用户名: 密码: 验证码:
旋转电弧GMAW焊接热过程数值模拟及焊缝成形质量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旋转电弧传感器具有抗强磁场、抗弧光和抗高温的独特能力,它与焊接电弧总是统一的整体,可以进行实时焊缝跟踪,因此它具有工业应用的前景。目前对该项技术的研究主要集中在焊缝跟踪上,对焊接热过程及焊缝成形等方面的研究较少。由于旋转电弧焊接的复杂性,其焊接工艺参数颇多,如果仅仅靠焊接试验来选择优化焊接工艺,必将花费较多的人力和物力。因此,利用数值模拟技术以及参数优化技术,研究旋转电弧GMAW(熔化极气体保护电弧焊)热过程的三维瞬态温度场和三维瞬态熔池的动态变化过程,掌握旋转电弧焊接的成形规律和智能优化方法,对于旋转电弧传感器技术的广泛应用,有着重要的学术理论和工程实用的意义。
     根据旋转电弧GMAW的特点,以低碳钢Q235-A作为焊接工件,选择三种热源模型,即高斯热源模型、双椭圆热源模型和双椭球热源模型,对这几种热源模型的焊接温度场的分布和熔池形状进行了数值模拟计算,并将焊缝形状尺寸的数值模拟结果与实际焊接的实验结果相对比,结果表明,以高斯热源所模拟计算的焊缝形状尺寸吻合得较好。在此基础上,用高斯热源模型进行数值模拟,研究旋转电弧在焊接热过程中三维瞬态温度场和三维瞬态熔池的变化规律,用数值模拟的方法计算出工件上一些点的热循环曲线和热循环参数,借助于红外线测温仪获得了这些点的实际热循环曲线,通过对比,计算的热循环曲线与实验所得的结果吻合得较好,为焊接冶金的分析和焊接微观质量的控制提供了基础。
     在ANSYS软件及其二次开发平台上,运用APDL参数化编程技术,对不同的旋转电弧GMAW焊接工艺参数下的焊接热过程进行了进一步的研究,获得了焊接电流、焊接电压、焊接速度、旋转半径、旋转频率和旋转方向等6个工艺参数对三维瞬态焊接温度场和三维瞬态熔池的形状尺寸的影响规律。为旋转电弧在GMAW中优化工艺参数的选择奠定了理论基础。
     为了在实际应用中方便快速地获得优化焊接工艺参数,摆脱在焊接工艺设计中对经验依赖的束缚,采用BP网络建立了预测模型,预测焊接工艺参数与焊缝尺寸的关系。在此基础上采用遗传算法进行寻优,得出最优的焊接工艺参数值,并用实验验证了优化工艺参数的正确性。
     使用旋转电弧传感器进行了焊接实验,利用金相显微镜对所焊接的接头进行了宏观和微观的研究,结果表明,旋转电弧传感器所焊接的焊缝余高比正常直线运动焊接的焊缝余高要低,且平滑过渡也较好。旋转电弧的不同焊接工艺参数对焊接接头的微观组织有影响,这与旋转电弧焊接时的热循环曲线有直接的关系。对用旋转电弧传感器焊接的接头进行了力学性能和硬度实验研究,结果表明,用根据本文的优化模型所得的焊接工艺参数焊接的接头符合力学性能的要求,焊缝质量是合格的。
Rotating arc sensor with the unique ability of anti-magnetic field, anti-arc, and resisting high temperature resistant, is always consistent with the welding arc. The rotating arc sensor can be used as real-time seam tracking and has the prospect of industrial application. Current research mainly focuses on the technology of seam tracking, while there are few studies on the welding heat transfer and welding shape of rotating arc sensor. Due to the complexity of the rotating arc welding and lots of welding parameters, it will take high human and material resources if only using welding test to select the optimal welding process parameters. Therefore, it has important theoretical and practical engineering significance to use the numerical simulation and optimization technology to research three-dimensional transient temperature field and three-dimensional dynamic process of transient pool under rotating arc welding GMAW (Gas metal arc welding) thermal process. This technology is important to master rotating arc welding method for weld forming rules and intelligent optimization for the extensive use of rotating arc sensor technology.
