用户名: 密码: 验证码:
猪粪堆肥中钝化剂对重金属形态转化及其生物有效性的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着养殖业的专业化、集约化和规模化程度的不断提高,畜禽粪便大量的集中排放,对环境造成了严重的威胁。同时,由于饲料中大量使用重金属添加剂,使规模化养殖场排放的畜禽粪便中重金属严重超标,长期大量施用将会对土壤和环境造成严重污染,危害人类健康。对畜禽粪便堆肥中的重金属进行钝化处理,降低其生物有效性和活性,具有重要的现实意义。本试验以规模化养殖场排放的猪粪为堆肥原料,采用室外模拟好氧高温堆肥,对堆肥前后重金属的浓度和形态转化进行研究,同时进行了钝化处理后堆肥中重金属的植物可利用性和动物可利用性试验研究,筛选出了猪粪堆肥重金属的最佳钝化剂、钝化剂组合及其添加比例。试验结果表明:
     1、物理钝化剂对猪粪堆肥重金属的钝化都有明显的效果,不同钝化剂的钝化效果大小因重金属元素种类而异,且钝化剂的不同添加比例对重金属钝化效果也有较大影响。三种重金属物理钝化剂沸石、海泡石、膨润土对堆肥处理中重金属Zn、Cu、Cd、Pb、Cr和As各种结合形态的变化有不同程度的影响,其最佳钝化剂及添加量也因重金属种类而异。猪粪堆肥重金属As的最佳钝化剂及添加比例为5.0%海泡石,其钝化效果分别为28.5%;Cr的最佳钝化剂及添加比例为5.0%沸石,其钝化效果为98.1%;猪粪堆肥重金属Cd的最佳钝化剂及添加比例为2.5%沸石,钝化效果为37.5%;猪粪堆肥重金属Cu的最佳钝化剂及添加比例为7.5%海泡石,钝化效果为50.8%;猪粪堆肥重金属Zn的最佳钝化剂及添加比例为2.5%海泡石,钝化效果为72.1%%;猪粪堆肥重金属Pb的最佳钝化剂及添加比例为7.5%膨润土,钝化效果为88.7%。
     2、化学钝化剂对猪粪堆肥重金属的钝化有明显效果,本试验所添加的粉煤灰、磷矿粉、钙镁磷肥、DBS四种重金属钝化剂对猪粪堆肥中重金属Zn、Cu、Cd、Cr、Pb和As的形态都有不同程度的影响,可使堆肥前后可交换态重金属含量下降,而残渣态重金属比例上升,其最佳钝化剂和添加比例因重金属种类而异,总的趋势是四种钝化剂均促使重金属由有效性较高的形态向有效性低的形态转化。本试验研究结果表明,猪粪堆肥重金属Zn的最佳钝化剂及其添加比例为5.0%钙镁磷肥,其钝化效果为68.0%;猪粪堆肥重金属Pb的最佳钝化剂及其添加比例为5.0%磷矿粉,其钝化效果为34.8%;猪粪堆肥重金属Cu和Cr的最佳钝化剂及其添加比例为2.5%的粉煤灰,其钝化效果分别为71.5%和77.5%;重金属As的最佳钝化剂及其添加比例为2.5%的粉煤灰,钝化效果为31.9%;重金属Cd的最佳钝化剂及其添加比例为7.5%的钙镁磷肥,钝化效果为73.3%;所有钝化剂处理对堆肥重金属Hg的活性都没有影响。
     3、不同钝化剂组合对猪粪堆肥中重金属的钝化有显著效果,可使堆肥中可交换态重金属的比例大幅度降低,而残渣态重金属占总含量的百分比例大幅度上升。猪粪堆肥重金属As的最佳钝化剂组合及其添加比例为F2.5+M2.5处理(即添加了2.5%的沸石和2.5%的粉煤灰),其对可交换态As的钝化效果为65.49%;其次为H5.0+M2.5处理(即添加了5.0%的海泡石和2.5%的粉煤灰),其对可交换态As的钝化效果为60.75%。
     猪粪堆肥重金属Cd的最佳钝化剂组合及其添加比例为F2.5+G2.5处理(即添加了2.5%的沸石和2.5%的钙镁磷肥的处理),其对可交换态Cd的钝化效果为89.48%;其次为F2.5+M2.5处理对可交换态Cd的钝化效果分别为84.47%。
     猪粪堆肥重金属Cr的最佳钝化剂组合及其添加比例为F2.5+M2.5处理(即添加了2.5%的沸石和2.5%的粉煤灰的处理),其对可交换态Cr的钝化效果为93.32%;其次是F2.5+G2.5处理,其对可交换态Cr的钝化效果为88.85%。
     猪粪堆肥重金属Cu的最佳钝化剂组合及其添加比例为F2.5+L5.0处理(即添加了2.5%的沸石和5.0%磷矿粉的处理),其可交换态Cu的钝化效果为88.78%,比不添加钝化剂的对照(41.75%)钝化效果提升了47.03%。
     猪粪堆肥重金属Pb的最佳钝化剂组合及其添加比例为F2.5+L5.0处理(即添加了2.5%的沸石和5.0%的磷矿粉),其对可交换态Pb的钝化效果为88.05%;其次为F2.5+M2.5处理,其对可交换态Pb的钝化效果为85.98%。
     猪粪堆肥重金属Zn的最佳钝化剂组合及其添加比例为H5.0+L5.0处理(即添加了5.0%的海泡石和5.0%的磷矿粉),其对可交换态Zn的钝化效果为97.07%
     所有钝化剂处理对猪粪堆肥重金属Hg的活性都没有影响。
     4、重金属的植物可利用性试验结果表明,添加钝化剂的猪粪堆肥处理能使小白菜重金属Zn、Cu、Cd、Cr和As的含量明显下降。降低小白菜中重金属As含量效果最好的钝化剂是H5.0+M2.5(82.16%);降低小白菜重金属Cd含量效果最好的钝化剂是F2.5+G2.5(92.70%);降低小白菜重金属Cr含量效果最好的钝化剂是F2.5+M2.5(77.42%);降低小白菜重金属Cu含量效果最好的钝化剂是F2.5+L5.0(70.03%);降低小白菜重金属Pb含量效果最好的钝化剂是F2.5+L5.0(81.16%);降低小白菜重金属Zn含量效果最好的钝化剂是H5.0+L5.0(75.65%);
     5、重金属的动物可利用性试验结果表明,添加钝化剂处理的猪粪堆肥能降低重金属Cr、Cd、Cu、Pb和Zn的生物有效性,通过蚯蚓养殖试验分析结果表明,添加钝化剂处理能降低重金属Cr、Cd、Cu、Pb和Zn的生物有效性,可明显降低蚯蚓体内重金属Cr、Cd、Cu、Pb和Zn的含量。沸石、膨润土、海泡石、粉煤灰、钙镁磷肥和磷矿粉等六种钝化剂都能显著降低重金属在蚯蚓体内的含量,重金属Cd生物有效性的降低效果最好的是H7.5、其钝化效果为64.14%;降低蚯蚓体内重金属Cu的含量效果最好的是F7.5,其钝化效果为88.34%;重金属Pb生物有效性的降低效果最好的添加剂是L5.0,钝化效果为73.84%;重金属Cr生物有效性降低效果最好的添加剂是M2.5、钝化效果为74.48%;六种钝化剂处理的堆肥都可使蚯蚓体内的Zn含量下降,与CK处理之间的差异达显著水平,以添加了7.5%沸石和7.5%海泡石的堆肥处理效果最好,分别为73.77%、72.80%。
     综合来说,几种钝化剂及其组合在堆肥实验中对于降低重金属Zn、Cu、Cd、Cr和As活性效果以及生物实验中含量比较可以知道,综合效果最好的是2.5%沸石+2.5%粉煤灰的堆肥处理,另外,沸石是目前发现的天然矿物中比表面积最大的、吸附性能最好的矿物,是一种价格低廉、来源丰富的矿物质,而粉煤灰更是火力发电厂等单位的生产废弃物,将其作为钝化剂加入堆肥中,不仅能变废为宝,更是有利于降低猪粪的农业利用中重金属污染风险。
As professionalization, intensity and enlargement of livestock level were continue increased, large amount of poutry manure were system discharged and seriously threaten enviroment development. At the same time, heavy metal content of poutry manure were greatly higher than standard indexes, that was because of heavy metal additive agent utilization in feed materials, soil and enviroment, human healthy will be influnced by long-term utilization. There is significant realistic meaning of heavy metal in poultry manure were passivated by passivator agent, and the bioavailability and activity were decreased. Pig manure was used as composting materials that was discharged by management poutry system, aerobic-high temperature composting were conducted as simulation in outside, study on concentration and forms transformation of heavy metal before and after composting, inspect bioavailabilty of heavy metal in pig nanure after composting, selected advantage passivator, passivator combination and addition proportion of heavy metal in pig manure composting. Results showed that,
