,李怀宇.爆破粉尘颗粒运动过程的力学分析[J].河北理工学院学报,1996,4:12-14
    [8]蒋仲安,万善福,孙佳.基于粒子系统的爆破烟尘运动的模拟研究[J].北京科技大学学报,2007,29(增刊2):25-29
    [9]薛里.爆炸水雾降尘机理的实验研究[R].安徽理工大学,2005
    [10]Ebadian M A et al. Technology Assessment of Dust Suppression Techniques Applied During Structural Demolition. Florida InternationalUniversity. Miami. Florida. USA.1998
    [11]Mark R. Farfel, Anna 0. Olava. A study of urban housing Demolitions as sources of lead in ambient dust:Demoliton practices and exterior Dust fall[J]. Environ-mental health Perspectives, v111,2003,6:1228-1235
    [12]贾金河,于亚伦.国外拆除爆破的现状[J].爆破,1998,15(2):37-40
    [13]A.A. Gurin, et al. Compositions for Dust and Gas Suppression in Blasting Jobs. Chemical Abstracts,96558w,1992,117(10):411-413
    [14]Y.Otaki,et al. Agents for Preventing Dust Formation in Demolishing Old Buildings. Chemical Abstracts,189001h,1991,115(18):370-374
    [15]H.Polat, S.Chander. Adsorption of PEO/PPO Triblock Co-polymers and Wetting of Coal. Colloids and Surfaces A-Physicochemical and Engineering Aspects,1999, 146(1):199-212
    [16]J.Kim. Effect of Coal Type on Wetting by Solutions of Nonionic Surfactant. International Mining andminerals,1999,2(14):38-41
    [17]J.A.Gillies, et al. Long-term Efficiencies of Dust Suppressants to Reduce PM10 Emissions from Unpaved Roads. J of the Air & Waste Management Association, 1999,49(1):3-16
    [18]P.J. Sheskey, et al. A Process for Making a Free-Flowing, Dust-Free, Cold Water-Dispersible, Edible, Film-Coating Composition. Chemical Abstracts, 343023k,1999.130(25):1159
    [19]D. C.Roe. Method for Suppressing Dust Emissions. Chemical Abstracts,125699g, 1997,127(9):884
    [20]朱金华,夏军等.建筑物爆破粉尘控制[J].采矿技术,2009,9(5):125-126
    [21]杜翠风,别凤喜,李怀宇.富水胶冻炮泥降尘机理德实验研究[J].金属矿山,1998,8:41-43
    [22]谢振华,李怀宇.表面活性剂溶液降低爆破尘毒的研究J].有色金属,1997,3:47-50
    [23]李战军.建筑物爆破拆除粉尘治理及其机理研究[D].北京科技大学,2005
    [24]池恩安,温远富,罗德丕等.拆除爆破水幕帘降尘技术研究[J].工程爆破,2002,9:25-28
    [25]牟震山,张连军,工宝治.清洁爆破技术研究及应用[J].黄金科学技术,2000,2(8):36-40
    [26]杨林,唐川林,张凤林,廖振方.爆振雾化射流用于灭火的可行性研究.中国安全科学学报,2003,7(13):12-15
    [27]姚干兵,解立峰,刘家骢.水爆炸抛撒成雾的研究J].弹箭与制导学报,2006,26(3):113-116
    [28]吴德义,杨基明.强冲击波作用下液体抛散的实验研究[J].爆炸与冲击,2003(3):91-95
