用户名: 密码: 验证码:
巨桉林下大型真菌多样性及外生菌根真菌的接种效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
巨桉作为四川短轮伐期纸浆林和退耕还林的主要桉树树种之一,其人工林对立地条件的需求以及所产生的影响(如地力衰退),巨桉与伴生物种的相互作用,巨桉的遗传变异,巨桉对环境的作用,巨桉生态系统的稳定性,巨桉原料林与地方生态要求及经济发展的相关关系等已成为目前研究的重点问题。巨桉是典型的菌根营养型树种,菌根真菌在巨桉人工林地力维护及生态系统稳定性中发挥的作用已日益显现。为进一步开发和利用四川地区巨桉菌根资源,提高巨桉的生长量与抗逆性,合理规划和科学经营巨桉人工林,本研究通过对四川省主要巨桉人工林地大型真菌(外生菌根真菌)生物多样性及其生态特性的研究,深入探讨外生菌根与植物的共生关系,掌握本省巨桉外生菌根真菌生态分布规律,为维持巨桉人工林生态系统的稳定和持续发展提供一定的理论依据。在此基础上,研究巨桉林下马勃系统发育关系、巨桉组培苗外生菌根真菌的接种效应,为巨桉菌根真菌在“退耕还林”中的应用和菌类资源开发利用提供依据。主要研究结果如下:
     (1)通过野外调查和室内鉴定,在四川省巨桉人工林下共鉴定出大型真菌17种,隶属于7科,10属,其中外生菌根真菌7种,食用真菌11种,药用菌10种,食毒不明4种。硬皮马勃科及马勃科真菌占优势,银灰口蘑为四川省巨桉外生菌根真菌新记录种。
     (2)生态因子的研究表明,同海拔条件下,阴坡、半阴坡土层厚的地方,子实体发生较多;真菌子实体大量出现在海拔400-600m之间的巨桉林下,在林分郁闭度小于0.7时,马勃状硬皮马勃、橙黄硬皮马勃为林下主要的大型真菌类群,随着郁闭度增加,林下大型真菌的种类逐渐增多,草地横模马勃、多根硬皮马勃形成次优势菌群,林龄对外生菌根真菌分布的影响较小。土壤样品的测定表明,四川省巨桉林下大型真菌喜好酸性环境,其周围土壤pH值在4.2-5.8之间,土壤中的有机质、N、P、K养分含量均明显高于对照土。大型真菌丰富度以乐山井研最高,乐山沙湾、眉山彭山及其丹棱次之;均匀度指数与丰富度不同,其变化情况为宜宾高县>眉山彭山>乐山沙湾>乐山井研>眉山丹棱>泸州泸县>雅安名山;Simpson指数最大的是眉山彭山,大于0.6,其次是眉山丹棱、乐山井研和沙湾;而多样性指数则是眉山地区最高,接近2.0,井研、丹棱、乐山次之,均在1.2以上。
     (3)对巨桉林下马勃类真菌进行鉴定、组织培养及ITS序列结果鉴定,得到6种马勃纯培养物。使用通用ITS序列引物对马勃总DNA进行扩增,测序后分析其序列特征。将序列在Genbank中注册,序列号如下:大秃马勃C. gigantea (HM237179)、白刺马勃L. wrightii (HM237177)、草地横隔膜马勃V. pretense (HM237178)、橙黄硬皮马勃S. citrinum (HM237176)、金黄硬皮马勃S. aurantium (HM237174)、大孢硬皮马勃S. bovista (HM237175)、多根硬皮马勃S. polyrhizum (HM237173)及三个待定种硬皮马勃Scleroderma sp.11-1 (HM237170)、Scleroderma sp.2-2 (HM23717)和Scleroderma sp.5-2 (HM237172)。ITS区序列特征分析表明,马勃种类多样性及差异主要体现在18S rDNA的5'端与28S rDNA的3'端之间的ITS(ITS1、ITS2)中度保守区域。构建基于ITS1-5.8S rDNA-ITS2区全序列的系统发育树,发现硬皮马勃属Scleroderma、豆包菌Pisolithus亲缘关系较近,秃马勃属Calvatia、马勃属Lycoper don、横膜马勃属Vascellum之间亲缘关系近;三个待定种待定种硬皮马勃Scleroderma sp.11-1、Scleroderma sp.2-2和Scleroderma sp.5-2与金黄硬皮马勃(S. aurantium)在同一分支中。利用ITS1-5.8SrDNA-ITS2标记建立属间发育树支持度较高,ITS2区信息可用于分析属内差异。
     (4)采用多因素混合水平正交试验设计,对巨桉无性系苗进行人工接种外生菌根真菌,菌根处理组合的侵染率均在50%以上,对巨桉生长的各项指标的测定表明,无论是单接种还是混合接种,苗高、地径、鲜重及地上部分地下部分比值均值均高于复合肥处理或无菌处理,但不同接种处理间存在一定的差异。
     对菌根化巨桉苗木的叶绿素测定结果表明,接种后120d,不同处理组合对叶绿素a、叶绿素b及叶绿素总量的影响有一定的差异,总体变化趋势为:菌根处理>复合肥处理>无菌处理。不同处理组合在生长季节的不同时期,对巨桉苗木光合作用的影响力具有不一致性,且光合速率与胞间CO2浓度成负相关,与蒸腾作用正相关,气孔导度与蒸腾速率、胞间CO2浓度正相关。
