用户名: 密码: 验证码:
红花(Carthamus tinctorius L.)不同组织多不饱和脂肪酸积累模式及调控机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
亚油酸(Linoleic acid,LA,C18:2Δ9,12)和α-亚麻酸(α-linolenic acid,ALA, C18:2Δ9,12,15为人体必需脂肪酸,具有降低血液粘稠度、降低血液中甘油三酯和胆固醇含量、有效预防心脑血管病的作用。同时18:2和18:3也是植物细胞膜的重要组成部分,在植物抵御外界生物和非生物胁迫过程中起着不可替代的作用,并且也是多种信号分子的前体物质。18:2和18:3的生物合成是由一系列ω-6和ω-3脂肪酸脱氢酶通过原核和真核途径催化完成。其中ω-6脂肪酸脱氢酶催化油酸(Oleic acid,OA,C18:1△9)在碳链的Δ-12位脱氢生产双键生成18:2,而ω-3脂肪酸脱氢酶进一步在18:2的Δ-15位催化脱氢生成18:3。红花素有“亚油酸之王”的美誉,其普通型红花材料籽油中18:2的含量达70%以上。但迄今为止,仍未见任何有关红花亚油酸形成机制的分子生物学研究。本文对油用型红花材料ω-6和ω-3脂肪酸脱氢酶进行了基因克隆、组织表达以及系统进化分析,主要研究结果如下:
     1.采用RT-PCR和RACE(rapid amplification of cDNA ends)技术,从红花未成熟的种子和叶片中分离到8个FAD2基因和1个FAD6基因,并全部提交至GenBank上。分析其推导的氨基酸序列发现,所有基因均包含有3个组氨酸保守区。其中红花微体ω-6脂肪酸脱氢酶氨基酸序列C-端含有内质网滞留信号,而质体ω-6脂肪酸脱氢酶氨基酸序列N-端有质体信号肽序列。在NCBI中Blast结果显示,CtFAD2-1和CtFAD2-8与向日葵、大豆、棉花等种子特异表达的FAD2-1基因的同源性较高。而CtFAD2-2与其他作物中组成型表达的FAD2-2/ CtFAD2-3有较高的相似性。将ω-6脂肪酸脱氢酶氨基酸序列进行同源性比对发现,CtFAD2-1与CtFAD2-8的同源性最高,为79.9%;其次是CtFAD2-2与CtFAD2-1和CtFAD2-8,分别为70.8%和70.2;而这3个FAD2基因与其余5个拷贝间的序列相似性均较低,在52.0-61.0%之间;CtFAD6与FAD2之间的相似性极低,在18.0-21.9%之间。疏水性和跨膜分析结果显示,除CtFAD2-6以外,其余FAD2均含有6个疏水区,分别跨膜4-6次。蛋白质二级结构预测分析表明,所有红花ω-6脂肪酸脱氢酶基因二级结构均主要包含α螺旋和β折叠。这些基因的成功克隆,为进一步研究不同拷贝FAD2之间的分工、表达模式、调控及对环境的响应规律打下了坚实的基础,为红花亚油酸形成机制及脂肪酸组分的调控提供了一定的理论依据。
     2.采用RT-PCR和RACE(rapid amplification of cDNA ends)技术,从红花叶片中分离到2个质体类ω-3脂肪酸脱氢酶基因(CtFAD7和CtFAD8)的全长cDNA和1个微体类ω-3脂肪酸脱氢酶基因(CtFAD3)的部分序列,均已提交至GenBank中。CtFAD7和CtFAD8与其他植物的质体类ω-3脂肪酸脱氢酶的相似性分别为61-79%,63-78%。而CtFAD3与其他植物微体类ω-3脂肪酸脱氢酶的同源性较高,为60-93%。氨基酸序列分析表明红花CtFAD3,CtFAD7和CtFAD8均含有3个富含组氨酸的保守结构域,分别为HDCGH,HXXXXXHRTHH和HVIHH,其中CtFAD7和CtFAD8的N-端分别含有56和27aa的质体信号肽序列。疏水性及跨膜分析表明,红花ω-3脂肪酸脱氢酶氨基酸序列均包含4个疏水区域,分别跨膜1-3次。蛋白质二级结构预测结果表明,3个ω-3脂肪酸脱氢酶蛋白主要由α螺旋和p折叠组成。通过对CtFAD7和CtFAD8的cDNA和DNA序列比较发现,2个基因的DNA序列中均包含有7个内含子,8个外显子。各内含子在物种间则表现出丰富的多态性,序列和长度大小均各不相同;而从第2“到7“外显子的长度和序列相似性在物种间非常保守。将各内含子的位置表现在氨基酸序列上发现,在内含子出现的位置,均为该酶的保守区。因此,推测ωo-3脂肪酸脱氢酶基因的内含子对于保证基因在物种进化过程中功能的保守性起着关键作用。
     3.对红花各组织在不同温度下的脂肪酸组成及各ωo-6和ωo-3脂肪酸脱氢酶基因在对应组织中的mRNA表达量进行分析。结果表明,红花除种子以外的各组织均含有4种脂肪酸,棕榈酸(16:0)、硬脂酸(18:0)、亚油酸(18:2)和亚麻酸(18:3),因不含有棕榈亚麻酸(16:3),因此红花属于“18:3植物”。与其他所有植物不同,红花营养组织中不含有油酸(18:1),而在红花种子中,含有大量18:1但不含有18:3。另外本研究在红花根中检测到大量18:3Δ9,12,15脂肪醇,与该组织中其它脂肪酸共同比较,其组分含量为22.41%。ω-6脂肪酸脱氢酶家族基因的组织表达分析结果显示,所有该家族的基因均组成型表达,并且在不同的组织中表达量不同。红花co-3脂肪酸脱氢酶基因(CtFAD3, CtFAD7, CtFAD8)在不同组织中的表达研究结果表明,CtFAD3在除种子以外的所有组织中表达,在花中的表达量最高,其次是叶片。而CtFAD7和CtFAD8主要在叶片中高表达量。在种子发育的不同时期,16:0和18:0随着种子的发育含量逐渐降低,18:1在早期逐渐增加,而在开花15天后迅速降低,18:2在种子发育早期含量略有降低,但在15天后含量迅速升高。在种子表达量较高的ω-6脂肪酸脱氢酶基因主要有CtFAD2-1、CtFAD2-3和CtFAD2-8,并且3个基因均在开花后第10天的表达量显著高于其他各时期。CtFAD3在种子发育的各时期均不表达。在低温处理下,红花18:2和18:3的含量在茎和叶柄中均有所提高;而在叶片中,18:3的含量有所增加,18:2的含量则相应的减少。表达分析结果表明ω-6和ω-3脂肪酸脱氢酶基因在转录水平和转录后水平上共同调控着18:2和18:3的合成。在根中,ω-6和ω-3脂肪酸脱氢酶基因在低温下的表达量均有显著提高,但18:2和18:3含量却有所减少。而C18:3Δ9,12,15醇在低温的含量极显著增加。推测该脂肪醇由亚麻酸转化而来,对红花的低温抗性有非常重要的作用。
     4.对来自不同国家的高/低亚油酸红花材料的CtFAD2-1基因序列进行比对分析发现,从低亚油酸红花材料中分离到的CtFAD2-1'基因在起始密码子后+603 bp处存在1个碱基(胞嘧啶)的缺失,从而造成移码突变,使翻译提前终止。为验证CtFAD2-1'基因所编码的蛋白质大小以及活性,本研究将CtFAD2-1'基因与从高亚油酸材料中分离到的CtFAD2-1基因ORF序列分别插入到原核和真核表达载体pET30a和pYES2中,并分别转入大肠杆菌BL21(DE3)pLysS和营养缺陷型酵母INVScl表达系统中。在1mmol/L IPTG的诱导下,含有pETCtFAD2-1质粒的BL21菌体沉淀经SDS-PAGE电泳后,分离到1条约43kDa大小的特异条带,而在含有PETCtFAD2-1'质粒的BL21菌体总蛋白中却没有该特异条带。对含有pYES2FAD2, pYES2FAD2质粒以及空载pYES2.0的酵母细胞抽提脂肪酸,并进行GC/MS分析。结果表明,含有pYES2CtFAD2质粒的菌株中能诱导产生具有活性的油酸脱氢酶,将部分油酸(18:1)转化为亚油酸(18:2)。而在含有pYES2CtFAD2质粒和空载pYES2.0的工程菌中则没有能检测到18:2的生成。因此,从低亚油酸红花材料中分离到的CtFAD2-1'基因不能编码具有活性的油酸脱氢酶,该基因序列中+603 bp处胞嘧啶的缺失突变是低亚油酸红花材料形成的一个重要因素。比较CtFAD2-1基因在高/低亚油酸红花材料种子不同时期的表达量结果显示,在种子发育的各个时期,CtFAD2-1在高亚油酸材料中的表达量均高于在低亚油酸材料中对应时期的表达量。
     5.利用生物信息学方法对ω-6和ω-3脂肪酸脱氢酶基因家族的氨基酸序列特征、系统进化及功能分化进行分析。结果表明,ω-6和ω-3脂肪酸脱氢酶氨基酸序列均含有3个保守的组氨酸基序(Hisbox),不同生物来源的脂肪酸脱氢酶之间其Hisbox存在一定的差异,物种的进化程度越高,Hisbox的组氨酸(His)残基相对更保守。质体类ω-6和ω-3脂肪酸脱氢酶氨基酸N-端序列均有数目不等的信号肽区域,并且在信号肽区中部发现1个由10个疏水性或中性氨基酸残基组成的相对保守的疏水区,推测为该类酶信号肽的功能区域。而多数植物微体ω-6和ω-3脂肪酸脱氢酶氨基酸C-端均有KKXX-like motif内质网滞留信号,而红花CtFAD2-3、CtFAD2-4、CtFAD2-5、CtFAD2-6和CtFAD2-7中没有检测到该滞留信号,但C-端序列富含芳香族氨基酸,同样具有内质网滞留信号的作用。系统进化分析表明,所有序列分主要分为4大类,类Ⅰ为植物Stearic-ACP脂肪酸脱氢酶;类Ⅱ包括植物质体类ω-6脂肪酸脱氢酶和原核生物ω-6脂肪酸脱氢酶;类Ⅲ为真菌和植物微体ω-6脂肪酸脱氢酶;类Ⅳ由所有ω-3脂肪酸脱氢酶组成,证明ω-3脂肪酸脱氢酶在原核生物中由ω-6脂肪酸脱氢酶基因进化而来。并且植物质体和微体类ω-3脂肪酸脱氢酶亚类间包含单子叶和双子叶2个小类,表明植物质体和微体类ω-3脂肪酸脱氢酶功能的分化早在单子叶和双子叶植物分化之前就已经形成。植物微体类ω-6脂肪酸脱氢酶可细分为种子特异表达型和组成性表达型两类,并且是在双子叶形成之后才开始分化的。对各亚群间的功能分化类型分析结果表明,ω-6/ω-3脂肪酸脱氢酶以及植物质体/微体ω-6脂肪酸脱氢酶间经历过Ⅰ型和Ⅱ型功能分化;而质体/微体ω-3脂肪酸脱氢酶以及种子特异表达FAD/组成性表达FAD2亚群间只存在Ⅰ型功能分化。各亚群间的功能分化位点分析表明,除plant FAD3/plant FAD2外,在所有存在功能分化的亚群间,均存在后验概率值超过0.80的氨基酸位点,而这些位点主要分布在HisboxⅠ的前后两端以及HisboxⅡ的前端。以上结果均证明,ω-6和ω-3脂肪酸脱氢酶基因家族内部在长期进化过程中形成了亚群间的功能分化。