    [29]颜事龙,刘锋,岳中文,薛里.比药量对水爆炸抛撒成雾运动特性的影响[J].哈尔滨工业大学学报,2007,39(11):1825-1828
    [30]吴德义,杨基明.爆炸冲击波作用下液体抛撒初期射流形成的实验研究[J].环流体力学实验与研究,2003,17(3):36-38
    [31]刘锋,颜事龙,岳中文.爆炸水袋长径比对水爆炸抛撒成雾运动特性的影响.火工品,2008,2:34-37
    [32]V. D.Hulst, H.C. Light. Scattering by Small Particle [M]. New York:Wiley, 1957
    [33]R.A.Dobbins. Measurement of mean particle size sprays from diffractively scattered light [J].AIAAJ,1963,1 (8):1882-1885
    [34]T. Roesgen, R. Totaro. Two-dimensional On-line particle imaging velocimetry[J]. Exp. Fluid flow,1986(7):127-145
    [35]R. J. Adian. Multi-Point Optical measurement of simultaneous vectors in unsteady flow review [J]. Int. J. Heat&Fluid Flow,1986(7):127-145
    [36]R.J. Adian. Particle imagine Techniques for experimental fluid mechanics [J]. Ann Rev Fluid Mech,1991 (23):261-304
    [37]SK Prasad, R J Adian. Stereoscopic Particle image velocimetry Applied to liquid Flows [J]. Experiment Fluids,1993(15):49-60
    [38]申功火斤.全场观测技术概念、进程与展望[J].北京航空航天大学学报,1997,23(3):332-340
    [39]P. L. Gal, N. Farrugia. Laser Sheet Dropsizing of dense sprays. Optics&Laser Technology,1999,31:75-83
    [40]P. D. Noymer. The use of single-point measurements to characterize dynamic behavior in sprays [J]. Experiments in Fluids,2002(29):228-237
    [41]秦俊,廖光烜等.细水雾测量中的AVP的光路布局[J].中国激光,2002,29(7):616-620
    [42]王世喜,伍小平,廖光煊,韦亚星.基于数字粒子图像的细水雾全场速度测量[J].实验力学,2003,3(18):6-11
    [43]陈军,吴国栋.FAE爆炸抛散后云雾液滴尺寸的测量[J].爆炸与冲击,2003,1:74-77
    [44]颜事龙,刘锋,薛里等DPⅣ技术在爆炸水雾粒度测试中的应用[J].煤炭学报,2008,33(6):652-656
    [45]陈明基,吴兴龙,张大中等.除尘技术的基本理论与应用[M].北京:中国建筑出版社,1981
    [46]张国权.气溶胶力学—除尘净化理论基础[M].化学工业出版社,1987,12
    [47]赵兴本.三脚树煤矿综采工作而喷雾降尘技术改造[J].煤矿机械,2002,11:7[0-72
    [48]卢海珠.喷雾降尘在凡口铅锌矿的应用[J].工业安全与环境,2002,9(9):35-36
    [49]杨玉军.原料场水雾降尘设计的探讨[J].工业安全与环保,2003,6:1-2
    [50]薛里,颜事龙.爆炸水雾降尘在拆除爆破中应用的探讨[J].采矿技术,2004,4(3):65-67
    [51]张小艳,郭强,李全.微细水雾除尘技术的实验研究.环境污染与防治,2003,8:234-236
    [52]马素平,寇子明.喷雾降尘效率的研究与分析[J].太原理工大学学报,2006,37(3):327-330
    [53]中国煤炭工业劳动保护科学技术协会组织编写.矿尘粉尘防治技术[M].煤炭工业出版社,2007,8
    [54]陈明绍,吴光忠,张大中等.除尘技术的基本理论与与应用[M].中国建筑工业出版社,1981,12