     1. There are significant effective of physical passivator on heavy metal bioavalability in pig manure composting, and passivation effectives are depend on heavy metal types, in addition heavy metal passivation effective were greatly influnced by passivation proportion. There are different effects of 3 heavy metals (zeolite, sepiolite and bentonite) on combination forms of Zn, Cu, Cd, Pb, Cr and As in composting treatments, and its advantage passivator and addition amount are depend on heavt metal types. The advantage passivator proportion of As in pig manure composting is 5.0% sepiolite, and its passivation effective is 28.5%, advantage passivator proportion of Cr is 5.0% zeolite, and its passivation effective is 98.1%, advantage passivator proportion of Cd in pig manure composting is 2.5% zeolile, and its passivation effective is 37.5%, advantage passivator proportion of Cu in pig manure composting is 7.5% sepiolite, and its passivation effective is 50.8%, advantage passivator proportion of Zn in pig manure composting is 2.5% sepiolite, and its passivation effective is 72.1%, advantage passivator proportion of Pb in pig manure composting is 7.5% bentonite, and its passivation effective is 88.7%.
     2. There is significant effects of chemical passivator on heavy metals bioavailability in pig manure composting, and effects of four heavy metal passivators (fly ash, ground phosphate rock, Ca-Mg-P fertilizers and DBS) on heavy metals (Zn, Cu, Cd, Cr, Pb and As) are different, advantage passivator and proportion are depend on heavy metal types, all of heavy metal bioavailability were decresed by heavy metal passivators additive. Results showed that, advantage passivator proportion for Zn in pig manure composting is 5.0% Ca-Mg-P fertilizer, passivation effective is 68.0%, advantage passivator proportion for Pb in pig manure composting is 5.0% ground phosphate rock, passivation effective is 34.8%, advantage passivator proportion for Cu and Cr in pig manure composting is 2.5% fly ash, passivation effective is 71.5 and 77.5%, advantage passivator proportion for Cd in pig manure composting is 7.5% Ca-Mg-P fertilizer, passivation effective is 73.3%, there is no signigicant effective of passivator on Hg in pig manure composting.
     3. There are significant effective of passivators combination on heavy metal bioavailability in pig manure composting. Advantage passivators combination and additive proportion for As in pig manure composting is F2.5+M2.5 treatment (addition 2.5% zeolite and 2.5% fly ash), passivation effective is 65.49%, the following is H5.0+M2.5 treatment (addition 5.0% zeolite and 2.5% fly ash), passivation effective is 60.75%. Advantage passivators combination and additive proportion for Cd in pig manure composting is F2.5+G2.5 treatment (addition 2.5% zeolite and 2.5% Ca-Mg-P fertilizer), passivation effective for exchangable Cd is 89.4%, following is F2.5+M2.5 treatment, passivation effective for exchangable Cd is 84.47%. Advantage passivators combination and additive proportion for Cr in pig manure composting is F2.5+M2.5 treatment (addition 2.5% zeolite and 2.5% fly ash), passivation effective for exchangable Cr is 93.32%, following is F2.5+G2.5 treatment, passivation effective for exchangable Cr is 88.85%. Advantage passivators combination and additive proportion for Cu in pig manure composting is F2.5+L5.0 treatment (addition 2.5% zeolite and 2.5% ground phosphorus rock), passivation effective for exchangable Cu is 88.78%, compared with no passivator addition treatment (41.75%), passivation effective was increased by 47.03%. Advantage passivators combination and additive proportion for Pb in pig manure composting is F2.5+L5.0 treatment (addition 2.5% zeolite and 5.0% ground phosphorus rock), passivation effective for exchangable Pb is 88.05%, following is F2.5+M2.5 treatment, passivation effective for exchangable Pb is 85.98%. Advantage passivators combination and additive proportion for Zn in pig manure composting is H5.0+L5.0 treatment (addition 5.0% sepiolite and 5.0% ground phosphorus rock), passivation effective for exchangable Zn is 97.07%. There is no signigicant effective of passivator on Hg in pig manure composting also.