     According to the characteristics of rotating arc GMAW, three heat source models (Gaussian heat source model, double elliptic heat source model and double ellipsoid heat source model) were used for low carbon steel Q235-A work pieces. The welding temperature distribution and molten pool shapes were analysied by numerical simulation and then the numerical simulation results of weld shape were compared with experimental results of actual welding. The results show that the shape and size of the weld is agreed well with the simulation results by using Gaussian heat source model. Then, Gaussian heat source model was used to study 3D transient temperature distribution and 3D transient pool. The thermal cycle curve and parameters of a few specified points on work pieces were calculated by means of numerical simulation. By comparison, the calculated thermal cycling curve coincides well with experimental results which provided the foundation of analysis on welding metallurgy and the control of welding microstructure.
     Based on the ANSYS software and second developing platform, a further research was done with APDL parametric programming technique on welding thermal process of different rotating arc welding parameters GMAW to obtain the influence law on 3D transient temperature field and 3D transient pool caused by processing parameters such as welding current, welding voltage, welding speed, the rotation radius, rotating frequency and rotation direction, which was a theoretical basis in the selection of technological parameters on rotating arc in GMAW.
     In order to quickly and easily obtain optimizing welding process parameters and get rid of the bondage of the experience of welding design in practical applications, the BP network was adopted here to construct a forecast model to predict the relationship between welding parameters and weld size. On this basis, the genetic algorithm is used to global optimization and find out the best welding process parameters and then the correctness of the optimization process parameters is verified by experiment.
     The rotating arc sensor was used in welding experiments and the welding joint was observed in macroscopic and microscopic observation by microscope. The results showed that the weld reinforcement of rotating arc sensor welding is lower than that of normal linear motion welding and its transition is smoother. Different process parameters of rotating arc welding affect the welding joint microstructure, which directly related to the thermal cycling curve of rotating arc welding. Mechanical properties and hardness experimental research on the welding joint of rotating arc sensor were processed. The results showed that:the welding joint using the parameters got by the optimization model can meet the requirements of the mechanic performance and welding quality is eligible.
引文
[1]雷世明.焊接方法与设备[M].北京:机械工业出版社.2004.
    [2]潘际銮.展望21世纪焊接科研[J].中国机械工程,2000,11(1-2):21-25.
    [3]陈丙森.计算机辅助焊接技术[M].北京:机械工业出版社.1999.
    [4]第3届材料及热加工物理模拟与数值模拟国际学术会议(ICPNS'99)[J].中国机械工程,1999,10(12):126.
    [5]潘际銮.现代弧焊控制[M].北京:机械工业出版社,2000.
    [6]贾剑平,张华.用于弧焊机器人的新型高速电弧传感器的研制[J].南昌大学学报,2000(1):1-4.
    [7]廖宝剑.以电弧为传感器的多自由度智能焊接系统研究[D].清华大学博士学位论文,1993.
    [8]熊震宇.旋转电弧传感弧焊机器人焊缝纠偏智能控制系统[D].南昌大学博士学位论文,2002.
    [9]德国CLOOS公司ROMAT 76AW弧焊机器人技术资料.
    [10]M KODAMA, H GODA, H IWABUTI. Arc sensor for simultaneous detection of torch aiming deviation and gap width—development of high frequency oscillation arc [J]. Welding International,2001,15(12):952~964.
    [11]M KODAMA. Simultaneous control of torch aiming and deposition rate to groove gap with high frequency oscillation arc sensor—development of high frequency oscillation arc [J]. Welding international,2002,16(3):196~204.
    [12]中国机械工程学会焊接学会.焊接手册第一卷,焊接方法及设备[M].北京:机械工业出版社,1992.
    [13]Nomura, HirokazuSugitani Yuji. Development of automatic fillet welding process with high speed rotating arc [J]. Transactions of the Japan Welding Society.1987,18(2):26~34.
    [14]Sugitani Yuji, Murayama, Masatoshi, et al. Development of articulated arc welding robot with high speed rotating arc process [J]. NKK Technical Review,1989(57):111~117.
    [15]C-H Kim, S-J Na. A study of an arc sensor model for gas metal Arc welding with rotating arc-Part 1:Dynamic simulation of wire melting [C]. Proceedings of the Institution of Mechanical Engineers-Part B,2001,215(B9):1271~1279.