    [55]Mark R. Farfel, Anna O. Orlova. A Study of Urban Housing Demolitions as Sources of Lead in ambient Dust:Demolition Practices and Exterior Dust Fall. Environmental Health Perspectives, vlume111,2003,6:1228-1235
    [56]汪旭光主编.爆破手册[M].北京冶金工业出版社,2010,1
    [57]张洪江.土壤侵蚀机理[M].北京:中国林业出版社,2000,3
    [58]陈文义,张伟.流体力学[M].天津:天津大学出版社,2004:164-166
    [59]中国劳动保护科学技术学会编.工业防尘手册[M].北京:劳动人事出版社,1989
    [60]孔珑.两相流体力学[M].北京:高等教育出版社,2004:86-100
    [61]岑可法,樊建人.爆粉颗粒在气流中的受力分析及其运动轨迹的研究[J].浙江大学学报,1987(11):1-11
    [62]吴正等著.风沙地貌与治沙工程学[M].北京:科学出版社,2003,1
    [63]蒋仲安.间断连续运输通风除尘.博士后报告.北京科技大学,1996,10
    [64]金龙哲.矿井粉尘防治[M].北京:煤炭工业出版社,1993,11
    [65]M. W. Glass. Far-field Dispersal Modeling for Fuel-air-explosive device DE 910000476(SAND-90-0528),1990
    [66]R. J. Zabelka, L. H. Smith. Explosively Dispersed Liquids [J], AD-863268, 1969
    [67]D.R.Gardener, M.W. Glass. A coupled near-field, Far-field Disperal Model for Fuel-air-explosive [J]. SAND-90-0687,1991
    [68]陆守香.爆炸成雾效果因素的研究.中国煤炭学会第六届青年科技学术研讨会文集.煤炭工业出版社.2000,11:73-76
    [63]蔡庆军,韩肇元,万群等.液体环对称抛撒首次破碎后期的实验研究[J].流体力学实验与测量,2000,14(1):1-7
    [64]杨林,唐川林,张凤华等.爆震雾化射流用于灭火的可行性研究[J].中国安全科学学报,2003,7(13):12-14
    [65]杜青,刘宁,杨延相等.受激液体射流的非轴对称模式[J].燃烧科学与技术,2002,8(2):181-184
    [66]M. Samirant, G. Smeetset al. Dynamic Measurements in Combustible and DetonableAerosoles[J]. Propellants, Explosive&Pyrotechnics,1989,14:47-556
    [67]陈军,吴国栋,韩肇元,蔡庆军。FAE爆炸抛撒后云雾液滴尺寸的测量[J].爆 炸与冲击,2003,23(1):74-77
    [68]万群,韩肇元,杨磊等.有约束,轴对称抛撒条件下液体破碎,雾化的远场研究[J].实验力学,2003,18(4):452-457
    [69]吴德义,杨基明.爆炸抛撒液体最大速度的确定[J].爆破,2002,19(2):7-8
    [70]张奇,郭彦,白春华等.中心药量对燃料的抛撒作用[J].火炸药学报,2001(1):17-19
    [71]薛社生,刘家骢,彭金华.液体燃料爆炸抛撒的近场阶段研究[J].南京理工大学学报,1997,21(4):333-33
    [72]吴德义.冲击波作用下液体抛撒及界面运动的研究[D].中国科技大学,2002.12
    [73]蔡庆军,韩肇元,万群,张寿齐.液体环二次破碎所形成云雾颗粒尺寸测量和测试系统的标定[J].爆炸与冲击,1999,19(2):151-157
    [74]史绍熙,苏万华,汪洋.一种测量柴油喷雾SMD的新方法[J].内燃机机学报,1996,14(3):221-228
    [75]汪洋,史绍熙,苏万华.用激光诱导荧光法(LIF)研究燃油喷雾的碰壁混合过程[J].燃烧科学与技术,1996,2(4):329-341
    [76]蔡庆军,韩肇元,万群,张寿齐.液体环二次破碎所形成云雾颗粒尺寸测量和测试系统的标定[J].爆炸与冲击,1999,19(2):151-157
    [77]高殿容,王益群等.DPIV技术及其在流场测量中的应用[J].液压气动与密封,2001,10(5):30-39
    [78]孙柏刚,冯旺聪,李向荣,郑士琴.PIV在柴油喷雾测试中的应用J].车用发动机,2004, (2):45-50
    [79]徐琼.片光源成像火灾烟雾探测方法的研究[D].中国科技大学,2002.9
    [80]郎锐.数字图像处理学Visual C++实现[M].北京希望出版社,2003.1