     4. Heavy metal utilization in plant experiment results showed that, Zn, Cu, Cd, Cr and As content in vegetable tissues were decresed significantly. The best passivation agent for As is H5.0+M2.5 (82.16%) treatment, the best passivation agent for Cd is F2.5+G2.5 (92.70%) treatment, the best passivation agent for Cr is F2.5+M2.5 (77.42%) treatment, the best passivation agent for Cu is F2.5+L5.0 (70.03%) treatment, the best passivation agent for Pb is F2.5+L5.0 (81.16%) treatment, the best passivation agent for Zn is H5.0+L5.0 (75.65%) treatment.
     5. Heavy metal utilization in animal experiment results showed that, Cr, Cd, Cu, Pb and Zn bioavailability were decresed significantly by passivators additive in pig manure composting, results of earthworm breeding experiment showed that, Cr, Cd, Cu, Pb and Zn content in body of earthworm were decresed significantly. Heavy metal contents in earthworm can be decreased significantly by zeolite, sepiolite, bentonite, fly ash, Ca-Mg-P fertilizer and ground phosphorus rock, the best effective for Cd bioavailability decreasing is H7.5 treatment and passivation effective is 64.14%, the best effective for Cu bioavailability decreasing is F7.5 and passivation effective is 88.34%, the best effective for Pb bioavailability decreasing is L5.0 and passivation effective is 73.84%, the best effective for Cr bioavailability decreasing is M2.5 and passivation effective is 74.48%, Zn content in earthworm can be decreased by the 6 passivators treatment in composting, the differences of Zn content between CK and treatments are significant, advantage treatements are 7.5% zeolite and 7.5% sepiolite treatments, effective are 73.77% and 72.80% respectively.
     In brief, effects of heavy metal passivators combination and proportion on bioavailability and activity of heavy metals (Zn, Cu, Cd, Cr and As) were conducted in this experiment, the best generally effective is 2.5% zeolite+2.5%fly ash treatment in composting, in addition zeolite is advantage heavy metal passivator with large specific surface area, high adsorbability, low price and aboundance resources, and fly ash is producation discharge of thermal power companies, its utilization in composting as passivator for heavy metal is not only develop fly ash advantage, heavy metal pollution in pig manure composting can be allevaited also.
引文
[1]陈晓鸥,贾永全,王喜文.规模化畜禽养殖污染现状及防治对策[J].中国畜牧兽医,2007,34(5):137-139
    [2]张克强,高怀友.畜禽养殖业污染物处理与处置[M].北京:化学业出版社,2004,3-5.
    [3]高定,陈同斌,刘斌,郑袁明,郑国砥,李艳霞.我国畜禽养殖业粪便污染风险与控制策略[J].地理研究,2006,25(2):311-319.
    [4]李国学,张福锁.固体废物堆肥化与有机复混肥生产[M].北京:化学工业出版社,2000.68-71
    [5]Du J(杜静),Lin X. Y(林咸永),Zhang Y. S(章永松).Affecting factors of CO2 evolution from biodegradation of agricultural organic wastes [J]. Chinese Journal of Applied Ecology,(应用生态学报),2004,15(3):501-505(in Chinese).
    [6]Lekasi J. K,Tanner J. Kimani.S. K, Cattle manure quality in Maragua District of Central Kenya:Effect of management practices and development of simple methods of assessment [J]. Agriculture,Ecosystems and Environment,2003,94:289-298.
    [7]李庆康,吴雷,刘海琴,蒋玉忠,潘玉梅.我国集约化养殖场粪便处理利用现状及展望[J].农业环境保护,2000,19(4):251-254.
    [8]窦磊,周永章,高全洲,彭先芝,蔡立梅,古志宏.土壤环境中重金属生物有效性评价方法及其环境学意义[J].土壤通报,2007,38(3):576-579
    [9]郑国砥,陈同斌,高定,罗维,李艳霞.好氧高温堆肥处理对猪粪中重金属形态的影响[J].中国环境科学,2005,25(1):6-9.
    [10]丁竹红,胡忻,郭红岩.城市污泥中Zn Cu植物有效性的评价[J].农业现代化研究,2007,28(1);34-38.
    [11]Llmann B, Zelles L, Palojarvi A. Emission of climate relevant trace gases and succession of microbial communities during open-windrow composting[J]. ApplEnviron Microbiol, 1997,63(3):1011-1018.
    [12]赵青玲,杨继涛,李遂亮,张全国.畜禽粪便资源化利用技术的现状及展望[J].河南农业大学学报,2003,37(2):184-187.
    [13]王方浩,马文奇,窦争霞,马林,刘小利,许俊香,张福锁.中国畜禽粪便产生量估算及环境效应[J].中国环境科学,2006,26(5):614-617.
    [14]李吉进,郝晋珉,邹国元,等.添加剂在猪粪堆肥过程中的作用研[J] 土壤通报, 2004,35(4):483-484.
    [15]贾小红,王克武,夏候国.有机肥加工使用新技术[J].中国农技推广,2001,(1):35.
    [16]李晓丽,何万领,董淑丽.重金属对饲料污染的分析及防治措施[J].饲料工业,2006,27(17):48-51.
    [17]刘荣乐,李书田,王秀斌,王敏.我国商品有机肥料和有机废弃物中重金属的含量状况与分析[J].农业环境科学学报,2005,24(2):392-397.