     菌根化处理的苗木体内的N、P、Ca、Mg元素含量要高于无菌处理,对K元素含量的影响不显著。接种菌根可以提高苗木可溶性糖含量,使游离氨基酸含量保持在相对稳定且较高的水平,但与还原糖及总蛋白含量无明显相关性。
     (5)菌根化巨桉苗木根际土壤中脲酶保持较高的活性,各处理均具有酸性、碱性及中性磷酸酶活性,其中酸性磷酸酶活性较高,均高于中性磷酸酶和碱性磷酸酶的活性,且酶的活性与时间相关,普遍表现为7月份土壤磷酸酶活性普遍高于5、9月。接种外生菌根后土壤中微生物数量与酶之间有着密切关系,5月份,土壤微生物数量增多,酶的分泌增加,随着时间的变化,7、9月份后,随着微生物数量的变化,酶活性虽高,至7月后达到最高,但已表现出下降趋势。
     菌根化巨桉苗木根际土壤中发现真菌8种,细菌19种(含固氮菌8种),放线菌6种,接种后60d,真菌、细菌与pH显著负相关,有机质与真菌、细菌、放线菌显著相关;接种后120d,速效N与固氮菌极显著相关,有机质与真菌、细菌、放线菌及固氮菌数量极显著相关;接种后180d,pH与真菌数量间极显著负相关,但有机质、全氮等其它指标与微生物数量的相关性发生一定变化。
Eucalyptus grandis is the main kind of Eucalyptus spp. for pulpwood forest and returning the grain plots to forestry. Nowadays research on Eucalyptus grandis in the fields of man-made forest demand for land capability, interaction between Eucalyptus grandis and associated species, genetic variation, stability of ecosystem, correlativity of ecological demands and economic development, etc. have been the key items.Eucalyptus grandis is the typical mycorrhiza nutritional type tree, and it plays an important role in man-made forest's land capability maintenance and stability of ecological system. To develop and utilize mycorrhiza resource, improve growth and stress resistance of Eucalyptus grandis, our study focused on diversity and ecosystem characterization of macromycetes in the Eucalyptus grandis inforest, inquiring into relations between mycorrhiza and Eucalyptus grandis, grasping ectotrophic mycorrhiza regularities of distribution of Eucalyptus grandis and providing theory evidence of stabilizing man-made forest ecological system and sustainable development.On the base of the study, we can provide evidence in the application of mycorrhiza and utilization of fungi resource. The results were as the follows:
     (1) The article surveyed the mycorrhizal fungi of Eucalyptus grandis in Sichuan. The results showed that there are 17 species belong to 10 genus under the Eucalyptus grandis inforest, among which seven species were ectotrophic mycorrhiza, eleven edible fungi, ten medicindl fungi and four others. Vascellum pretense and Scleroderma areolatum were the predominant fungus, and Trichlloma argyreum was the new record species in Sichuan provience.
