用户名: 密码: 验证码:
城市生活垃圾填埋体渗透性能量化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
填埋法处理城市生活垃圾会产生大量污染物浓度高、持续时间长、流量极不均匀且水质变化大的渗滤液。而这些渗滤液如不加处理则很有可能成为地下水污染的一个源头,对周围环境产生二次污染。为了尽量减少渗滤液对地下水的污染,就必须确定产生的水量,并对渗滤液水质进行预测,才能采取相应的工程措施,收集和处理渗滤液。控制和治理垃圾渗滤液需要对垃圾渗滤液的产生和运移规律进行研究,而垃圾填埋体渗透系数作为垃圾渗滤液产生、运移研究的基本参数,其变化规律对垃圾渗滤液产生和运移的研究有着非常重要的影响。
     论文通过资料收集、理论分析的方法,确定了影响城市生活垃圾填埋体渗透性能的主要影响因素,在此基础上通过室内物理模拟城市生活垃圾填埋体温度变化、垃圾降解规律、主压缩沉降阶段城市生活垃圾填埋体渗透性能变化规律,建立了城市生活垃圾填埋体渗透性能数学模型。
     通过国内外文献查阅和理论分析,对垃圾本身的物理性质和填埋作业中垃圾所处的不同环境对城市生活垃圾填埋体渗透性能的影响进行分析判断,选取垃圾密度、填埋高度、有效压力、垃圾沉降、垃圾成分等因素作为分析论证的重点,经过理论分析认为城市生活垃圾填埋体渗透性能的变化是由于垃圾填埋体本身骨架的变化引起,它反映在宏观现象上就是垃圾填埋体的沉降,而垃圾沉降主要与垃圾的填埋深度和垃圾中有机成分的降解有关。因此影响城市生活垃圾体渗透性能变化的主要因素是垃圾填埋深度与垃圾有机成分降解率。
     选取29、33、37、41、45℃作为室内物理模拟城市生活垃圾填埋体降解率试验研究的参数值,通过对城市生活垃圾填埋体渗滤液pH值、COD、NH3-N浓度和填埋气体中CH4浓度的试验,判断垃圾在降解过程中所处的阶段,并通过碳原子守恒对城市生活垃圾降解率进行计算,通过对城市生活垃圾降解律计算数据进行统计分析认为,单—温度下城市生活垃圾降解律变化规律随时间大致符合生长曲线,41℃与45℃城市生活垃圾降解速度最快,城市生活垃圾降解率相差不大,可以认为当温度大于41℃,城市生活垃圾降解律可以按照41℃时降解律计算。
     选取成都市长安垃圾卫生填埋场新鲜垃圾进行室内温度变化物理模拟,监测了垃圾柱温度、渗滤液COD、氨氮、CH4浓度变化情况,按照城市生活垃圾降解过程,将整个试验过程划分为好氧分解阶段、厌氧分解产酸阶段和厌氧分解产甲烷阶段三个阶段。总体上垃圾温度变化经历先升高后降低的变化过程,在好氧分解阶段垃圾温度上升较快,大部分时间温度始终保持上升状态。在厌氧分解的产酸阶段,垃圾温度会出现变化的反复性,垃圾温度的最高值将会产生在厌氧分解的产酸阶段的前半部分。而在厌氧分解产甲烷阶段垃圾温度将保持持续下降的状态。
     将城市生活垃圾渗透性能变化划分为两个阶段—主压缩沉降阶段和次压缩沉降阶段,在这两个阶段内影响垃圾填埋体渗透性能的主要因素分别为垃圾填埋高度和垃圾降解率。选取处于4种压力状况下的城市生活垃圾填埋体,对其主压缩沉降阶段渗透性能进行室内物理试验,试验中4种压力状况下垃圾填埋体试验测定分析符合达西定律,其COD变化处于产酸阶段,对渗透性能的影响可以不予考虑;对垃圾渗透系数计算表明,处于主压缩沉降阶段内,除没有施加压力状况下垃圾填埋体渗透性能变化规律与其他试验表现不尽相同外,其他垃圾填埋体渗透系数变化大致符合自然指数规律;在假设垃圾填埋体渗透性能在同一水平方向上基本不变的基础上,可以认为垃圾填埋体渗透性能在垂直方向上服从自然指数变化规律;根据两个阶段内主要因素对垃圾渗透性能的贡献量的大小,建立了城市生活垃圾渗透性能变化规律数学模型。
Landfill method will generate large amount of leachate with high concentration of pollutant, long duration and uneven flow and water quality change. Whereas this sort of leachate, if not treat properly, will become the source of underground water contamination, causing secondary pollution. In order to reduce the contamination of underground water, water amount and quality should be predicted to select the engineering measures of leachate collection and treatment. Research on the regulation of leachate production and migration is necessary for controlling and disposing the leachate. While as the essential parameter for leachate production and migration, the permeability coefficient has a great impact on the study of production and migration.