    [18]边柄鑫,赵由才.农业固体废弃物的处理与综合利用[M].北京:化学工业出版社,2005:80-85
    [19]唐翔宇,朱永官,陈世宝.Invitro法评估铅污染土壤对人体的生物有效性[J].环境化学,2003,22(5):503-506.
    [20]纪雄辉,鲁艳红,郑圣先.湖南省畜禽粪便污染及其综合防治策略[J].湖南农业科学,2006,(3):123-125.
    [21]张子仪.规模化养殖业及饲料工业中的生态文明建设问题[J].饲料工业,1997,18(9)1-3.
    [22]殷宪强,张增强,孙慧敏,王国栋,高鹃.施用污泥堆肥对土壤态分布中Zn、Cu形的影响研究[J].农业环境科学学报,2004,23(3):448-451.
    [23]李桂菊,郭丽梅,徐娜,章川波.含少量铬污泥用作农肥的可行性研究[J].天津科技大学学报,2005,20(4):31-34.
    [24]Li G X. Zhang F S. Wastes Composting and Organic Compound Fertilizers Production [M]. Chemical Industry Press(in Chinese),2001,10(5):90-93.
    [25]冯春,杨光,杜俊,吴邦信,袁菊,蒋秀娅,覃日邦,郑阳.污水污泥堆肥重金属总量及形态变化[J].环境科学研究,2008,21(1):97-102.
    [26]李国学,孟凡乔,姜华,史雅娟.添加钝化剂对污泥堆肥处理中重金属(Cu,Zn,Mn)形态影响[J].中国农业大学学报,2000,5(1):105-111.
    [27]Yuan Y X, Liao Y Z, Liu X E, Guo L H, Chen Y C. Study on microbes in the fermentation of organic refuse[J]. Journal of Microbiology(in Chinese).,2002,22(1):22-26.
    [28]高定,郑国砥,陈同斌,刘斌,岳波,杜伟.堆肥处理对排水污泥中重金属的钝化作用[J].中国给水排水,2007,23(4):7-10.
    [29]黄启飞,高定,丁德蓉,陈同斌.城市垃圾堆肥对Cr污染土壤的修复效应[J].应用生态学报,2002,13(2):167-170.
    [30]Avnimelech.Y, Eilat.R, Porot.Y, Peter A.K. Factors afecting the rate of windrow composting in fieL2.5 studies[J].Compost Science & Utilization.2004,12(2):114-119.
    [31]张姝.饲料污染对生态环境和人类健康的影响及控制对策[J].饲料工业,2002,23(3):42-45.
    [32]Blais J F, Auclair J C, Tyagi R D.Cooperation between two thiobacillus strains for heavy metal removal from municipal sludge[J]. Canadian Journal of Micro-biology,1993,38: 181-187.
    [33]李季,彭生平.堆肥工程实用手册[M].北京:化学工业出版社,2005.22-23.
    [34]李吉进,郝晋珉,邹国元,张有山,王美菊.畜禽粪便高温堆肥及工厂化生产研究进展[J].中国农业科学导报,2004,6(3):50-53.
    [35]杨毓峰,薛澄泽,唐新保.畜禽废弃物好氧堆肥化条件研究[J].陕西农业科学,1998,6:10-11.
    [36]黄国锋,吴启堂,孟庆强,黄焕忠.猪粪堆肥化处理的物质变化及腐熟度评价[J].华南农业大学学报(自然科学版),2002,23(3):1-4.
    [37]薛登泽.污泥制作堆肥及复合有机肥的研究[J].农业环境保护,1997,16(1):11-15.
    [38]吴淑杭,姜震方,俞清荚.禽畜粪堆肥化技术进展[J].上海农业学报,2003,19(1):50-52
    [39]Sandier H A, Shumaker D E, Mason J.Compost recipedevelopment and weed seed viability ovaluation wlth cranberry leaves [J].Compost Science & Utilization,2003,11(4): 351-359.
    [40]Nielsen H, Berthelsen L. A model for temperature dependency of thermophilic eomposting process rate[J]. Compost Science & Utilization,2002,10(3):249-258.
    [41]Chen S.B, Zhu Y.G, Ma Y.B. Effect of bone char application on Pb bioavailability in a Pb-contaminated soil[J]. Environ pollute,2005,139:433-439.
    [42]Perez-Cid B, LavillaI, Bendicho C. Application of microwave extraction for partitioning of heavy metals in sewage sludge[J].Analytica Chimica Acta,1999,378(1-3):201-210.
    [43]张所明.城市生活垃圾堆肥发酵的腐熟度研究[J].上海环境科学,1998,7(10):9-12.
    [44]Tiwari V N. Compo sting of dairy farm wastes and evaluation of its manunial value[J]. Proc National Academv of Science, India,1989,59:109-118.
    [45]Tiwari V N. Effect of cattle dung and rock phosphate on composting of wool waste [J].Bio-logical Wastes,1989,27:223-231.
    [46]于炎湖.饲料中的重金属污染及其预防[J].粮食与饲料工业,2001,6(2):12-14.
    [47]李国学.李玉春,李彦富.固体废弃物堆肥化及堆肥添加剂研究进展[J].农业环境科学
    [48]姚丽贤,李国良,党志.集约化养殖禽畜粪中主要化学物质调查[J].应用生态学报,200617(10):1989~1992.
    [49]姚春馨,隆四清,和立忠,许明辉.水稻镉积累基因型差异及其对镉胁迫的反应[J].湖南农业大学学报:自然科学版,2007,33(增刊):37-40.
    [50]Chang A C, Page A L, Warneke J E.Sequential extraction of soil heavy metals following a sludge application[J].Journal of Environmental Quality,1984,13:33-38.
    [51]谢金防.猪场粪污生态利用的现状与对策[J].猪业科学,2007,24(9):27-28.
    [52]Mulchicl,Adamuca, Bellpf. et al. Residual heavymetal concentrations in sludge amended coastal plain soils.I:Comparision of extractants [J]. Commun Soil Sci Plnat Anal,1991,22(9/10):919-941.
    [53]Petruzzellig,Lubranol, Guidig.Uptake by corn and chem ical extract ability of heavy metals from a four years compost treated soil[J]. Plnat and Soil,1989,16:23~27.