    [16]C-H Kim, S-J Na. A study of an arc sensor model for gas metal arc welding with rotating Arc-Part 2:Dynamic simulation of wire melting [C]. Proceedings of the Institution of Mechanical Engineers-Part B,2001,215(B9):1281~1288.
    [17]Sang-Kwun Jeong, Gun-You Lee. Development of high speed rotating arc sensor and seam tracking controller for welding robots [C].2001 IEEE International Symposium on Industrial Electronics,2001, vol.Ⅱ, pp.845~850.
    [18]C-H. Kim, W-S. Yoo, S.-J. Na. Development of an arc sensor with mechanized rotation of electrode [C]. Materials Science Forum.2003,426-432(5):4135~4140.
    [19]U.Dilthey, J.Gollnick. Through-the-arc-sensing in GMA-Welding with high speed rotating torch [C]. Industrial Electronics Society. Proceedings of the 24th Annual Conference of the IEEE,1998, pp.1017~1026.
    [20]费跃农.电弧传感器焊缝自动跟踪系统及电弧传感基础理论研究[D],清华大学,1990.
    [21]潘际銮.空心轴电机驱动的扫描焊炬[P],中国专利,No.922444765.
    [22]吴世德,廖宝剑,潘际銮,等.高速旋转电弧传感器[J].焊接学报,1997(3):61-66.
    [23]贾剑平,张华,潘际銮,等.用于弧焊机器人的新型高速电弧传感器的研制[J].南昌大学学报,2000(1):1-4.
    [24]张华,熊震宇,贾剑平,等.基于旋转电弧传感的示教再现弧焊机器人的智能化研究[J],机械工程学报,2002(增刊):113-116.
    [25]野村博一.高速旋转电弧自动角焊法的开发[J].国外焊接,1987(3):21-26.
    [26]T.Sekino. Applications of Sensor System in Arc Welding with a Robot [J]. Journal of the Japan Welding Society,1991,60(1):74~80.
    [28]刘翠霞.基于正交试验旋转电弧传感器焊缝跟踪工艺参数的优化[J].电焊机,2010,40(6):57-61.
    [29]Rosenthal. Mathematical Theory of Heat Distribution During Welding and Cutting [J]. Welding Journal.1941,20(5):220~234.
    [30]V.Pavelic, R.Tanbakuchi. Experimental and Computed Temperature Histories in Gas Tungsten-Arc Welding of Thin plates [J]. Welding Journal.1969,47(7):295~305.
    [31]Chong L M. Predicting welding hardness [D]. M, Eng, Thesis. Ottawa, Canada:Carleton University,1982.
    [32]吴甦,赵海燕,王煜,等.高能束焊接数值模拟中的新型热源模型[J].焊接学报,2004,25(01):91-94.
    [33]蔡志鹏,赵海燕,鹿安理.焊接数值模拟中分段移动热源模型的建立及应用[J].中国机械工程,2002,13(03):208-210.
    [34]John Goldak. A new finite model for welding heat source [J]. Metallurgual Transactions, 1984,15B(2):299~305.
    [35]张文钺.焊接传热学[M].北京:机械工业出版社,1989.
    [36]陈楚.数值分析在焊接中的应用[M].上海:上海交通大学出版社,1985.
    [37]武传松.焊接热过程数值分析[M].哈尔滨:哈尔滨工业大学出版社,1990.
    [38]N. N. Rykalin. The Caculation of Thermal Processes in Welding [J]. Mashgiz,1951.
    [39]N. D. Malmuth. Transient Thermal Phenomena and Weld Geometry in GTA Welding [J]. Welding Journal,1974,53(04):388-s~400-s.
    [40]张朝晖.ANSYS 8.0热分析教程与实例解析[M].北京:中国铁道出版社,2005.
    [41]龚曙光,谢桂兰.ANSYS操作命令与参数化编程[M].北京:机械工业出版社,2004.
    [42]Hancinsky, O. A. Feasibility of Local Stress Relieving Close to Main Shell of a Large Vessel [J]. American Society of Mechanical Engineers (Paper),1978(78-NE-2):7p.