The Linoleic acid (LA, C18:2Δ9,12) andα-linolenic acid(ALA, C18:2Δ9,12,15) are essential fatty acids that cannot be synthesized by mammals and therefore must be obtained from dietary sources and have the role of lower the plasma cholesterol levels, low-density lipoproteins and reducing blood cholesterol levels in human body. 18:2 and 18:3 were the main structural components of membrane lipids and storage lipids in plant. They contribute to inducible stress resistance through the remodeling of membrane fluidity when plants encounter the biotic and abiotic stress.18:2 and 18:3 are synthesized through both prokaryotic (chloroplast) and eukaryotic (ER) pathways by a group ofω-6 andω-3 fatty acid desaturases. The membrane-boundω-6 desaturase (codified by the microsomal FAD2 and the plastidial FAD6 genes) inserts a double bond between carbons 12 and 13 of 18:1 to generate di-unsaturated linoleic acid (18:2).ω-3 desaturase (codified by one microsomal FAD3 and two plastidial FAD7 and FAD8 genes) further catalyzes the introduction of a third bond between carbons 15 and 16 to form tri-unsaturated a-linolenic acid (18:3). Safflower oil has been traditionally characterized by a high polyunsaturation level with linoleic acid (18:2) representing more than 70% of total fatty acid. Although the lipid contents of safflower seed oil and its commercial values have been well documented, the molecular regulation of lipid biosynthesis in safflower seeds has not been explored. The process of linoleic accumulation in safflower is still much of a mystery. Our main results about safflowerω-6 andω-3 fatty acid desaturases genes and regulatory mechanisims were described as follows:
     1. Eight different microsomalω-6 fatty acid desaturases and one plastidialω-6 fatty acid desaturase cDNA sequences, designated CtFAD2-1, CtFAD2-2, CtFAD2-3, CtFAD2-4, CtFAD2-5, CtFAD2-6, CtFAD2-7, CtFAD2-8 and CtFAD6 have been isolated from safflower(Carthamus tinctorius L.) using a PCR approach. All of safflower deduced amino acid sequences showed the three histidine boxes characteristic of all membrane-bound desaturases, and CtFAD2 contain a C-terminal ER retrieval motif, where as CtFAD6 possess a putative N-termianl signal peptide. Our Blast searches of the deduced aa sequences revealed that the deduced amino acid sequences of CtFAD2-1 and CtFAD2-8 showed higher similarities to other plant seed type microsomalω-6 fatty acid desaturases, where as OFAD2-2 showed higher similarities to constitutively-expressed type. The other microsomalω-6 fatty acid desaturase genes showed much lower identities to other plant FAD2. The CtFAD6 showed higher similarity with other plant plastidialω-6 fatty acid desaturases. In hydropathy analysis showed that the encoded polypeptide contains six putative membrane- spaning domains. Transmembrane analysis indicated that all the safflower fatty acid desaturases contained four to six putative membrane-spanning domains except CtFAD6, Protein second-structure indicated that safflowerω-6 fatty acid desaturase is composed by a-helix andβ-sheet
     2. One microsomalω-3 fatty acid desaturase gene fragment and two plastidialω-3 fatty acid desaturases cDNA and genomic sequences, designated CtFAD3, CtFAD7 and CtFAD8 have been isolated from safflower(Carthamus tinctorius L.) and submitted to GenBank. All of safflower deduced amino acid sequences showed the three histidine boxes (HDCGH, HXXXXXHRTHH and HVIHH) characteristic of all membrane-bound desaturases, and CtFAD7 and CtFAD8 possess a putative N-termianl signal peptide,6 and 27 aa respectively. Our Blast searches of the deduced aa sequences revealed that the deduced amino acid sequences of CtFAD7 and CtFAD8 showed higher similarities to other plant plastidialω-3 fatty acid desaturases (61-79%,63-78%, respectively), while OFAD3 showed higher similarity with other plant microsomalω-3 fatty acid desaturase (60-93%). In hydropathy and transmembrane analysis showed that the encoded polypeptides contain four putative hydropathy regions and transmenmbrane one to three times. Protein second-structure indicated that safflowerω-3 fatty acid desaturase were composed byα-helix andβ-sheet. Compared with the genome structures of safflower CtgFAD7 and CtgFAD8 and other plant plastidialω-3 desaturase genes, all the sequences contained 8 extons and 7 introns. The sizes of the internal 6 exons (from 2nd to 7th) were maintained in FAD7 and FAD8 from all the plant species.