    [54]Bevacquarf, Mellanov. Sewage sludge compost cumulative efects on crop growth and soil propertise [J]. Compost Sci Utilization,1993,3:34~37.
    [55]李桂菊,郭丽梅,徐娜,章川波.含少量铬污泥用作农肥的可行性研究[J].天津科技大学学报,2005,20(4):31-34.
    [56]Brinton W F.Compost Quality Standard & Guidelines[A].Final Report.Woods End Research Laboratory Inc.Dec.2000.Prepared for New York State Association of Recyclers.
    [57]GB 8172-87.城镇垃圾农用控制标准[S].国家环境保护局发布.1987.
    [58]李书田,刘荣乐.国内外关于有机肥料中重金属安全限量标准的现状与分析[J].农业环境科学学报,2006,25(增刊):777-782.
    [59]毛建华.编制“商品有机肥料质量控制标准”的实践与体会[J].农业环境保护,1998,17(2):78-80.
    [60]Olive,B.G.Carey,J.H.Acid solubilization of sewage sludge and ash constituents for possible recovery[J].Water Res.1976,10:1077-1081.
    [61]LANNO.R, WELLS J, CONDER J. The bioabail ability of chemicals in soil for earth worms [J]. Ecotoxicology and Environmental safety,2004,5(7):39-47.
    [62]王仲文.土壤中重金属及稀土元素的形态分析和生物可给性研究.[D].北京:中国科学院 生态环境研究中心,2002,101-107.
    [63]NELSON A T. Use of Biominitoring of Control Toxics in the US,EPA/600/R-3-157 Fish Physiology, Toxicology, and Water Quality Management [R]. Processings of an International Symposium Sacramento, California, USA, Sep.1993:18-19.
    [64]MCCARTY LS MACKAY D. Enhancing ecotoxicological modelingand assessment, body residues and modes of action [J].Environmental Science and Technology,1993, 27::1719-1728.
    [65]Tiquia S M, Richard T L, Honeyman M S. Carbon, nutrient, and mass loss during composting[J]. Nutrient Cycling in Agroeco systems,2002,62:15-24
    [66]Nicholson F A, Chambers B J, Williams J R. Heavy metal contents of livestock feeds and animal manures in England and Wales[J]. Bioresource Technology,1999,70:23-31
    [67]J K Lekasi, J C Tanner, S K Kimani.Cattle manure quality in Maragua District, Central Kenya:Effect of management practices and development of simple methods of assessment [J]. Agriculture, Ecosystems and Environment,2003,94:289-298.
    [68]高定,郑国砥,陈同斌,刘斌,岳波,杜伟.堆肥处理对排水污泥中重金属的钝化作用[J].中国给水排水,2007,23(4):7-10.
    [69]周卫,汪洪,李春花,林葆.添加碳酸钙对土壤中镉形态转化与玉米叶片镉组分的影响[J].土壤学报,2001,38(2):321-324.
    [70]王小骊,张永志,王钢军,叶雪珠.蔬菜中有害重金属元素污染研究[J].浙江农业学报,2004,16(5):259-262.
    [71]鲁艳兵,温琰茂.施用污泥的土壤重金属元素有效性的影响因素[J].热带亚热带土壤科学,1998,8(1):68-71.
    [72]郭梅兰.城市污泥和垃圾堆肥作为肥源对作物重金属积累的影响[J].农业环境保护,1995,14(2);67-71.
    [73]Elwell D L, Keener H M.Odorous emissions and odor control in composting swine manure/sawdust mixes using continuous and intermittent aeration[J].Transactions of the ASAE,2001,44(5):1307-1316.
    [74]Blais J. F.Cooperation between two thiobacillus strains for heavy metal removal from municipal sludge[J]. Canadian Journal of Microbiology,1993,6(38):181-187.
    [75]Ho G, Qiao L. Chromium speciation in municipal solid waste:Effects of clay amendment and composting [J].Wat.Sci.Tech,1998,38(2):17-23.
    [76]熊田恭一[日]土壤有机质的化学[M].科学出版社,1984:2-25
    [77]Jiminez E I,Garcia V P. Determination of maturity indices for city refuse composts [J]. Agric Ecosys Environ,1992,38:331-343
    [78]薛登泽.污泥制作堆肥及复合有机肥的研究[J].农业环境保护,1997,16(1):11-15.
    [79]Xian X H. pH对污染土壤中Cd、Zn、Pb的化学形态及植物有效性的影响[J].土壤学进展,1991,19(3):34-37.
    [80]夏增禄,罗金发.北京东郊作物对重金属的吸附及其重金属在土壤中含量和存在形态的关系[J].生态学报,1983,3(3):277-287.
    [81]Laperehe V, Logan T. J, Gaddam P. Effect of apatite amendments on plant uptake of lead from contaminated soil[J]. Environ,Sei.Technology.1997,31(10):2745-2753.
    [82]毛景东,杨国治.粉煤灰资源的农业利用[J].农村生态环境,1994,10(3):73-75.
    [83]Conder J M, Lanno R P, Basta N. T. Assessment of metal availability in smelter soil using earthworms and chemical extractions[J]. Environ. Quality,2001,30(4):1231-1237.
    [84]席永慧,赵红.粉煤灰及膨润土对Ni2+、Zn2+、Cd2+、Pb2+的吸附研究[J].粉煤灰综合利用,2004,3:3-6.
    [85]魏白民,席北斗,王世平,赵越,杨延梅,何连生,刘鸿亮.垃圾堆肥对难溶性磷转化及土壤磷素吸附特性影响[J].农业工程学报,2006,22(2):142-145.
    [86]张树清,张夫道,刘秀梅,王玉军,张建峰.高温堆肥对畜禽粪中抗生素降解和重金属钝化的作用[J].中国农业科学,2006,39(2):337-343.
    [87]Liphadzi M,S Kirkham M.B,Mankin K R.EDTA-asisted heavy metal uptake by poplar and sunflower grown at a long-term sewage-sludge farm[J].Plant and Soil,2003,257:171-182.