    [81]徐慧等Visual C++数字图像实用工程案例精选[M].人民邮电出版社,2004.3
    [82]Faeth G M, Hsiang L P, Wu P K. Structure and Breakup Properties of Sprays, Int. J. Multiphase Flow.1995,21:99-127
    [83]Widdecke N, Klenk W, Frohn A. Impact of Strong Shock Waves on monodisperse Isopropanol Droplet Streams,1995, In:20 th ISSW:89-94
    [84]周世昌.水力采煤的水力学理论[M].人民教育出版社,1960.4
    [85]Rosenblatt Eggum G E, Kreyenbagen K N. DIVICE-FAF analysis of fuel dispersal and detonation from a fuel-air-explosive device. AFATL-TR-76-33.1976
    [86]H.欧特尔著,朱自强,李宗端等译.普朗特流体力学基础[M].科学出版社,2008
    [87]薛社生.液体燃料的爆炸扩散研究[D].南京理工大学,1997.10
    [88]丁珏.液体的爆炸抛撒理论模型及全过程数值模拟[D].南京理工大学,2002.5
    [89]马素平,寇子明.喷雾降尘效率的研究与分析[J].太原理工大学学报,2006,37(3):327-330
    [90]马素平,寇子明.喷雾降尘机理的研究[J].煤炭学报,2005,(3):297-300
    [91]黄俊.水射流除尘技术[M].西安:西安交通大学出版社,1993,12
    [92]侯凌云,侯晓春.喷嘴技术手册[M].北京:中国石化出版社,2002.8
    [93]李占军,田云生,汪旭光.加速粉尘凝聚降低爆破拆除扬尘的理论研究[J].爆破器材,2005,34(5):14
    [94]陆厚根.粉体技术导论(第二版)[M].上海:同济大学出版社,20037
    [95]金龙哲.粘结式防尘技术的研究与应用[D].中国矿业大学北京研究生部,1997
    [97]李一兴,王玉璋,翁史烈等.高速摄影仪研究单水滴运动的实验初探[J].应用激光,2006,26(4):247-250
    [98]张文斌,祁海鹰,由长福,徐旭常.碰撞诱发颗粒团聚及破碎的力学分析[J].清华大学学报(自然科学版),2002,42(12):1639-1643
    [99]Arastoopour H, Huang C S, Weil S A. Fluidization behavior of particles under agglomerating conditions [J]. Chem Eng Sci,1988,,43:3063-3075
    [100]Hoomans B P B, Kuipers J A M, JbrielsW, et al. D iscrete particle simulation of bubble and slug formation in two —dimensional gas— fluidized bed:A hard sphere approach[J]. Chem Eng Sci,1996,51: 99-108
    [101]袁颖,王京刚.荷电水雾除尘过程中颗粒运动轨迹的数值模拟[J].北京化工大学学报,2005,32(1):31-35
    [102]由长福,祁海鹰,徐旭常.煤粉颗粒所受Magnus力的数值模拟[J].工程热物理学学报,2001,22(5):624-628
    [103]王兆霖,李洪钟.细颗粒的团聚流态化及判定[J].化工冶金,1995,16(4):312-319
    [104]傅献彩,沈文霞,姚天扬.物理化学(第四版下册)[M].北京:高等教育出版社,2003,4
    [105]陈颖尧,吴健光.广州体育馆爆破拆除的粉尘控制[J].爆破,2001,18(4):66-68
    [106]李战军,田会礼,孟海利等.水预湿降低爆破粉尘初探[J].煤炭科学技术,2004,32(6):68-70
    [107]李战军,汪旭光,郑炳旭等.可靠性理论在建筑爆破拆除抑尘分析中的应用[J].工程爆破,2004,10(2):5-7
    [108]成,马天宝.爆炸与冲击动力学[M].北京:国防工业出版社,2010,9
    [109]杨秀敏.爆炸冲击现象数值模拟[M].合肥:中国科学技术出版社,2010,9
    [110]汪旭光.中国典型爆破工程与技术[M].北京:冶金工业出版社,2006:1105-1108

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700