    [43]Berry, David M. Analysis of Space Shuttle Solid Rocket Booster Aft Skirt using ANSYS substructuring, submodeling, and plasticity features [C].4th Int ANSYS Conf Exhib 1989 Part 1,1989, p 2.2-2.16.
    [44]Feltus, Madeline Anne. TRAC-BF1 three-dimensional BWR vessel thermal-hydraulic and ANSYS stress analyses for B W R core shroud cracking [J]. Annals of Nuclear Energy,1998, 25(01):65~81.
    [45]Rethmeier. Minimizing the temperature load and the distortion on injection valves with the aid of the finite-element method [J]. Schweissen und Schneiden/Welding and Cutting,2000, 52(8):E170-E174.
    [46]Nnaji, Bart O.Gupta, Deepak, et al. Welding distortion minimization for an aluminum alloy extruded beam structure using a 2D model [J]. Journal of Manufacturing Science and Engineering, Transactions of the ASME,2004,126(1):52~63.
    [47]Machaly E.B. Parametric analysis of welded beam-to-column connection with T-Stiffener [J]. Journal of Engineering and Applied Science,2004,51(01):47~66.
    [48]Sai C.L. Effect of residual stresses on design assessment of partial penetration laser welds in a pressure valve component [J]. Welding Journal (Miami, Fla),1998,77(10):403~410.
    [49]罗金华,王晓熙.基于ANSYS的中厚板焊接有限元三维数值模拟[J].2002,30(11):83-86.
    [50]李永兵,王雅生,陈关龙,等.外加纵向磁场移动焊接熔池流场和传热耦合分析[J].西安交通大学学报,2003,37(5):483-487.
    [51]姜泽东,周方明,李桂鹏,等.对接间隙对钽薄板TIG氦弧焊熔池形态影响的数值分析[J].华东船舶工业学院学报,2005,19(1):90-93.
    [52]石智华.瞬时液相扩散焊焊接温度场有限元模拟[J].机械制造与自动化,2005,34(4):40-42.
    [53]刘兴龙,曲仕尧,邹增大,等.基于ANSYS的中厚板补焊焊接温度场的数值模拟[J].焊接技术,2005,34(1):14-16.
    [54]雷玉成,郁雯霞,李彩辉,等.GMAW温度场计算及其焊接质量的特征建模[J].江苏大学学报(自然科学版),2005,26(3):253-256.
    [55]周鹏展,贺地求,舒霞云,等.旋转速度对高强铝厚板搅拌摩擦焊温度场的影响[J].焊接技术,2005,34(2):10-11.
    [56]尹莎.中国低活化马氏体钢TIG焊焊接的三维数值模拟[D].江苏大学,2009.
    [57]国际工程科学中国有限公司博骞仿真工程科技(广州)有限公司网站资料[EB/01]. www.esi-group.com.cn.
    [58]J.M. Bergheau, V. Robin, F. Boitout. Finite Element Simulation of Processes Involving Moving Heat Sources. Application to Welding and Surface Treatment [J]. Journal of Shanghai Jiaotong University.2000, E-5(01):114~122.
    [59]S. A. Tsirkas, P. Papanikos, Th. Kermanidis. Numerical simulation of the laser welding process in butt-joint specimens [J]. Journal of Materials Processing Technology,2003, 134(01):59~69.
    [60]Yannick Vincent, Jean-Francois Jullien, Philippe Gilles. Thermo-mechanical consequences of phase transformations in the heat-affected zone using a cyclic uniaxial test [J]. International Journal of Solids and Structures,2005,42(14):4077~4098.
    [61]陈翠欣,李午申,王庆鹏,等.焊接温度场的三维动态有限元模拟[J].天津大学学报,2005,38(05):466-470.
    [62]刘哲,李午中,陈翠欣,等.热-冶金相互作用下焊接温度场的三维动态有限元模拟[J].机械科学与技术,2005,(12):1396-1399.
    [63]王怀刚.三维瞬态小孔等离子弧焊接温度场的数值模拟[D].山东大学硕士学位论文.2005.
    [64]李瑞英,赵明,孙永兴.基于SYSWELD的不锈钢薄板TIG焊焊接三维温度场的有限元分析[J].热加工工艺,2007,36(19):69-72.