     3. To investigate the regulatory mechanisms of the accumulation of fatty acids among the different safflower tissues, we studied the fatty acid composition and relative expression levels of theω-6 andω-3 fatty acid desaturase genes in roots, stems, petioles, leaves, flowers and developing seeds from safflower. Safflower vegetative tissues contained two main PUFAs,18:3 and 18:2, and two kinds of saturated fatty acids, palmitic acid (16:0) and stearic acid (18:0). Thus, safflower belongs to the group of so-called "18:3 plants". Difference between safflower and other 18:3 plant species was that no 18:1 presented in all the tested vegetative tissues. On contrary, large amount of 18:1 was detected in developing seeds while no 18:3 was found in this tissue. In roots, a new component, C18:3Δ9,12,15 alcohol, was detected in roots represented more than 20% when compared with fatty acids. The transcript analysis observed that all of theω-3 fatty acid desaturase genes were constitutively expressed. CtFAD3 was expressed in all the tissues except developing seeds, with highest mRNA accumulation in flower, followed by leaves, while CtFAD7 and CtFAD8 were mainly expressed in leaves. The relative percentages of 16:0 and 18:0 were decreased during seed development. The content of 18:2 decreased rapidly during the first 10 days of development, remaining steady afterwards till 15 DAF, and then it showed a fast and important increase of 18:2 in the later periods. CtFAD2-1, CtFAD2-3 and CtFAD2-8 are the main genes expressed in developing seeds and all of them show highest transcripts at the 10 day after flowering. Different from other plant, CtFAD3 did not express in developing seeds. At low temperature (5℃), both of 18:2 and 18:3 were increased in stems and petioles. In leaves, the percentages of 18:3 in leaves increased slightly (from 63.31 to 67.27%), with the compensation of 18:2, decreased from 12.73% to 8.70%. In roots, both of the percentages of 18:2 and 18:3 decreased, while interesting is the C18:3Δ9,12,15 alcohol was significantly increased from 22.41 to 32.13%. Express analysis indicated that the mechanism of temperature-dependent alterations of PUFAs composition in safflower membrane lipids is controlled at transcriptional and post-transcriptional level ofω-6 andω-3 fatty acid desaturase.
     4. Higher proportion of 18:2 in oil increases the chances of oxidation, which leads to unpleasant odors and tastes, thus limiting the storability of the oil. On the contrary, oils with high oleic acid (18:1) are less prone to oxidation and off-flavors and also extend the shelf life by delaying the development of rancidity. Hence recent research efforts are directed towards an improvement of oleic acid in oil crops. By RT-PCR method, the full-length cDNAs of CtFAD2-1 was isolated from safflower genotypes with normal and high ratio of oleic to linoleic acid, which were designated CtFAD2-1 and CtFAD2-1', respectively. Sequence alignment of their coding regions revealed that a deletion of cytosine (C) exists at the position+603 bp of CtFAD2' sequence of high oleic acid genotypes, which resulted in the shift of open reading frame (ORF) and truncated protein CtFAD2', with the loss of the third box involved in metal ion complex required for the reduction of oxygen. Analysis of transcript level showed that the expression of CtFAD2'in high oleic acid genotype is significant lower than CtFAD2 in normal genotypes during seed development. CtFAD2-1 and CtFAD2-1' were cloned into the expression vector, Pet30a and subsequently transformed into expression E.coli BL21 (DE3) pLysS. SDS-PAGE analysis showed that the 43 kDa target protein was visualized clearly in the cell membrane protein containing the CtFAD2-1, while the cells protein with CtFAD2-1' did not showed this band. The enzyme activity experiment of yeast (Saccharomyces cerevisiae) cell transformed with CtFAD2-1 and CtFAD2-1' proved that only CtFAD2-1 gene product showed significant microsomal oleate desaturase activity, partially convert 18:1 to 18:2. These results suggested that the change of CtFAD2' gene sequence results in the deactivation and lower transcription of delta-12 fatty acid desaturase in high oleic safflower genotypes.
     5. The deduced amino acid sequences ofω-6 andω-3 fatty acid desaturase genes have been compared in order to infer their phylogentic relationships and functional diverge. All the deduced proteins shared three highly conserved histidine rich motifs suggesting a common origin. The histidine rich motifs in the sequences from higher plant were more conserve than that of from prokaryotes. All of the plastidialω-6 andω-3 fatty acid desaturase possess a putative N-termianl signal peptide with different amino acids. And we identified the functional region of the peptide with hydrophobic or neutral amino acids. Most of plant microsomalω-6 andω-3 fatty acid desaturase (FAD2 and FAD3) contained a KKXX-like motif at the C-terminal, while safflower CtFAD2-3, CtFAD2-4, CtFAD2-5, CtFAD2-6 and CtFAD2-7 did not contain this motif, instead an aromatic aa enriched signal (YKNK) was found at the C-terminus of these amino sequences and such signal peptide has been reported to be both necessary and sufficient for maintaining localization of the enzymes in the ER. The phylogenetic analysis revealed four distinct clusters within the membrane desaturases. One cluster consisted of Stearic-ACP desaturase, the second group included plant plastidialω-6 fatty acid desaturase, the third cluster comprised the Eukaryotes FAD2, and the fourth contained all of the plastidial and microsomalω-3 fatty acid desaturase. This arrangement of clusters suggested thatω-3 fatty acid desaturases originated in a prokaryotic lineage from aω-6 fatty acid desaturase gene. The diverging time of plastidial and microsomalω-3 fatty acid desaturase, seed type and housekeeping type FAD2 were after the formation of dicotyledonous and monocotyledonous plants. The statistical evidence of functional divergence between plastidial and microsomalω-3 fatty acid desaturase, seed type and housekeeping type FAD2 was found in this analysis. Further more, the site for functional divergence were identified and distributed near the HisboxⅠand HisboxⅡ. These results indicated that evidence of functional divergence in theω-6 andω-3 fatty acid desaturase gene family during the long evolutionary period.