     This dissertation uses the methods of data collection, theoretical analysis to determine the main impact of municipal solid waste landfill body permeability. Based on this, through the indoor physical simulation temperature change of MSW landfill body, waste degradation discipline, the change law of municipal solid waste landfill body permeability in the main compression settlement stage, a mathematical model of municipal solid waste landfill body permeability is built.
     By searching domestic and foreign literature and theoretical analysis, analysis were carried out on the impact the refuse physical nature and landfill operations in different environments on landfill body permeability, selecting waste density, landfill height, effective pressure, waste deposition, waste composition and other factors as the key point for analyzing and demonstration. By theoretical analysis, it can be considered that the permeability MSW landfill body change is mainly due to their skeleton, which could be observed as settlement when reflected in the macro-phenomena, whereas the settlement is closely related to landfill depth and biodegradation of the organic components. Therefore the main factors on the permeability are the landfill depth and biodegradation rate of organic ingredients.
     Select 29,33,37,41,45℃as the parameter values for the degradation rate experiments of the indoor physical simulation of municipal solid waste landfill body. By researching pH value, COD, NH3-N concentration in the leachate and CH4 concentration in the landfill gas, determine the stage of the refuse stated. And then use carbon atoms conservation to calculate the degradation rate of the MSW. After statistical analysis of the calculation data of MSW degradation rate, it concluded that degradation rate accord with growth curve in single temperature, and degraded the fastest at 41℃and 45℃, showing similar the degradation rate. When temperature is over 41℃, the degradation rate could be calculated according to that in 41℃.
     This study collected newly dumped refuses from Changan Landfill to set up indoor physical simulation column experiments on temperature variation, in which the temperature of refuse column, COD of leachate, NHx-N and concentration of CH4 were monitored. According to the refuse degradation processing, the whole experiment was divided into aerobic degradation stage, acidogenic stage of anaerobic degradation and methanogenic stage of anaerobic degradation). Temperature in refuse columns increased first and then decreased as a whole. Temperature increased drastically at aerobic degradation stage. During the acidogenic stage of anaerobic degradation, temperature changed repeatedly because of small amount of heat was released by anaerobic process, and the maximum temperature occurred at the first part of acidogenic stage of anaerobic degradation. While in the methanogenic stage of anaerobic degradation, the temperature kept decreasing.The variation of landfill's permeability could be divided into two stages:the main compression settlement stage and the second compression settlement stage. The main impact factors of these two stages were landfill height and refuse degradation rate, respectively. In lab simulation, landfills under four different pressure conditions were chosen to analyze the permeability characteristics during main compression settlement stage. It was shown that permeability analysis results under four pressures were consistent with Darcy's law and COD variation happened in acidogenic phase, whose influence could be ignored. With the exception of the experiment under no external pressure, the permeability characteristics in other landfill simulations during the main compression settlement stage were roughly following the natural exponential law. Under the assumption that permeability of landfill's body is kept essentially constant in horizontal direction, it can be assumed that the change of permeability conform to natural exponents in vertical direction; Based on the main factors'contributions to permeability in the two stages, the mathematical models of MSW permeability are established.
引文
[1]聂水丰.三废处理工程技术手I册—固体废物卷[M].化学工业出版社,2000.