     (2) The macrofungi resources were surveyed termly from the Eucalyptus grandis inforest to know the diversity of the macrofungi and its ecological distribution. The results showed that there are 17 species belong to 10 genus under the Eucalyptus grandis inforest, Vascellum pretense and Scleroderma areolatum were the predominant fungus, and five species of Scleroderma, Pisolithus tinctorius and Tricholoma argyreum were ectomycorrhizal fungi. The living conditions of macrofungi were as follows:they grown in the areas of schattenseite and semi-nouthward, the altitude was between 400 and 650m, crown density exceeded 0.7, pH was between 4.2 to 5.8, and the content of the organic matter, N, P and K was higher than the contrast. The diversity analysis revealed that the macrofungus in Shawan and Jinyan of Leshan, Pengshan and Danling of Meishan were copious, and they had a good degree of homogeneity, dominance and diversity. The macrofungus from the Eucalyptus grandis inforest contribute to the quality of forestry and stability of the man-made forest ecosystem. Simpson index showed that it was highest in Pengshan (>0.6), then Danling, Jinyan and Shawan. The diversity index also showed that it was highest in Meishan (about 2.0), and the index was above 1.2 in Jinyan, Danling and Leshan.
     (3) The mycelium was cultivated from the fruiting body of puffballs which collected from the Eucalyptus grandis inforest, and the genomic DNA was extracted as template. Six puffballs pure culture were obtained, and the ITS sequences were also submitted to Genbank. The accession numbers were as belows, Calvatia gigantea (HM237179), Lycoperdon wrightii, Vascellum pretense (HM237178),S. citrinum (HM237176),S. aurantium (HM237174),S. bovista (HM237175),S. polyrhizum (HM237173), Scleroderma sp.11-1 (HM237170), Scleroderma sp.2-2 (HM23717) and Scleroderma sp.5-2 (HM237172), respectively.
     Subsequently, the internal transcribed spacer (ITS) region in rDNA gene was amplified, cloned and sequenced. The phylogenetic tree of puffballs was first built based on different part of ITS region. The results showed that six species of puffballs was cultivated successfully using PDA medium after comparing the sequences of puffballs fruiting body and mycelium ITS regions. The rDNA-ITS region of different puffballs was 607 bp to 766 bp in length. Analysis of phylogenesis revealed that the genetic relationship between the Scleroderma and Pisolithus, Calvatia, Lycoperdon and Vascellum was close. The three undetermined species, Scleroderma sp.11-1, Scleroderma sp.2-2 and Scleroderma sp.5-2, could probably be S. aurantium. The sequence of ITS1-5.8S rDNA-ITS2 can used as an evolutionary marker between different genus, and ITS2 as an evolutionary marker in genus. Thus, this work laid the foundation of studying the ectotrophic mycorrhiza, the mechanisms of action, the classification of puffballs and its exploitation and utilization.
     (4) The ectotrophic mycorrhiza fungi were inoculated into culture clone of Eucalyptus grandis using multiple factor orthogonal test. The results showed that infection of treatment using ectotrophic mycorrhiza fungi was above 50%. The value of seedling height, caliper, fresh weight and the overground/underground ratio were higher than compound fertilizer or sterile treatments.
     The chlorophyll content measurement showed that the content of Chlorophyll a, Chlorophyll b and total Chlorophyll varied in different treatments. The variation trend was as follows:ctotrophic mycorrhiza treatment> compound fertilizer treatment> sterile treatment treatment. However, it was not same in photosynthesis index. It was found that negative correlation between photosynthetic rate and CO2 concentration, positive correlation between photosynthetic rate and transpiration. Besides, the positive correlation between stomatal conductance and transpiration rate, CO2 concentration was observed.
     The N, P, Ca and Mg contents were higher than sterile treatments in nursery stock, but it was not significant in K content. The soluble sugar in nursery stock can be increased after inoculation, moreover, free amino acid content can also stabilized in high degree, but there was not significant correlations between reducing sugar and total protein content.