引文
Anai T, Koga M, Tanaka H, Kinoshita T, Rahman SM, akag YT. (2003) mprovement of rice (Oryza sativa L.) seed oil quality through introduction of a soybean microsomal omega-3 fatty acid desaturase genePlant Cell Reports,21(10):988-992,
    Andreu V, Lagunas B, Collados R, Picorel R, Alfonso M. (2010) The GmFAD7 gene from soybean:identification of novel genes and tissue-specific conformations of the FAD7 enzyme involved in desaturase activity. Journal of experimental botany.61(12):3371-3384.
    Andreu V, Collados R, Testillano PS, Carmen Risueno M, Picorel R, Alfonso M. (2007) In Situ Molecular Identification of the Plastid ω3 Fatty Acid Desaturase FAD7 from Soybean: Evidence of Thylakoid Membrane Localization. Plant Physiol,145(4):1336-1344.
    Arondel V, Lemieux B, Hwang I, Gibson S, Goodman HM, Somerville CR. (1992) Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis. Science. 258:1353-1355.
    Avelange-Macherel MH. Macherel D. (1995) Wada H. Murata N. Site-directed mutagenesis of histidine residues in the delta 12 acyl-lipid desaturase of Synechocystis. FEBS Lett.361(1): 111-114.
    Banilas G, Moressis A, Nikoloudakis N, Hatzopoulos P (2005). Spatial and temporal expressions of two distinct oleate desaturases from olive (Olea europaea L.). Plant Sci 168,547-555
    Belo A, Zheng P, Luck S, Shen B, Meyer DJ, Li B, Tingey S, Rafalski A. (2008) Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Molecular Genetics and Genomics,279(1):1-10.
    Berberich FJ, Somerville C. (1994) Plasmid omega-3 fatty acid desaturase cDNA from Ricinus communis. Plant Physiol.105(1):443-444
    Berberich T, Harada M, Sugawara K, Kodama H, Iba K, Kusano T (1998)Two maize genes encoding omega-3 fatty acid desaturase and their differential expression to temperature. Plant Mol Biol.36(2):297-306.
    Bilyeu KD, Palavalli L, Sleper DA., Beuselinck PR. (2003) Three microsomal omega-3 fatty-acid desaturase genes contribute to soybean linolenic acid levels. Crop Sci.43:1833-1838.
    Bolle C, Herrmann RG, Oelmuller R. (1996) Intron sequences are involved in the plastid- and light-dependent expression of the spinach PsaD gene. Plant J.10 (5):919-924
    Byfield GE; Upchurch RG, Ars U. (2007a) Effect of Temperature on Delta-9 Stearoyl-ACP and Microsomal Omega-6 Desaturase Gene Expression and Fatty Acid Content in Developing Soybean Seeds. Crop science,47(4) 1698-1704.
    Byfield GE; Upchurch RG, Ars U. (2007b) Effect of Temperature on Microsomal Omega-3 Linoleate Desaturase Gene Expression and Linolenic Acid Content in Developing Soybean Seeds. Crop science,47(6) 2445-2452.
    Cahoon E B. (1994) △6 Hecadecenoif acid is synthesized by the activity of a soluble △6 palmitoyl—acyl carrier protein desaturase in Thunberglala Endosperm. J Biol Chem,269: 27519-27526
    Cahoon E B. (1997) Redesign of soluble fatty acid desaturase from plants for altered substrate specificity and double bond position Proc. Natl. Acad. Sci. USA.94:4872-4877
    Cahoon EB, Ripp KG, Hall SE, Kinney AJ.(2001) Formation of conjugated delta8,delta10-double bonds by delta12-oleic-acid desaturase-related enzymes:biosynthetic origin of calendic acid. J Biol Chem.276(4):2637-43.
    Chaffai R, Elhammadi MA, Seybou TN, Tekitek A, Marzouk B, El Ferjani E. (2007) Altered Fatty Acid Profile of Polar Lipids in Maize Seedlings in Response to Excess Copper. J Agro& Crop Sci.193(3):207-217
    Chapkin RS, Arrington JL, Apanasovich TV, Carroll RJ, Mcmurray DN (2002) Dietary n-3 PUFA affect TCR-mediated activation of purified murine T cells and accessory cell function in co-culture. Clin Exp Immnol.130(1):12-14
    Christoph Kirsch, Klaus Hahlbroch, Imre E Somssich, (1997) Rapid and transient iduction of a parsley microsomal delta-12 fatty acid desaturase mRNA by fungal elicitor. Plant Physiol, 115:283-289.
    Collados R, Andreu V, Picorel R, Alfonso M. (2006) A light-sensitive mechanism differently regulates transcription and transcript stability of ω3 fatty-acid desaturases (FAD3, FAD7 and FAD8) in soybean photosynthetic cell suspensions. FEBS Letters,580(20):4934-4940.
    Cossins AR, Christiansen J, Prosser CL. (1978) Adaptation of biological membranes to temperature. The lack of homeoviscous adaptation in the sarcoplasmic reticulum, Biochim. Biophys Acta,511:442-452.
    Covello PS, Reed DW (1996) Functional expression of the extraplastidial Arabidopsis thaliana oleate desaturase gene (FAD2) in Saccharomyces cerevisiae. Plant Physiol,111(1):223-6.
    Chung CH, Kim JL, Lee YC, Choi YL. (1999) Cloning and Characterization of a Seed-Specific ω-3 Fatty Acid Desaturase cDNA from Perilla frutescens. Plant Cell Physiol 40(1):114-118.
    Dajue L. (1993) Progress of safflower (Carthamus tinctorius L.) research and production in China. In:Third International Safflower Conference, Beijing, China, pp 35-46.
    Dakhma WS, Zarrouk M, Cherif A. (1995)Effects of drought-stress on lipids in rape leaves. Phytochemistry.40 (5):1383-1386
    Damude HG, Zhang HX, Farrall L, Ripp KG, Tomb JF, Hollerbach D, Yadav NS (2006) Identification of bifunctional △12/ω3 fatty acid desaturases for improving the ratio of ω3 to ω6 fatty acids in microbes and plants. Proc Natl Acad Sci U S A,103(25):9446-9451.
    Deyholos MK, Sieburth LE. (2000) Separable whorl-specific expression and negative regulation by enhancer elements within the AGAMOUS second intron. Plant Cell.12(10):1799-1810.
    Dmitry A Los, Norio M. (1998) Structure and expression of fatty acid desaturases. Biochimica et Biophysica Acta,1394:3-15
    Dyer JM, Mullen RT (2001). Immunocytological localization of two plant fatty acid desaturases in the endoplasmic reticulum. FEBS Lett 494,44-47.