    [2]芈振明.周体废物的处理与处置[M].高等教育出版社.1992.
    [3]George Tchobanoglous, Hilary Theisen, Samuel Vigil. Integrated Solid Waste Management—Engineering Principles and Management Issues[M].清华大学出版社.2000.
    [4]赵山才,朱青山.城市生活垃圾卫生填埋场技术与管理手册[M],化学工业出版社,1999.
    [5]赵山才,黄仁华.生活垃圾卫生填埋场现场运行指南[M].化学工业出版社,环境科学与工程出版中心.2001年.
    [6]杨国清.固体废物处理工程[M],科学出版社.2000.
    [7]沈阳市环境卫生工程设计研究院主编.城市生活垃圾卫生填埋技术规范(CJJ17-2001) [M],中国建筑工业出版社,2001年.
    [8]吴鸿钧.城市垃圾处理技术及应用前景,环境保护[J],2000, No.12, p14-16.
    [9]韩怀芬.适合我国国情的城市生活垃圾处理方法[J].环境污染与防治.2000,No.6,p40-41.
    [10]李国建.城市垃圾处理与处置[M].中国环境科学出版社.1992.
    [11]王中民.城市垃圾处理与处置[M].中国建筑工业出版社.1991.
    [12]高光等.城市垃圾处理与管理对策研究[J],城市环境与城市生态.2000,No.2, p39-41.
    [13]冯亚斌,陈全,关于我国垃圾填埋场目前存在问题的探讨[J].环境保护.2000,No.10, p14-16。
    [14]王罗春,赵山才,陆雍森.垃圾填埋场稳定化及其研究现状[J].城市环境与城市生态.2000,No.5,p36-39.
    [15]国家环境保护总局.中国环境状况公报[R].2007.
    [16]张新亚.城市生活垃圾资源化处理与可持续发展[J].苏州城建环保学院学报.1999,No.3,p73-77.
    [17]金冬梅.城市生活垃圾的处理和防治污染对策[J].城市环境与城市生态.1996,No.3,p62-64.
    [18]温志良,温琰戊,吴小锋.城市生活垃圾综合处理研究[J].环境保护科学.2000,No.99,p14-16.
    [19]江源.解决中国城市生活垃圾问题的系统工程思路[J].科技导报.1998,No.3,p50-54.
    [20]孙晓芹.某些国家对控制城市生活垃圾的几种措施简介[J].重庆环境科学.1999,No.2,p57-58,
    [21]David E. Bleiker,Grahame Farquhar and Edward McBean, Landfill Settlement and the impact on site capacity and refuse hydraulic conductivity[J], Waste Management & Research,1995, No.13, p533-554.
    [22]Edil, T. B., Ranguette, V. J.& Wuellner, W. W., Settlement of Municipal Refuse, Geotechnics of Waste Fills—Theory and Practice. ASTM STP 1070 (A. Landva & G. D. Knowles, eds).Philadelphia, U.S.A.:American Society for Testing and Materials.
    [23]Edil T B, Ranguette VJ, Wuellner W W, Settlement of municipal refus[J]e, Geotechnics of Waste Fills—Theory and Practice,1990,p225-239.
    [24]Parker, K. H., Mehta, R. V.& Caro, C. G. Steady flow in porous, elastically deformable materials[J]. Journal of Applied Mechanics,1987,December, pp.794-800.
    [25]Leroueil, S. Tenth Canadian Geotechnical Colloquium:Recent Developments in Consolidation of Natural Clays. Canadian Geotechnical Journa,1988, No.25,p 85-107.
    [26]Bleiker, D. E., McBean, E.& Farquhar, G. Refuse Sampling and Permeability Testing at the BrockWest and Keele Valley Landfills. Proceedings of the sixteenth International Madison Waste Conference.Department of Engineering Professional Development, University of Wisconsin, Madison/Extension, Madison, U.S.A.1993.
    [27]Watts K S, Charles J A, Settlement of recently placed domestic refuse landfill, Proceedings of the Institution of CivilEngineers,Partl,1995,No.88, p971-993.