    [65]雷卡林.焊接热过程计算[M].徐碧宇,庄鸿寿译.北京:机械工程出版社,1958.
    [66]Z. Paley, P. D. Hibbert. Computation of Temperatures in Actual Weld Designs [J]. Welding Journal,1975,54(11):385s-392s.
    [67]G. W. Krutz. A thermo-metallurgical model predicting the strength of welded joints using FEM [D]. Michigan State University, Ph.D Thesis.1976.
    [68]H. A. Nied. The Finite Element Modeling of the Resistance Spot Welding Process [J]. Welding Journal.1984,63(4):123~132.
    [69]Elijah Kannatey-Asibu, Noboru Kikuchi. Experimental Finite Element Analysis of Temperature Distribution During Arc Welding [J]. ASME Journal of Engineer materials and Technology,1989,111(1):9~17.
    [70]Chen C.M., Kovacevic R. Finite element modeling of friction stir welding—thermal and thermomechanical analysis [J]. International Journal of Machine Tools and Manufacture. 2003,43(13):1319~1326.
    [71]Nami M. R., Kadivar M. H., Jafarpur K. Three-dimensional thermal response of thick plate weldments:effect of layer-wise and piece-wise welding [J]. Modelling and Simulation in Materials Science and Engineering,2004,12(04):731~743(13).
    [72]唐慕尧.焊接温度场计算-介稳态温度场计算[J].西安交通大学科技情报.1981.
    [73]汪建华.焊接力学数值模拟的发展及其工程应用[c].第十次全国焊接会议论文集.天津,2001.
    [74]龙昕,汪建华.温差法在焊接残余应力和变形控制中的应用[J].压力容器,2000,17(4):37-39.
    [75]汪建华,戚新海.焊接结构三维热变形的有限元模拟[J].上海交通大学学报.1994,28(6):59-65.
    [76]胡美娟,刘金合,王亚军,等.钛合金平板电子束焊接温度场有限元分析[J].电焊机,2005,35(07):39-42.
    [77]D. R. Atthey. A mathematical model for fluid flow in a weld pool at high currents [J]. Journal of Fluid Mechanics,1980,98(04):787~801.
    [78]G. M. Oreper, J. Szekely. Heat-and fluid-flow phenomena in weld pools [J]. Journal of Fluid Mechanics.1984, (147):53~79.
    [79]S. Kou, D. K. Sun. Fluid Flow and Weld Penetration in Stationary Arc Welds [J]. Metallurgical Transactions (A).1985,16(A):203~213.
    [80]J.Mckelliget, J.Szekely. Heat Transfer and Fluid Flow in the Welding Arc [J]. Metallurgical Transactions (A).1986,17A (7):1139~1148.
    [81]N. Ramanan, S. A. Korpela. Fluid Dynamics of a Stationary Weld Pool [J]. Metallurgical Transaction (A),1990,21 (1):45~57.
    [82]R. T. C. Choo, J. Szekely, R. C. Westhoff. Modeling of High-Current Arcs with Emphasis on Free Surface Phenomena in the Weld Pool [J]. Welding Journal,1990,69(9):346~361.
    [83]R. T. C. Choo, J. Szekely, S. A. David. On the Calculation of the Free Surface Temperature of Gas-Tungsten-Arc Weld Pools from First Principles:Part Ⅱ. Modeling the Weld Pool and Comparision with Experiments [J]. Metallurgical Transactions (B).1992,23 (6):371~384.
    [84]T. Zacharia, A. H. Eraslan. Three-Dimensional Transient Model for Arc Welding Process [J]. Metallurgical Transactions (B).1989,20 (10):645~65.
    [85]T. Zacharia, S. A. David. Computational Modeling of Stationary Gas-Tungsten-Arc Welds Pools and Comparison to Stainless Steel 304 Experimental Results [J]. Metallurgical Transactions (B).1991,22 (4):243~257.
    [86]T. Zacharia, S. A. David. Surface Temperature Distribution of GTA Weld Pools on Thin-Plate 304 Stainless Steel [J]. Welding Journal,1995,74(11):353~362.