    Dyer MJ, Chapital DC, Kuan JW, Mullen RT, Turner C, McKeon TA, Pepperman AB (2002) Molecular Analysis of a Bifunctional Fatty Acid Conjugase/Desaturase from Tung. Implications for the Evolution of Plant Fatty Acid Diversity. Plant physiology,130(4): 2027-2038
    Eisenberg D, Wilcox W, McLachlan AD. (1986) Hydrophobicity and amphiphilicity in protein structure. Journal of Cellular Biochemistry,31(1):11-17.
    Fernandez-Martinez J, Rio M and Haro A. (1993) Survey of safflower (Carthamus tinctorius L.) germplasm for variants in fatty acid composition and other seed characters. Euphytica 69, 115-122.
    Futehally S and Knowles PF. (1981) Inheritance of very high levels of linoleic acid in an introduction of safflower(Carthamus Tinctorius L.) from Portugal. In:First International safflower conference, Davis, California,56-61.
    Garces R, Mancha M. (1993) One-step lipid extraction and fatty acid methyl esters preparation from fresh plant tissues. Anal Biochem.211:139-143.
    Gibson S, Arondel V, Iba K, and Somerville C (1994)Cloning of a temperature-regulated gene encoding a chloroplast omega-3 desaturase from Arabidopsis thaliana, Plant Physiol.106 (4): 1615-1621
    Gigon A, Matos A, Laffray D, Zuily-fodil Y, Pham-thi A. (2004) Effect of Drought Stress on Lipid Metabolism in the Leaves of Arabidopsis thaliana (Ecotype Columbia) Ann Bot.94 (3): 345-351
    Gu X. (1999) Statisticial methods for testing functional divergenece after gene duplication. divergence. Mole Biol and Evol,16:1664-1674.
    Gu X. (2001) Maximum likelihood approach for gene family evolution under functional divergence. Mole Biol and Evol,18:453-464.
    Guan LL, Wu W, Zheng YL.(2008) Oil contents and fatty acid compositions of seed oil from different safflower accessions introduced into Yaan and the correlation analysis with the agronomic traits and photosynthetic parameters. Philippine Agricultural Scientist.
    Hamdan YAS, Perez-Vich B, Velasco L, Fernandez-Martinez J M. (2008) Inheritance of high oleic acid content in safflower. Euphytica,168(1):61-69.
    Harwood J L (1988) Fatty Acid Metabolism. Ann Rev Plant Physiol Plant Mol Biol 39:101-138
    Heppard EP, Kinney AJ, Stecca KL, Miao GH. (1996) Developmental and growth temperature regulation of two different microsomal ω-6 desaturase gene in soybean. Plant Physiol 110: 311-319
    Hernandez ML, Mancha M, Martinez-Rivas JM. (2005) Molecular cloning and characterization of genes encoding two microsomal oleate desaturase (FAD2) from olive. Phytochemistry 66: 1417-1426
    Hoof AV, Green PJ. (1996) Premature nonsense codon decreases the stability of phytochemagglutnin mRNA in a position-dependent manner. Plant J 10:415-424.
    Horiguch G, Iwakawa H, Kodama H, Kawakami N, Nichimura M, Iba K.(1996) Expression of a gene for plastid omega-3 fatty acid desaturase and changes in lipid and fatty acid compositions in light-and dark-grown wheat leaves. Physiol Plant.96:275-283
    Horiguchi G, Fuse T, Kawakami N, Kodama H, Iba K. (2000) Temperature-dependent translational regulation of the ER omega-3 fatty acid desaturase gene in wheat root tips. Plant J, 24(6):805-13.
    Hornung E, Pernstich C, Feussner I. (2002) Formation of conjugated △11 and △13-double bonds by △12-linoleic acid (1,4)-acyl-lipid-desaturase in pomegranate seeds. European J Biochem,269 (19)19:4852-4859
    Iba K. (2002) Acclimative response to temperature stress in higher plant:approaches of gene engineering for temperature tolerance. Ann Rev Plant Biol.53:225-245.
    Iba K, Gibson S, Nishiuchi T, Fuse T, Nishimura M, Arondel V, Hugly S, Somerville C. (1993) A gene encoding a chloroplast omega-3 fatty acid desaturase complements alterations in fatty acid desaturation and chloroplast copy number of the fad7 mutant of Arabidopsis thaliana. J Biol hem.15 (32):24099-105
    Iwabuchi M, Kohno-Murase J, Imamura J. (2003) Delta-12 oleate desaturase-related enzymes associated with formation of confugated trans-△11, cis-△13 double bonds. J Biol Chem. 278(7):4603-10.
    Jemal F, Zarrouk M, Ghorbal MH. (2000) Effect of cadmium on lipid composition of pepper Biochem Soc Trans.28 (6):907-10.
    Jin JH, Chung CH. (2001) Characterization and temporal expression of a omega-6 fatty acid desaturase cDNA from sesame (Sesamum indicum L.) seeds. Plant Sci 161:935-941.
    Jung S, Swift D, Sengoku E, Patel M, Teule F, Powell G, Moore K, Abbott A. (2008) The high oleate trait in the cultivated peanut (Arachis hypogaea L.).11. Molecular basis and genetics of the trait. Mol Gen Genet 263:806-811.
    Kachroo A, Lapchyk L, Fukushigeb H, Hildebrandb D, Klessigc D, Kachroo P (2003b) Plastidial Fatty Acid Signaling Modulates Salicylic Acid-and Jasmonic Acid-Mediated Defense Pathways in the Arabidopsis ssi2 Mutant. The Plant Cell, Vol.15,2952-2965.
    Kachroo A. Venugopal SC, Lapchyk L, Falcone D, Hildebrand D, Kachroo P. (2004) Oleic acid levels regulated by glycerolipid metabolism modulate defense gene expression in rabidopsis. PNAS,101 (14):5152-5157.
    Kachroo P, Kachroo A, Lapchyk L, Hildebrand D, Klessig DF.(2003 a) Restoration of defective cross talk in ssi2 mutants:role of salicylic acid, jasmonic acid, and fatty acids in SS12-mediated signaling. Mol Plant Microbe Interact,16(11):1022-1029.
    Kachroo P, Shanklin J, Shah J, Whittle EJ, Klessig DF. (2001) A fatty acid desaturase modulates the activation of defense signaling pathways in plants. Proc Natl Acad Sci,98(16):9448-9453.
    Kang JL, Snapp AR, Lu CF. (2011) Identification of three genes encoding microsomal oleate desaturases (FAD2) from the oilseed crop Camelina sativa. Plant Physiology and Biochemistry.49 (2):223-229
    Kargiotidou A, Deli D, Galanopoulou D, Tsaftaris A, Farmaki T. (2008) Low temperature and light regulate delta 12 fatty acid desaturases (FAD2) at a transcriptional level in cotton(Gossypium hirsutum). J Exp Bot,59:2043-2056
    Kim MJ, Go YS, Ahn SJ, Chung CH and Suh MC. (2008) Functional complementation of a periila ω3 fatty acid desaturase under the seed-specific SeFAD2 promoter. J Plant Bio.51: 174-179
    Kim MJ, Kim H, Shin JS, Chung CH, Ohlrogge JB, Suh MC. (2006) Seed-specific expression of sesame microsomal oleic acid desaturase is controlled by combinatorial properties between negative cis-regulatory elements in the SeFAD2 promoter and enhancers in the 5'-UTR intron. Mol Genet Genomics.276 (4):351-68
    Kinney AJ. (1996) Development of genetically engineered soybean oils for food applications, J of Food lipids,3(4)273-292.