    [28]J. Islam, N. Singhal, A one-dimensional reactive multi-component landfill leachate transport model[J], Environmental Modelling & Software,2002, Vol.17, p531-543.
    [29]Mehrdad Hashemi, Halil I. Kavak, Computer simulation ofgas generation and transport in landfills—Ⅰ:quasi-steady-state condition[J], Chemical Engineering Science,2002, Vol.57, p2475-2501.
    [30]Naresh Singhal, Jahangir Islam, One-dimensional model for biogeochemical interactions and permeability reduction in soils during leachate permeation [J], Journal of Contaminant Hydrology, 2007, Vol.16, p78-90.
    [31]Raudel Sanchez, Theodore T. Tsotsis,Computer simulation of gas generation and transport in landfills. Ⅲ:Development of lanfills'optimal model[J], Chemical Engineering Science,2007, Vol.62, P6378-6390.
    [32]彭绪亚,余毅,刘国涛,不同降解阶段填埋垃圾体的气体渗透特性研究[J],中国沼H,2003, Vol.21, p8-11.
    [33]瞿贤,何品晶,邵立明,李国建,城市生活垃圾渗透系数测试研究[J],环境污染治理技术与设备,2005, Vol.16,p13-17.
    [34]Landva, A O. Clark, J I. Geotechnical of waste fill [J]. ASTM Special Technical Publication,1990, n1070, p 86-103,
    [35]Oweis, I S. Smith, D A. Greene, D S. Hydraulic characteristics of municipal refuse[J] Journal of geotechnical engineering,1990, vol.116, n4, p539-553
    [36]Calcagnile, G.; First Application of the Gravimetric Method to the Study of Landside Bodies [J]. A. A. Balkema, Neth. Distributed in USA,1992, vol.3, p129-134,
    [37]Bookter, T J. Ham, R K. Stabilization of Solid Waste in Landfills [J]. Journal of the Environmental Engineering Division,1982, vol.108, p1089-1100.
    [39]Wall, D.K. Zeiss, C. Municipal landfill biodegradation and settlement [J].Journal of Environmental Engineering,1995, vol.121, p214-224.
    [40]Edil, T B. Ranguette, V J. Wuellner, W W. Settlement of municipal refuses [J] ASTM Special Technical Publication,1990, n1070, p225-239.
    [41]Emberton, J.R. Parker, A. Problems Associated with Building on Landfill Sites [J]. Waste Management and Research,1987, vol.5, p473-482.
    [42]Tang, W H. Gilbert, R B. Probabilistic observation method for settlement-based design of a landfill covers [J]. Geotechnical Special Publication,1994, vol.2, p1573-1589.
    [43]Morris, D V. Woods, C E. Settlement and engineering considerations in landfill and final cover design [J]. ASTM Special Technical Publication,1990, n1070, p9-21.
    [44]张振营,陈云敏.城市垃圾填埋场有机物降解沉降模型的研究[J].岩十力学.2004,Vo125,p238-241.
    [45]Leckie, J.O. Pacey, J.G.; Halvadakis, C. Landfill management with moisture control [J]. J. ENVIRON. ENG. DIV. AM. SOC. CIV. ENG.1979, vol.105, p337-355.
    [46]Kurzeme, M. Walker, L.K. Building on Waste Fill Sites [J]. National Conference Publication-Institution of Engineers, Australia,1985, n85/14, p64-69.
    [47]Leckie, J.O. Pacey, J.G. Halvadakis, C. Landfill management with moisture control [J]. J. ENVIRON. ENG. DIV. AM. SOC. CIV. ENG.,1979, vol.105, p337-355.
    [48]Pelkey, S A. Valsangkar, A J. Landva, A Shear Displacement Dependent Strength of Municipal Solid Waste and Its Major Constituent [J]. Geotechnical Testing Journal,2001, vol.24, p381-39.
    [49]Tagaris, E. Sotiropoulou, R P. Pilinis, C. Halvadakis, C P. Atmospheric methane transport near landfill sites [J]. Waste Management and Research,2003, vol.21, p62-73.
    [50]Farquhar, G.J. Rovers, F A. Gas production during refuse decomposition [J]. Water, Air, and Soil Pollution,1973, vol.2, p483-495.