    [88]Veken A.H.M,H.V.M.Hamelers.Removal of heavy metals from sewage sludge by extraction with organic acid[J].Wat,Sci.Tech,1999,40(1)129-136.
    [89]陈玉成,郭颖,魏沙平.螯合剂与表面活性剂复合去除城市污泥中Cd、Cr的去除[J].中国环境科学,2003,24(1):100-104.
    [90]Papasiopi N,Shen I.Kontopoulos A.Removal of heavy metals from calureous contaminated soil by EDTA leaching[J].water,Air&Soil Pollution,1998,45:361-369.
    [91]Xiangliang Pan,Daoyong Zhang,Jianglong Wang,Guangzhao He,Jiangmei Zhang.Different effects of EDTA on uptake and translocation of Pb and Cd by Typha latifolia[J].Chinese Journal of Geochemistpy,2006,25(1):133-137.
    [92]Elliot H.A,Brown G.A.Comparative evaluation of NTA and EDTA for extractive decon-tamination of Pb polluted soil[J].Water,Air&Soil Pollution,1989,45:361-369.
    [93]Ying-Xu Chen,Yu-Mei Hua,Shao-Zui Zhang.Transformation of heavy metal forms during sewage sludge bioleaching[J].Hazardous Materials,2005,12(3):196-202.
    [94]莫测辉,蔡全英,吴启堂.微生物方法降低城市污泥的重金属含量研究进展[J].应用与环境生物学报,2001,7(5):511-515.
    [95]王敦球,解庆林,张学洪,黄明.微生物方法去除污水污泥中重金属的试验研究[J].重庆建筑大学学报,2005,27(2):68-71
    [96]周顺桂,王世梅,余素萍,周立祥.污泥中氧化亚铁硫杆菌的分离及其应用效果[J].环境科学,2003,24(3):56-60.
    [97]周顺桂,周立祥,黄焕忠.生物淋滤技术在去除污泥中重金属的应用[J].生态学报.2002,22(1):125-133.
    [98]Eiland F, Leth M, Klamer M, Lind A M.C and N turnover and ligneellulose degradation during compo sting of Miscanthus straw and liquid pig manure [J].Compost Science & Utilization.2001,9(3):186-197.
    [99]李吉进,郝晋珉,邹国元,张有山,王美菊.添加剂在猪粪堆肥过程中的作用研究[J].土壤通报,2004,35(4):483-485.
    [100]赵庆祥.污泥资源化技术[M].北京:化学工业出版社,2002.
    [101]杜静,林咸永,章永松.农业废弃物分解产生CO2的影响因素研究[J].应用生态学报,2004,15(3):501-505.
    [102]张芳,王惠民.污泥无害化处理和综合利用途径[J].研究环境科学动态,1997,3:12-14
    [103]冯春,杨光,杜俊,等.污水污泥堆肥重金属总量及形态变化[J].环境科学研究,2008,21(1)97-102.
    [104]龙梅,胡锋,李辉信,赵海燕,吕文琦,魏正贵.低成本含磷材料修复环境重金污染的研究进展[J].环境污染治理技术与设备.2006.7(7):6~7.
    [105]Ernst W H O. Bioavailability of heavy metals and decon tamination of soils by plants [J]. Appl Geoehem,1996(11):163~167.
    [106]Tessier A,Campbell P G C, Bisson M. Sequential extraction procedure of the speciation of particulate trace metals[J]. Anal. Chem.,1979,51:844~851.
    [107]Ma L. Q, Rao G. N. Effects of phosphate rock on sequential chemical extraction of lead in contaiminated soils[J]. Environ. Qual,1997,26:788-794.
    [108]Ma L Q, Choate A L, Rao G N. Efects of incubation and phosphe rock on lead extract-ability and speciation in contaminated soils[J].Environ.Qual.,1997,26:801~807.
    [109]陈世宝,朱永官.不同含磷化合物对中国芥菜(Brassica oleracea)铅吸收特性的影响[J].环境科学学报.2004.24(4):67-71.
    [110]Cao X D, MaLQ, Chen M, et al. Impacts of phosphate amendments on lead biogeo-chemistry at a contaminated site[J]. Environ. Sci.Technol.,2002,36(24):5296~5304.
    [111]Ma L Q. Lead immobilization from aqueous solutions and contaminated soil using phosphate rocks[J]. Environ.Sci.Techno.,1995,29(4):1118~1126.
    [112]Chlopecka A, Adriano D C. Mimicked in-situ stabilization of metals in a cropped soil: Bioavailability and chemical form of zinc[J].Environ.Sci.Technol.,1996,30 (11):3294~ 3303.
    [113]Davies N A,Hodson M E,Black S.Changes in toxicity and bioavailability of lead in contaminated soils to the eatrhworm Eisenia fetida (Savigny 1826) after bone meal amendments to the soil[J].Environ.Toxicol.Chem.,2002,21(12):2685~269.
    [114]Laperehe V,Logan T J,Gaddam P, et al. Effect of apatite amendments on plant uptake of lead from contaminated soil[J]. Environ.Sei.Teehnol.,1997,31(10):2745~2753.
    [115]Conder J M, Lanno R P, Basta N T. Assessment of metal availability in smelter soil using eatrhworms and chemical extractions[J]. Environ.Qual.,2001,30(4):1231~1237.
    [116]Pearson M S, Maenpa K, Pierzynski G M, et al. Effects of soil amendments on the bioavailability of lead,Zinc and cadmium to earthworms[J]. Environ. Qual.2000,29(5): 1611~1617.
    [117]Seaman J C, Meehan T, Bertseh P M. Immobilization of cesium-137 and uranium in contaminated sediments using soil amendments [J]. Environ.Qua.,2001,30(4):1206~ 1213.
    [118]Hettiarachchi G M, Pierzynski G M, Ransom M D. In-situ stabilization of soil lead using phosphorus and manganese oxide[J]. Environ. Sci. Technol.,2000,34(21):4614~ 461
    [119]Heinz G H, Hfofman D J, Audet D J. Phosphorus amendment reduces bioavailability of lead to mallards ingesting contaminated sediments[J].Arch. Enviorn. Con.Tox,2004, 46(4):534~544.