    Kinney AJ. (1998) Manipulating flux through plant metabolic pathways. Curr Opin Plant Biol 1: 173-178.
    Knowles PF. (1965) Variability in oleic and linoleic acid content of safflower oil. Econ Bot.19, 27-29.
    Knowles PF. (1972) The plant geneticist's contribution toward changing lipid and amino acid composition of safflower. J.Amer. Oil Chem.Soc 49,27-29.
    Knowles PF. (1989) Safflower. In:Downey RK, Robbelen G, Ashri A (eds) Oil crops of the world. New York, pp 363-374
    Kodama H, Akagi H, Kusumi K, Fujimura T, Iba K. (1997). Structure, chromosomal location and expression of a rice gene encoding the microsome omega-3 fatty acid desaturase. Plant Mol Biol.33 (3):493-502
    Kodama H, Horiguchi G, Nichiuchi T, Nishimura M, Iba K (1995) Fatty acid desaturation during chilling acclimation is one of the factors involved in conferring low-temperature tolerance to young tomato leaves, Plant Physiol 107:1177-1185.
    Kotaro T. (1994) Further characterization of auxin-regulated mRNAs in hypocotyl sections of mung bean [Vigna radiata (L.) Wilczek]:sequence homology to genes for fatty-acid desaturases and atypical late-embryogenesis-abundant protein, and the mode of expression of the mRNAs. Planta.1994;192(3):359-64.
    Kotaro T. Yamamoto, Hitoshi Mori, Hidemasa Imaseki. Novel mRNA Sequences Induced by Indole-3-Acetic Acid in Sections of Elongating Hypocotyls of Mung Bean (Vigna radiata) Plant Cell Physiol (1992) 33(1):13-20.
    Krasowska A, Dziadkowiec D, Polinceusz A, Plonka A, Lukaszewicz M. (2007) Cloning of Flax Oleic Fatty Acid Desaturase and Its Expression in yeast. J Am Oil Chem Soc 84:809-816
    Lacombe S, Souyris 1, Andre J, Berville. (2009) An insertion of oleate desaturase homologous sequence silences via siRNA the functional gene leading to high oleic acid content in sunflower seed oil, Mol Genet Genomics 281:43-54
    Ladd SL and Knowles PF, (1970) Inheritance of stearic acid in the seed oil of safflower (Carthamus tinctorius L.). Crop Sci,10,525-527.
    Larkin MA, Blackshields G., Brown NP, Chenna R, McGettigan PA, McWilliam H., Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, GibsonTJ, Higgins DG. (2007) Clustal W and Clustal X version 2.0. Bioinformatics,23:2947-2948.
    Li Dajue, Mundel HH. (1996) Safflower,Promoting the conservation and use of underutilized and neglected crops.IPGRI.:30-32
    Lindgvid Y, Hu WT, Schneider G. (1996) Crystal structure of A9 stearoyl-ACP desaturase from caster seed and its relationship to other di-iron protein. EMBO J.15(16):4081-4092
    Li LY, Wang XL, Gai JY, Yu DY. (2007) Molecular cloning and characterization of a novel microsomal oleate desaturase gene from soybean. J Plant Physiol 164:1516-1526
    Liu Q, Brubaker CL, Green AG, Marshall DR, Sharp PJ, Singh SP. (2001). Evolution of the FAD2-1 fatty acid desaturase intron and the molecular systematics of Gossypium (Malvaceae). Am J Bot 88:92-102.
    Liu Q, Singh SP, Brubaker CL, Sharp PJ, Green AG, Marshall DR. (1999) Molecular cloning and expression of a cDNA encoding a microsomal ω-6 fatty acid desaturase from cotton (Gossypium hirsutum). Aust J Plant Physiol 26,101-106.
    Liu Q, Singh SP, Brubaker CL, Green AG (1999a) Cloning and sequence analysis of a novel member (accession No. Y10112) of the microsomal co-6 desaturase family from cotton (Gossypium hirsutum L). Plant Physiol 120:339-340
    Liu Q, Singh SP, Brubaker CL, Sharp PJ, Green AG, Marchall DR (1999b) Molecular cloning and expression of a cDNA encoding a microsomal ω-6 fatty acid desaturase in cotton (Gossypium hirsutum L). Aust J Plant Physiol 26:101-106
    Livak KJ, Schmittgen TD. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-AACt method. Methods.25:402-408.
    Long M, Rosenberg C, Gilbert W. (1995) Intron phase correlations and the evolution of the intron/exon structure of genes. Proc Natl Acad Sci.92(26):12495-12499
    Los DA, Murata N. (2004) Membrane fluidity and its roles in the perception of environmental signals. Biochim Biophys Acta (Biomembrane) 1666:142-157
    Lopez Alonso D, Garcia-Maroto F, Rodriguez-Ruiz J, Garrido JA, Vilches MA. (2003) Evolution of the membrane-bound fatty acid desaturases. Biochem Syst Ecol.31(10):1111-1124
    Lopez Y, Nadaf HL, Smith OD, Connell JP, Reddy AS, Fritz AK (2000) Isolation and characterization of the △12-fatty acid desaturase in peanut (Arachis hypogaea L.) and search for polymorphisms for the high oleate trait in Spanish market-type lines. Theor Appl Genet 101:1131-1138
    Lu Y, Chi X, Li Z, Yang Q, Li F, Liu S, Gan Q, Qin S. (2010) Isolation and characterization of a stress-dependent plastidial delta-12 fatty acid desaturase from the Antarctic microalga Chlorella vulgaris NJ-7 Lipids.45(2):179-87.
    Maniatis T, Tasic B. (2002) Alternative pre-mRNA splicing and proteome expansion in metazoans. Nature.418:236-243.
    Martinez-Rivas JM, Sperling P, L□hs W, Heinz E. (2001) Spatial and temporal regulation of three different microsomal oleate desaturase genes (FAD2) from normal-type and high-oleic varieties of sunflower (Helianthus anmuus L.). Mol Breed 8:159-168
    McCartney AW, Dyer JM, Kim PK, Andrews DW, McNew JA, Mullen RT. (2004) Membrane-bound fatty acid desaturases are inserted co-translationally into the ER and contain different ER retrieval motifs at their carboxy termini. Plant J.37:156-173
    Mikami K, Murata N. (2003) Membrane fluidity and the perception of environmental signals in cyanobacteria and plants. Prog Lipid Res.42:527-543
    Miller JF; Zimmerman DC; Vick BA. (1987) Genetic control of high oleic acid content in sunflower oil. Crop science,27(5):923-926.
    Miquel M, James D, Dooner H, Browse J. (1993) Arabidopsis requires polyunsaturated lipids for low-temperature survival. Proc Natl Acad Sci U S A.90 (13):6208-6212.
    Mondal S, Babigannavar AM, Souza SF. (2010) Induced variability for fatty acid profile and molecular characterization of high oleate mutant in cultivated groundnut (Arachis hypogaea L.). Plant Breeding.130 (2):242-247.