    [87]S. D. Kim, S. J. Na. Effect of Weld Pool Deformation on Weld Penetration in Stationary Gas Tungsten Arc Welding [J]. Welding Journal,1992,71(11):179~193.
    [88]K. Mundra, T. DebRoy, K. M. Kelkar. Numerical Prediction of Fluid Flow and Heat Transfer in Welding with A Moving Heat Source [J]. Numerical Heat Transfer (A),1996, (29): 115~129.
    [89]W. H. Kim, H. G. Fan, S. J. Na. A Mathematical Model of Gas Tungsten Arc Welding Considering the Cathode and the Free Surface of the Weld Pool [J]. Metallurgical and Materials Transactions (B),1997,28 (8):679~686.
    [90]W. H. Kim, H. G. Fan, S. J. Na. Effect of Various Driving Forces on Heat and Mass Transfer in Arc Welding [J]. Numerical Heat Transfer (A),1997, (32):633~652.
    [91]H. G. Fan, H. L. Tsai, S. J. Na. Heat transfer and fluid flow in a partially or fully penetrated weld pool in gas tungsten arc welding [J]. International Journal of Heat and Mass Transfer, 2001,44(2):417~428.
    [92]武传松,陈定华,吴林.TIG焊接熔池中的流体流动及传热过程的数值模拟[J].焊接学报,1988,34(4):39-44.
    [93]曹振宁,武传松,吴林.TIG焊接熔透熔池的数学模型[J].焊接学报,1996,17(1):62-69.
    [94]郑炜,武传松,吴林.脉冲T1G焊接熔池流场与热场动态过程的数值模拟[J].焊接学报,1997,18(4):227-231.
    [95]武传松,郑炜,吴林.脉冲电流作用下TIG焊接熔池行为的数值模拟[J].金属学报,1998,34(4):416-422.
    [96]郑炜,武传松,吴林.固定电弧脉冲TIG焊接熔池流体流动与传热模型[J].材料科学与工艺,1996,4(4):15-21.
    [97]李永兵,王雅生,陈关龙,等.外加纵向磁场移动焊接熔池流场和传热耦合分析[J].西安交通大学学报,2003,37(05):483-487.
    [98]薛忠明,杨广臣.焊接熔池三维热流耦合分析数学模拟[C].第十次全国焊接会议论文集.天津,2001.
    [99]D. E. Hardt, D. A. Garlow, J. B. Weinert. A model of Full Penetration Arc-Welding for Control System Design [J]. ASME Journal of Dynamic System, Measurement and Control, 1985,107(3):40~46.
    [100]Z. N. Cao, Y. M. Zhang, R. Kovacevic. Numerical Dynamic Analysis of Moving GTA Weld Pool [J]. ASME Journal of Manufacturing Science and Engineering,1998,120(2): 173~178.
    [101]李亮玉,陈树君.基于弧焊温度场正面信息的熔透控制-三维温度场熔透解析模型及验证[J].机械工程学报,2000,36(9):37-40.
    [102]孙久文,陈强,孙振国,等.一种新型等离子小孔焊接熔透闭环控制系统[J].电焊机,2002,32(06):5-8.
    [103]高进强,武传松,刘新峰.TIG焊接熔透信息的提取[J].中国有色金属学报,2002,12(01):20-24.
    [104]L. J. Yang, R. S. Chandel, M. J. Bibby. The effects of process variables on the bead width of submerged-arc weld deposits [J]. Journal of Materials Processing Technology,1992, 29(1-3):133~144.
    [105]N. MuruganR, S. ParmarS, K. Sud. Effect of submerged arc process variables on dilution and bead geometry in single wire surfacing [J]. Journal of Materials Processing Technology, 1993,37(1-4):s 767~780.
    [106]I. S. Kim, J. S. Son, I. G. Kim, et al. A study on relationship between process variables and bead penetration for robotic CO2 arc welding [J]. Journal of Materials Processing Technology,2003,136(1-3):139~145.
    [107]I. S. Kim, K. J. Son, Y. S. Yang et al. Yaragada. Sensitivity analysis for process parameters in GMA welding processes using a factorial design method [J]. International Journal of Machine Tools and Manufacture,2003,43(8):763~769.