    [51]胡敏云,陈云敏,温振统.城市垃圾填埋场垃圾土压缩变形的研究[J].岩土工程学报2001,vol.23,No.1,p123-126.
    [52]Suflita, J. World's largest landfill [J] Environmental Science and Technology,1992, Vol.26, No.8, p1486.
    [53]Farquhar G. J. and Rovers F. A. Gas production during refuse decomposition[J]. Water Air and Soil Pollution.1973,2(10):483-499
    [54]Rees J. F. The fate of carbon compounds in the landfill disposal of organic matter[J]. Journal of Chemical Technology and Biotechnology.1980,30:161-172
    [55]Ehrig H. J. Laboratory scale tests for anaerobic degradation of municipal solid waste[C]. Proceedings of the International Solid Waste Association Conference. Phil., PA. USA
    [56]Pohland F. G. and Harper S. R. Critical review and summary of leachate and gas production from landfills[R]. EPA/600/2-86/073, Cincinnati, OH, U.S.A.:U.S. Environmental Protection Agency, 1986
    [57]Ham R. K. and Barlaz M. A. Measurement and prediction of landfill gas quality and quantity[C]. Proceeding of the ISWA symposium on process, technology and environmental impact of sanitary landfills. October 1987,20-33, Cagliari, Sardinia, Italy
    [58]Barlaz M. A. Microbiological and chemical dynamics during refuse decomposition in a simulated sanitary[D]. Ph. D. thesis. University of Wisconsin-Madison.1988
    [59]Pavlostathis S G, Misra G, Prytula M. Anaerobic processes[J]. Water Environment Res.1995, 67(4):459-470
    [60]顾夏声,黄铭荣,王占生等.水处理工程[M].北京:清华大学出版社,1985
    [61]芈振明,高忠爱,祁梦兰等.固体废物的处理与处置[M].北京:高等教育出版社,1996
    [62]高忠爱.固体废物的处理与处置[M].北京:高等教育出版社,1993
    [63]张自杰.排水工程(下)[M].北京:建筑工业出版社,1996
    [64]Kenneth E H, Robert E K, Robert K H. Temperature effects:methane generation from landfill samples [J]. Journal of Environmental Engineering Division.1982,108:629-638
    [65]M A Barlaz, M W Mike, R K Ham. Gas Production Parameters in Sanitary Landfill Simulators[J]. Waste Management and Research.1987,5 (1):27-39
    [66]Mata-Alvarez J. and Martinez-Viturtia A. Laboratory simulation of municipal solid waste fermentation with leachate recycle[J]. Journal of Chemical Technology and Biotechnology.1986, 36:547-556
    [67]Robert K H, Michele R N, Paul F. Fritschel chemical characterization of fresh kills landfill refuse and extracts [J]. Journal of Environmental Engineering.1993,119 (6):1176-1195
    [68]赵山才,郭兴民,朱琳楠.垃圾填埋场稳定化研究(I)[J].重庆环境科学.1994,16(5):8-11
    [69]McBean E A, F A Rovers, G J Farquhar. Solid Waste Landfill Engineering and Design[M]. New Jersev:Prentice Hall,1995:73-80
    [70]F. Chaiampo, et al. Morphological Characterisation of MSW Landfills[J]. J. Res. Conver. and Recyling.1996,17 (2):37-45