    Murakami Y, Tsuyama M, Kobayashi Y, Kodama H, Iba K. (2000) Trienoic fatty acids and plant tolerance of high temperature. Science.287(5452):476-9.
    Nishiuchi T, Hamada T, Kodama H, Iba K. (1997) Wounding changes the spatial expression pattern of the Arabidopsis plastid w-3 fatty acid desaturase gene (FAD7) though different signal transduction pathways. The plant cell,9:1701-1712.
    Nishiuchi T, Iba K. (1998) Roles of plastid ω-3 fatty acid desaturases in defense response of higher plant. J Plant Res.111:481-486.
    Nishiuchi T, Nakamura T, Abe T, Kodama H, Nishimura M, Iba K. (1995) Tissue-specific and light-responsive regulation of the promoter region of the Arabidopsis thaliana chloroplast ω-3 fatty acid desaturase gene (FAD7) Plant Molecular Biology.29(3):599-609:
    Niu B, Guo L, Zhao M, Luo T, Zhang R, Zhang F, Hou P, Zhang Y, Xu Y, Wang S, Chen F. (2008) Molecular cloning, characterization, and expression of an omega-3 fatty acid desaturase gene from Sapium sebiferum. J Biosci Bioeng.106:375-380
    Ohlrogge J, Browse J.1995. Lipid Biosynthesis. The Plant Cell,7:957-970
    Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J. (1994) Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell.6(1): 147-158
    Patrick SC, Darwin WR. (1996) Functional Expression of the Extraplastidial Arabidopsis thaliana Oleate Desaturase Gene (FAD2)in Saccharomyces cerevisiae. Plant Physiol. 111:223-226
    Panpoom S, Los DA, Murata N. (1998) Biochemical characterization of a deltal2 acyl-lipid desaturase after overexpression of the enzyme in Escherichia coli. Biochim Biophys Acta, 1390(3):323-332.
    Patel M, Jung S, Moore K, Powell G, Ainsworth C, Abbott A. (2004) High-oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theor Appl Genet 108:1429-1520.
    Patricia V, Hu ZY, Munchinsky MA, Rowland G, Qiu X. (2005) Two FAD3 Desaturase Genes Control the Level of Linolenic Acid in Flax Seed. Plant Physiology.139:79-87.
    Petracek ME, Nuygen T, Thompson WF, Dickey LF. (2000) Premature termination codons destabilize ferredoxin-1 mRNA when ferredoxin-1 is translated. Plant J 25:563-569.
    Pirtle IL, Kongcharoensuntorn W, Nampaisansuk M, Knesek JE, Chapman KD, Pirtle RM. (2001) Molecular cloning and functional expression of the gene for a cotton △-12 fatty acid desaturase (FAD2). Biochim Biophys Acta.1522:122-129.
    Prakash M. Gopalakrishnan Nair;In-Soon Kang;Byoung-Yong Moon;Choon-Hwan Lee. (2009) Effects of low temperature stress on rice (Oryza sativa L.) plastid ω-3 desaturase gene, OsFAD8 and its functional analysis using T-DNA mutants. Plant Cell,2009,98(1):87-96.
    Raison JK and Chapman EA. (1973) Membrane Phase Changes in Chilling-Sensitive Vigna radiata and Their Significance to Growth. Australian J Plant Physiol.3 (3):291-299.
    Reed DW, Schafer UA, Covello PS. (2000) Characterization of the Brassica napus extraplastidial linoleate desaturase by expression in Saccharomyces cerevisiae. Plant Physiol 122:715-720.
    Rolletschek H, Borisjuk L, Sanchez-Garcia A, Gotor C, Romero LC, Martinez-Rivas JM, Mancha M. (2007) Temperature-dependent endogenous oxygen concentration regulates microsomal oleate desaturase in developing sunflower seeds. J Exp Bo,58:3171-3181.
    Roughan PG, Slack CR.(1985) Cellular organization of glycerolipid metabolism. Annu Rev Plant Physiol.33:97-132.
    Routaboul JM,Fischer SF, Browse J. (2000) Trienoic faty acids are required to maintain chloroplast function at low temperatures. Plant Physiol 124:1697-1705.
    Sakamoto T, Murata N. (2002) Regulation of the desaturation of fatty acids and its role in tolerance to cold and salt stress. Curr Opin Microbiol.5 (2):208-210.
    Sanchez-Garcia A, Mancha M, Heinz E, Martinez-Rivas JM. (2004) Differential temperature regulation of three sunflower microsomal oleate desaturase (FAD2) isoforms overexpressed in Saccharomyces cerevisiae, Eur J Lipid Sci Technol 106:583-590.
    Sandhu D, Alt JL, Scherder CW, Fehr WR, Bhattacharyya MK. (2007) Enhanced oleic acid content in the soybean mutant M23 is associated with the delition in the FAD2-la gene encoding a fatty acid desaturase. J Amer Oil Chem Soc 84:229-235.
    Sandra E. Vega, Alfonso H. del Rio, Bamberg JB. (2004) Evidence for the up-regulation of stearoyl-ACP (△9) desaturase gene expression during cold acclimation. American journal of potato research,81(2):125-135.
    Schlueter JA, Vasylenko-Sanders IF, Deshpande S, Yi J, Siegfried M, Roe BA, Schlueter SD, Scheffler BE, Shoemaker RC. (2006) The FAD2 Gene Family of Soybean:Insights into the Structural and Functional Divergence of a Paleopolyploid Genome. Plant Genome. S14-s26.
    Shanklin J, Whittle E, Fox BG. (1994) Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl—CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry.33(43):12787-12794.
    Sinensky M, (1974) Homeoviscous adaptation—a homeostatic process that regulates viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci. U. S. A.71:522-525.
    Somerville C, Browse J. (1991) Plant lipid:Metabolism, Mutants and Membrnes. Sicence,252: 80-87
    Stoutjesdijk PA, Hurlestone C, Singh SP, Green AG. (2000) High-oleic acid Australian Brassica napus and B.juncea varieties produced by co-suppression of endogenous δ12-desaturases. Biochem Soc Trans 28:938-940
    Stymne S, Stobart AK, Gladd G. (1983) The role of the acyl-CoA pool in the synthesis of polyunsaturated 18 Carbin fatty acids and triacylglycerol production in the microsomes of developing safflower seeds. Biochimica et biophysica acta,752:198-208
    Tamura K, Dudley J, Nei M, Kumar S. (2007) MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol Bio Evol.24(8):1596-1599.
    Tang GQ, William PN, Griffin HC, Huber SC, Dewey RE. (2005) Oleate desaturase enzymes of soybean:evidence of regulation through different stability and phosphorylation. The Plant J, 44:433-446
    Tang SY, Guan RZ, Zhang HS, Huang J. (2007) Cloning and expression analysis of three cDNAs encoding omega-3 fatty acid desaturases from Descurainia Sophia. Biotech lett.29 (9): 1417-1424
    Tanhuanpaa PK, Vilkki JP, Vilkki HJ. (1995) Mapping and cloning of FAD2 gene to develop allele-specific PCR for oleic acid in spring turnip rape(Brassica rapa ssp.oleifera). Mol Breed 4,543-550.