    [108]N. Murugan, V. Gunaraj. Prediction and control of weld bead geometry and shape relationships in submerged arc welding of pipes [J]. Journal of Materials Processing Technology,2005,168(03):478~487.
    [109]于治水,施一丰.药芯焊丝CO2焊焊道几何尺寸的数学模型[J].船舶工程,1998(02):37-39.
    [110]徐文立,刘雪松,方洪渊,等.薄板高强铝合金LY12CZ焊接工艺参数的优化[J].焊接学报,2004,25(02):39-42.
    [111]熊震宇,张华.Ar+CO2混合气体保护焊焊缝几何形状的试验研究[J].南昌大学学报(工科版),2001,23(04):40-44.
    [112]D. S. Nagesh, G. L. Datta. Prediction of weld bead geometry and penetration in shielded metal-arc welding using artificial neural networks [J]. Journal of Materials Processing Technology,2002,123(02):303~312.
    [113]Seshank K.,Rao S. R. Koteswara, Singh Yogendra et al. Prediction of bead geometry in pulsed current gas tungsten arc welding of aluminum using artificial neural networks [C]. Proceedings of the International Conference on Information and Knowledge Engineering, 2003, pp 149-153.
    [114]Ill-Soo Kim, Joon-Sik Son, Prasad K. D. V. Yarlagadda. A study on the quality improvement of robotic GMA welding process [J]. Robotics and Computer-Integrated Manufacturing,2003,19(06):567~572.
    [115]I. S. Kim, J. S. Son, C. E. Park, et al.A study on prediction of bead height in robotic arc welding using a neural network [J]. Journal of Materials Processing Technology,2002, 130-131(20):229~234.
    [116]I. S. Kim, J. S. Son, C. E. Park, et al. An investigation into an intelligent system for predicting bead geometry in GMA welding process [J]. Journal of Materials Processing Technology,2005,159(01):113~118.
    [117]黄金河,赵熹华,王宸煜.基于人工神经网络的点焊工艺参数选择和质量预测[J].吉林工业大学学报(自然科学版),1999,29(01):31-34.
    [118]王威.应用MATLAB建立焊接参数人工神经网络模型的方法[J].焊接,2001(05):14-16.
    [119]徐清,杨永波,王旭友,等.YAG激光焊接参数的人工神经网络模型[J].焊接学报,2001,22(06):37-40.
    [120]王晓丽,张建纲,武传松,等.基于BP神经网络的GMAW焊接工艺参数设计[J].山东工业大学学报,2001,31(04):325-330.
    [121]杨海澜,吴毅雄.焊接质量控制的主成分分析人工神经网络[J].上海交通大学学报,2003,37(10):1536-1539.
    [122]王玉,高大路,廖明夫,等.优化异种材料摩擦焊接工艺参数的神经网络模型[J].焊接学报,2005,26(04):33-36.
    [123]曹海鹏,赵熹华,赵贺.铝合金电阻点焊工艺设计智能化[J].焊接学报,2005,26(02):21-24.
    [124]葛景国,高进强,陈立功,等.焊接熔池正面几何参数和背面熔宽的数据提取方法[J].上海交通大学学报,2004,38(07):1113-1117.
    [125]McConnell, I. A. The application of statistical process design to a FCAW process [J]. Welding Journal,1997,76(10):412~416.
    [126]刘伟,雷玉成,张成华.铝合金穿孔型等离子弧立焊的遗传算法设计[J].江苏大学学报(自然科学版),2003,24(03):32-35.
    [127]张成华,雷玉成,刘伟.应用遗传算法优化铝合金穿孔型等离子弧立焊工艺参数[J].扬州大学学报(自然科学版),2004,7(03):32-35.
    [128]周林鸣.YN4/5焊接工艺参数的优化与实验研究[D].上海交通大学硕士学位论文,2008.
    [129]王宗杰.熔焊方法及设备[M].北京:机械工业出版社,2007.
    [130]方萍,何延.试验设计与统计[M].浙江:浙江大学出版社,2003.
    [131]雷英杰,张善文,李旭武,等.MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005.
    [132]傅立军.三维铝型材挤压模具的CAD系统和参数优化研究[D].南昌大学硕士学位论文,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700