    [71]彭绪亚,黄文雄,刘国涛,余毅.城市生活垃圾填埋产沼的模拟实验[J].城市环境与城市生态.2003,16(3):5-7
    [72]罗锋,陈万志,李小鹏,曹琳,范例.三种垃圾填埋场单元模拟器对废物降解的对比试验[J].中国环境科学.2004,24(4):474-479
    [73]侍倩,柳利霞.生活垃圾卫生填埋场产气规律及污染[J].环境科学与技术.2005,28(1):24-25、 84
    [74]李帆,张增强,黄启飞,王琪,田艳锦.准好氧填埋工艺温度变化特性研究[J].西北农林科技大学学报(自然科学版).2006,34(6):85-90
    [75]郭丽芳,郑泽根,曾晓岚,丁文川.采用垃圾准好氧填埋消除酸积累现象的试验研究[J].中国给水排水.2006,22(7):105-108
    [76]龙焰,沈东升,劳慧敏,胡宏.填埋场中垃圾降解微生物机理研究进展[J].浙江大学学报(农业与生命科学版).2006,32(1):9-13
    [77]吴满昌,孙可伟,李如燕,孙艳,张海东.不同反应温度的城市生活垃圾厌氧发酵研究[J].化学与生物工程.2005,(9):28-30
    [78]Michael J. Broughton, et al. Anaerobic batch digestion of sheep tallow [J]. Wat. Res.1998,32(5): 1423-1428
    [79]H. Bouallagui, O. Haouari, Y. Touhami, R. Ben Cheikh, L. Marouani, M. Hamdi. Effect of temperature on the performance of an anaerobic tubular reactor treating fruit and vegetable waste [J]. Process Biochemistry.2004,39:2143-2148
    [80]吴怀明.我国生活垃圾的现状态势及其控制对策[J].环境与开发.2000,15(2):42-43
    [81]马文漪主编.环境微生物工程[M].南京:南京大学出版社,1998
    [82]陈世和主编.微生物生理学原理[M].上海:同济大学出版社,1992
    [83]曹作忠,陈军平,高海成等.生活垃圾堆肥应注意的若干技术经济问题[J].环境保护.2002,(8):39-42
    [84]高光,董雅文,金浩波等.城市垃圾处理与管理对策研究[J].城市生态与城市环境.2000,13(2):39-41
    [85]李国学,张福锁编著.固体废物堆肥化与有机复混肥生产[M].北京:化学工业出版社,2000
    [86]王绍文梁富智等.固体废弃物资源化技术与应用[M].冶金T业出版社,2003
    [87]沈东升,何若,刘宏远.生活垃圾填埋生物处理技术[D].化学工业出版社,2003.4
    [88]Gendebien A, et al. Landfill—From Environment to Energy. Report of the Commission of the European Communities[R]. EUR 14017/1 EN,1992:179-182
    [89]王罗春,赵山才,陆雍森.城市生活垃圾填埋场稳定化影响因素概述[J].上海环境科学.2000,19(6): 292-295
    [90]联邦德国环境保护局.生活垃圾特性分析指南[M].中国环境科学出版社,1989
    [91]王罗春,赵山才,陆雍森.垃圾BDM分析及其应用[J].环境卫生工程.2003,11(1):6-8
    [92]刘富强,唐薇,聂永丰.城市生活垃圾填埋的产气过程实验室模拟[J].中国沼气.2001,19(1):22-26
    [93]国家环境保护总局,《水和废水监测分析方法》编委会编.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002
    [94]唐青云,王琪,董路.便携式红外线分析系统在垃圾填埋场的应用[J].分析仪器.2002(3):40-42
    [95]赵莉,陈涛.生活垃圾填埋场渗滤液中氨氮的脱除技术综述[J].重庆环境科学.2003,25(1I):164-166
    [96]刘东,喻晓,罗毅等.城市生活垃圾填埋场渗滤液特性分析[J].环境科学与技术.2006,29(6):55-57
    [97]黄鹏.浅谈垃圾填埋二次污染的防治[J].环境科学与技术.2005,28(增刊):145-146
    [98]M.EI-Fadel, Simulating temperature variations in landfills [J], Journal of solid waste technology and management,1999,26:p78-86.
    [99]L. Manna, M.C. Zanetti, G. Genon. Modeling biogas production at landfill site [J]. Conservation and Recycling.1999,26:p1-14.
    [100]王罗春.城市生活垃圾填埋场稳定化进程究.同济大学博士论文(D)1999.
    [101]Robinson, John; White, Jim; Modelling the biochemical degradation of solid waste in landfills [J], Waste Management,2004,24:p 227-240.
    [102]Pirt.S.J. Aerobic and anaerobic microbial digestion in waster reclamation [J], Journal of applied chemistry and biotechnology,1988,28:p232-236.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700