    [120]Shi-Bao Chen, Yong-Guan Zhu, Yi-Bing Ma,G. McKay.Effect of bone char application on Pb bioavailability in a Pb-contaminated soil[J].Environ.Pollut.,2005,139:433~439.
    [121]唐翔宇,朱永官,陈世宝.Invitro法评估铅污染土壤对人体的生物有效[J].环境化学,2003,22(5):503~506.
    [122]施惠生,刘艳红.膨润土对重金属离子Pb2+、Zn2+、Cr(Ⅵ)、Cd2+的吸附性能[J].建筑材料学报,2006,9(5):507~510.
    [123]张子仪.规模化养殖业及饲料工业中的生态文明建设问题[J].饲料工业,1997,18(9):1-3.
    [124]殷宪强,张增强,孙慧敏,王国栋,高鹃.施用污泥堆肥对土壤态分布中Zn、Cu形的影响研究[J].农业环境科学学报,2004,23(3):448-451.
    [125]李桂菊,郭丽梅,徐娜,章川波.含少量铬污泥用作农肥的可行性研究[J].天津科技大学学报,2005,20(4):31-34.
    [126]陈国安.沸石处理重金属离子的试验研究[J].矿产保护与利用,2001,6:17~19.
    [127]施惠生,刘艳红.膨润土对重金属离子Pb2+、Zx2+、Cr(Ⅵ)、Cd2+的吸附性能[J].建筑材料学报,2006,9(5):507~510.
    [128]蒋良富,蒋达华,董呈杰.海泡石在重金属废水处理中的研究运用[J].矿业工程,2006,4(3):50~52.
    [129]刘羽,彭明生.磷灰石在废水治理中的应用[J].安全与环境学报,2001,1(1):9-12.
    [130]席永慧,赵红.粉煤灰及膨润土对Ni2+、Zn2+、Cd2+、Pb2+的吸附研究[J].粉煤灰综合利用,2004,3:3-6.
    [131]钱猛,沈振国,魏岚.螯合剂]EDDS和EDTA诱导海州香薷积累土壤重金属的比较研究[J].农业环境科学学报,2006,25(1):113~118.
    [132]Tessier A, Campbell P G C, Bisson M.Sequential extraction procedure for the speciation of particulate trace metals[J].Anal.Chem.,1979,51(7):844~851.
    [133]黄游,陈玲,邱家洲,等.污泥堆肥中重金属的生物有效性研究[J].农业环境科学学报2006,25(6):1455~1458.
    [134]Morel T L, Conlin F, Germon J, et al. Methods for the evaluation of the maturity of municipal refuse compost.In:Gasser J K R,Composting of Agricultural and Other Wastes. London & New York.Elscrier Applied Science Publishers.1985,56~72.
    [135]Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of Particulate trace metals[J]. Analytical and Chemistry,1979,51(7):844~851.
    [136]张树清,张夫道,刘秀梅,等.高温堆肥对畜禽粪中抗生素降解和重金属钝化的作用[J].中国农业科学,2006,39(2):337~343.
    [137]黄游,陈玲,邱家洲,赵建夫,滕衍行.污泥堆肥中重金属的生物有效性研究[J].农业环境科学学报2006,25(6):1455~1458.
    [138]Chang AC, Page AL, Warneke JE, et al. Sequential extraction of soil heavy metals following a sludge appli-cation. Journal of Environmental Quality,1984,13:33-38
    [139]Ho G, Qiao L. Chromium speciation in municipal solid waste:Effects of clay amendment and composting. Water Science and Technology,1998,38:17-23
    [140]杨国义,李芳柏,万洪富,等.猪粪混合堆肥过程中重金属含量的变化[J].生态环境,2003,12(4):412-414.
    [141]Ashworth DJ, Alloway BJ. Soil mobility of sewage sludge鄄derived dissolved organic matter, copper, nickeland zinc. Environmental Pollution,2004,127:137-144
    [142]Huang Z-C(黄泽春),Chen T-B(陈同斌),Lei M(雷梅).Effect of DOM derived form sewage sludge on Cd adsorption in different soils in China. I. Differ-ence in latitudinal zonal soils. Acta Scientiae Circum-stantiae(环境科学学报),2002,22 (3):349-353(in Chinese)
    [143]Wang J-G(王敬国)Soil Chemistry of Plant Nutrition.Beijing:Beijing Agricultural University Press,1995 (inChinese)
    [144]Hua L(华珞),Chen S-B(陈世宝),Bai L-Y(白玲玉),et al. Evaluating the molecular weight and char-acteristics of humic acids gradations using gel filtration and radioisotope tracer technique. Acta Agriculturae Nu-cleatae Sinica(核农学报),1999,13(4):236-241 (in Chinese)
    [145]Song H-F(宋和付),Xia C-B(夏畅斌),He X鄄G(何湘桂),et al. Study on the adsorption of natural zeolite for Pb(II) and Ni(II). Mineral Resources and Geology(矿业与地产),2000,14(4):276-278 (in Chinese)
    [146]Jiang L-F(蒋良富),Jiang D-H(蒋达华),Dong C-J(董呈杰)The research and application of sepiolite indisposing heavy metal wastewater. Mining Engineering(矿业工 程),2006,4(3):50-52 (in Chinese)
    [147]Edwards R, Rebedea I, Lepp NW, et al. An investiga-tion into the mechanism by which synthetic zeolitesreduce labile metal concentrations in soils. Environmen-tal Geochemistry and Health,1999,21:157-173
    [148]alvarez-Ayuso E, Garcia-Sanchez A. Sepiolite as a fea-sible soil additive for the immobilization of cadmium andzinc. Science of the Total Environment,2003,305:1-12
    [149]Hsu J H, Lo S L.Effect of composting on characterization and leaching of copper, manganese and zinc from swine manure [J].Environ. Pollut,2001,114(1):119-127.
    [150]Fuentes A, Llorens M, Saez J, et al.Phytotoxicity and heavy metals speciation of stabilised sewage sludges[J]. J Hazard Mater,2004,108(3):161~169.