    Teixeira MC, Coelho N, Olsson ME, Brodelius PE, Carvalho IS, Brodelius M. (2009) Molecular cloning and expression analysis of three omega-6 desaturase genes from purslane(Portulaca oleracea L.). Biotechnol Lett.31:1089-1101
    Terzaghi WB, Cashmore AR. (1995) Light-regulated transcription. Annu Rev Plant Physiol Plant Mol Biol 46,445-474
    Upchurch RG. (2008) Fatty acid unsaturation, mobilization, and regulation in the response of plants to stressBiotechnology Letters,30 (6):967-977.
    Velasco L, Fernandez-Martinez JM. (2001) Breeding for oil quality in safflower. In:Bergman JW, Mundel HH (eds) Proceedings of the Vth International safflower Conference. Williston, North Dakota and Sidney, Montana, USA.133-137.
    Venegas-Calerona M, Beaudoina F, Garcesb R, Napiera JA, Martinez-Force E. (2010) The sunflower plastidial ω3-fatty acid desaturase (HaFAD7) contains the signalling determinants required for targeting to, and retention in, the endoplasmic reticulum membrane in yeast but requires co-expressed ferredoxin for activity. Phytochemistry.71(10):1050-1058.
    Verdoni N, Mench M, Cassagne C, Bessoule JJ. (2001) Fatty acid composition of tomato leaves as biomarkers of metal-contaminated soils. Environ Toxicol Chem.20(2):382-8.
    Wang J, Ming F, Pittman J, Han Y, Hu J, Guo B, Shen D (2006) Characterization of a rice (Oryza sativa L.) gene encoding a temperature-dependent chloroplast omega-3 fatty acid desaturase. Biochem Biophys Res Commun,340(4):1209-16.
    Wu Q, Liu T, Liu H, Zheng G. (2009) Unsaturated fatty acid:Metabolism, synthesis and gene regulation. African J Biothech,8(9) 1782-1785.
    Yara A, Yaeno T, Hasegawa M, Seto H, Montillet JL, Kusumi K, Seo S, Iba K. (2007) Disease resistance against Magnaporthe grisea is enhanced in transgenic rice with suppression of omega-3 fatty acid desaturasesPlant Cell Physiol.48(9):1263-1274.
    Yin D, Cui D, Jia B. (2007) Construction of a high-efficient expression vector of Deltal2 fatty acid desaturase in peanut and its prokaryotical expression. J Genet Genomics.34(1):81-88.
    Yu C, Wang HS, Yang S, Tang XF, Duan M, Meng QW. (2009) Overexpression of endoplasmic reticulum omega-3 fatty acid desaturase gene improves chilling tolerance in tomato. Plant Physiol Biochem,47(11-12):1102-1112.
    Zhang D, Pirtle IL, Park SJ, Nampaisansuk M, Neogi P, Wangjie SW, Pirtle RM, Chapman KD (2009) Identification and expression of a new delta-12 fatty acid desaturase (FAD-4) gene in upland cotton and its functional expression in yeast and Arabiopsis thaliana Plants. Plant Physiol Biochem 47:462-471
    Zhang M, Barg R, Yin M, Gueta-Dahan Y, Leikin-Frenkel A, Salts Y, Shabtai S,1 Ben-Hayyim. (2005) Modulated fatty acid desaturation via overexpression of two distinct ω-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. The Plant J.44 (3):361-371
    Zhang YM, Wang C, Hu H, Yang L. (2011) Cloning and expression of three fatty acid desaturase genes from cold-sensitive lima bean (Phaseolus lunatus L.).Biotechnology letters,33: 395-401
    Zou J, Abrams GD, Barton DL, Taylor DC, Pomeroy MK, Abrams SR.(1995) Induction of Lipid and Oleosin Biosynthesis by (+)-Abscisic Acid and Its Metabolites in Microspore-Derived Embryos of Brassica napus L.cv Reston (Biological Responses in the Presence of 8[prime]-Hydroxyabscisic Acid). Plant Physiol,108(2):563-571.
    鲍建民.(2006).多不饱和脂肪酸的生理功能及安全性.中国食物与营养.1:45-46
    陈苇,李劲峰,董云松,李根泽,寸守铣,王敬乔.(2006).甘蓝型油菜Fad2基因的RNA干扰及无筛选标记高油酸含量转基因油菜新种质的获得.植物生理与分子生物学学报.32(6):665-671.
    戴晓峰,肖玲,武玉花,吴刚,卢长明.(2007)植物脂肪酸去饱和酶及其编码基因研究进展植物学通报.2007,24(1):105-113
    郭美丽,张芝玉,张汉明,苏中武.(1998)不同栽培居群红花油中生育酚含量的定量分析.第二军医大学学报,19(1):59-60.
    黎大爵.(2003)世界红花种质资源的生物多样性及可持续利用第三届生物多样性保护与利用高新科学技术国际研讨会论文集.
    李冠,杜钰,黄琼,李金玉.(2007)脂肪酸脱氢酶研究进展.食品与生物技术学报.26(2):121-126
    李志伟.(2004).应重视富含亚麻酸油料的开发利用,粮油加工与食品机械,9:13-14
    刘冀红,曹伟新.(2004)ω-3多不饱和脂肪酸在肿瘤防治中的意义.肠外与肠内营养,11(1):54-56.
    刘仁建.(2006)红花种子醇溶蛋白及其含油率和脂肪酸分析[D]四川农业大学.
    刘训言,孟庆伟,李滨.(2004)植物omega-3脂肪酸去饱和酶研究进展.细胞生物学杂志.26(1):34-38.
    卢善发,(2000)植物脂肪酸的生物合成与基因工程,植物学通报,17(6):481-491.
    舒世珍,庄学鹏,汪飞杰,王兆木,陈跃华,买买提明·司马义(1996).国外红花优异资源的评价、鉴定与聚类分析[J].新疆农业科学,5:220-223.
    唐三元黄骥张红生管荣展(2007)播娘蒿油酸脱氢酶基因(DsFAD6)的克隆和表达分析.分子植物育种.5(1):15-20.
    汪阳东,李春秀,齐力旺,张守攻.(2007)中间锦鸡儿fad2基因片段克隆、反义表达载体构建及遗传转化初步研究.林业科学研究,20(]):6-9.
    汪灏.(2004)ω-3多不饱和脂肪酸对免疫细胞功能的影响,肠外与肠内营养,05.
    王兆木.(1993)世界红花种质资源评价与利用.北京:中国科学技术出版社
    王兆木.(2001)红花.北京:中国中医药出版社.
    吴时敏,裘爱泳,吴谋成.(2001)胎儿、婴幼儿的功能性多不饱和脂肪酸需要概况.中国乳品工业,29(3):21-23.
    袁国弼,韩孕国,黎大爵.(1989)红花种质资源及其开发利用.北京:学出版社.
    张宗文.(2000)红花遗传资源的研究与利用.植物遗传资源科学,1(1):7-10
    张洪涛.(2006)花生AhFAD2B及大豆GmFAD3A、GmFAD3C基因在酿酒酵母中的表达与功能分析(D).山东师范大学.
    赵钢,王安虎.(2003)红花的栽培及其开发利用.特种经济动植物,8:28-29.
    钟耀光.(2004)功能食品.北京:化学工业出版社,8:121-128.
    庄文庆.(1993)药用植物育种学.北京:农业出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700