    [151]生骏,陆文静,王洪涛.粉煤灰对污泥堆肥过程和土地施用后交换态重金属(Cu, Zn,Pb)的影响[J].环境科学,2007,28(6):1367-1371.
    [152]陈晓婷,连丰.无机改良材料对重金属形态及生物有效性的影响[J].福建环境,2003,20(1):39~41.
    [153]曹仁林,霍文瑞,何宗兰,等.钙镁磷肥对土壤中镉形态转化与水稻吸镉的影响.见迈向21世纪的土壤科学.中国土壤学会第九次全国代表大会天津市卷,1999,231-234.
    [154]蒋煜峰,展惠英,袁建梅,等.表面活性剂强化EDTA络合洗脱污灌土壤中重金属的试验研究[J].农业环境科学学报,2006,25(1):119~123.
    [155]刘浩荣,宋海星,荣湘民,刘强,谢桂先,彭建伟.钝化剂对好氧高温堆肥处理猪粪重金属含量及其形态的影响[J].生态与农村环境学报,2008,24(3):74-80.
    [156]Morel T L, Conlin F, Germon J,. Methods for the evaluation of the maturity of municipal refuse compost.In:Gasser J K R,Composting of Agricultural and Other Wastes. London & New York.Elscrier Applied Science Publishers.1985,56-72.
    [157]黄游,陈玲,邱家洲,赵建夫,滕衍行.污泥堆肥中重金属的生物有效性研究[J].农业环境科学学报,2006,25(6):1455-1458.
    [158]Tessier A, Campbell P G C, Bisson M.Sequential extraction procedure for the speciation of particulate trace metals[J].Anal.Chem.,1979,51(7):844-851.
    [159]徐惠忠.固体废弃物资源化技术[M].北京:化学工业出版社,2004.
    [160]Hsu J H, Lo S L.Effect of composting on characterization and leaching of copper, manganese and zinc from swine manure [J].Environ. Pollut.,2001,114(1):119-127.
    [161]曹仁林,霍文瑞,何宗兰.钙镁磷肥对土壤中镉形态转化与水稻吸镉的影响[J].迈向21世纪的土壤科学.中国土壤学会第九次全国代表大会天津市卷,1999,231-234.
    [162]蒋煜峰,展惠英,袁建梅,马明广,陈慧.表面活性剂强化EDTA络合洗脱污灌土壤中重金属的试验研究[J].农业环境科学学报,2006,25(1):119-123.
    [163]生骏,陆文静,王洪涛.粉煤灰对污泥堆肥过程和土地施用后交换态重金属(Cu, Zn, Pb)的影响[J].环境科学,2007,28(6):1367-1371.
    [164]郭荣发,廖宗文,陈爱珠.活化磷矿粉在砖红壤上的施用效果[J].湖南农业大学学报:自然科学版,2004,30(3):232-235.
    [165]陈国安.沸石处理重金属离子的试验研究[J].矿产保护与利用,2001,6:17-19.
    [166]蒋良富,蒋达华,董呈杰.海泡石在重金属废水处理中的研究运用[J].矿业工程,2006,4(3):50-52.
    [167]陈晓婷,连丰.无机改良材料对重金属形态及生物有效性的影响[J].福建环境,2003,20(1):39-41.
    [169]Ernst W H O. Bioavailability of heavy metals and decon tamination of soils by plants [J]. Appl Geoehem,1996(11):163~167.
    [170]Tessier A,Campbell P G C, Bisson M. Sequential extraction procedure of the speciation of particulate trace metals[J]. Anal. Chem.,1979,51:844~851.
    [171]Ma L.Q, Rao G. N. Effects of phosphate rock on sequential chemical extraction of lead in contaiminated soils[J]. Environ. Qual,1997,26:788~794.
    [172]Ma L Q, Choate A L, Rao G N. Efects of incubation and phosphe rock on lead extract-ability and speciation in contaminated soils[J].Environ.Qual.,1997,26:801~807.
    [173]Cao X D, Ma L Q, Chen M, et al. Impacts of phosphate amendments on lead biogeo-chemistry at a contaminated site[J]. Environ. Sci.Technol.,2002,36(24):5296~5304.
    [174]Ma L Q. Lead immobilization from aqueous solutions and contaminated soil using phosphate rocks[J]. Environ.Sci.Techno.,1995,29(4):1118~1126.
    [175]Chlopecka A, Adriano D C. Mimicked in-situ stabilization of metals in a cropped soil: Bioavailability and chemical form of zinc[J].Environ.Sci.Technol.,1996,30 (11):3294~ 3303.
    [176]Davies N A,Hodson M E,Black S.Changes in toxicity and bioavailability of lead in contaminated soils to the eatrhworm Eisenia fetida (Savigny 1826) after bone meal amendments to the soil[J].Environ.Toxicol.Chem.,2002,21(12):2685~269.
    [177]罗涛,黄东风,何盈,张建丽,翁伯琦.土壤重金属钝化剂的筛选及蔬菜降污专用肥应用效果研究[J].农业环境科学学报,2007,26(4):1390-1395.
    [178]陈晓婷,王果,张潮海.石灰泥炭对镉铅锌污染土壤上小白菜生长和元素吸收的影响[J].十壤与环境,2001,11(1):17-21.
    [179]姚岚,王成端.不同钝化剂对污泥堆肥过程中重金属形态的影响研究[J].环境卫生工程,2008,16(2):8-10.
    [180]林琦,郑春荣,陈怀满.根际环境中镉形态转化[J].土壤学报,1998,35(4):461-467.
    [181]李庆康,吴雷,刘海琴,蒋玉忠.我国集约化养殖场粪便处理利用现状及展望[J].农业环境保护,2000,19(4):251-254.
    [182]范美蓉,廖育林,彭辉辉.规模化猪场粪污污染及防治对策[J].现代农业科技,2007,12:148-149.
    [183]王小骊,张永志,王钢军.蔬菜中有害重金属元素污染研究[J].浙江农业学报,2004,16(5):259-262.
    [184]郑步东,陈正华,彭建林,叶彩芳.规模畜禽场环境污染现状及应对措施[J].上海农业科技,2005,2:80-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700