     (5) Soil urease activities of E. grandis rhizosphere was high, there are activities of phosphate enzyme in the each treatments of acidic, medium and alkali, the acid phosphate enzyme activity was higher than activities of acidic, medium phosphate enzyme, and the enzyme activities had correlation with time, the results generally showed that soil phosphate enzyme activity in July were higher than that in May and September. The number of soil microbes had close relation to enzyme after vaccinating Ectomycorrhiza, and the number of soil microbes and secretion of enzyme increased in may, but soil microbes decreased though secretion of enzyme increased after July and September, secretion of enzyme reached its highest level after July, but had the decreased trend.
     Eight funguses,19 bacterial (eight nitrogen-fixing bacteria) and six actinomycete were found in the soil after vaccinating Ectomycorrhiza of E. grandis seedling. A negative correlation was found between fungus, bacterial and pH, and fungus, bacterial, actinomycete had positive correlation with organic matter after 60 days. Significant correlation was found between Available N and the number of nitrogen-fixing bacteria, organic matter had significant correlation between fungus, bacteria, actinomycete and the number of nitrogen-fixing bacteria respectively after 120 days. A negative correlation was found between pH and the number of fungus, but the relationship of correlation between organic matter, TN indicators and number of microbes changed after 180 days.
引文
Abalel-Aziz,R.A.,Radwan,S.M.A.,Dahdon,M.S.Reducing the metals toxicity in sludge amended soil using VA mycorrhizae.Egypt J Microbiol,1997.32(2):217-234.
    Allen M F.The ecology of mycorrhizae[M].New York,Cambridge university Press,1991, 1-8,113-118
    Ames R N,Reid C P,Porter L K,Cambardella C.Hyphal uptake and transport of nitrogen from two 15N-labelled sources by Glomus mosseae,a vesicular-arbuscular mycorrizal fungus.New Phytologist,1983,95:381-396
    Ba AM,Sanon KB,Duponnois R,et al.Influence of ectomycorrhizal inoculation on Afzelia quanzesis Welw.Seedlings in a nutrient-deficient soil [J]. For.Ecol.Man.,2002,161(1-3):215-219
    Bates ST. Arizona members of the Geastraceae and Lycoperdaceae (Basidiomycota, Fungi). PhD thesis, Arizona State University.2004.
    Baum C,Weih M,Verwijst T et al.The effects of nitrogen fertilization and soil properties on mycor-rhizal formation of Salix viminalis [J]. Forest Ecology and Management,2002,160:35-43
    Bending G D, Read D J.The structure and funciton of the vegetative mycetium of ectomycorrhizal plants.Acitveities of nutrient mobilsing enzybmes in birch litter colonized by Paxillus imvous(Fr)Fr New pHytologist.1995.130:411-417
    Bergelson J M, Crawley M J.Mycorrhizal infection and plant species diversity [J].Nature, 1998,334:202
    Bertini,L.Potenza,L.Zambonelli. Restriction fragment length polymorphism species-specific paterns in the identification of whitet ruffles.FEMS-micro-biol-lett.1998.164(2):397-401
    Berres M E, Szabo J, Melaughlin J. Phylogenetic relationships in auriculariaceous basidiomycetes based on 25s ribosomal DNA sequence. Myeologia,1995,87(6):821-840
    BottonB,Chalot M.Nitrogen assimilation:enzymology in ectomycorrhizas.In:Varma A,Hoek B eds.Mycorrhizas.Structure.Function.Moleeular Biology.Berlin:Springer-Verlag.1995.325-363
    Brundrett M C.Coevolution of roots and myeorrhizas of land palnts.New Phytologist[J], 2002,154:275-304.
    Brundrett M C,Bounhger N,Dell B et al.Working with Mycorrhizas in Forestory and Agriculture[M].Canberra;ACIAR Monograph,1996
    Bruns,T.D.Szaro,T.M.Gardes,M.A.Sequence database for the indentification of ectomycorrhizalbasi diomycetes.[J].MolEcol.1998,7(3):257-272
    Bunyard B A, Nieholson M S, Royse D J.A systematic eassessment of Morchella using RFLP analysis of the 28s ribosomal RNA gene.Mycologia,1994,86(6):762-772
    Bunyard B A.Chaichuchote S,Nicholson M S,et al.Ribosomal DNA analysis for resolution of genotypic classes of Pleurotus.Mycol Res,1996,100(2):143-150
    Ciompi S, GentiliE, GuidiL, etal. The effectofnitrogen deficiency on leafgas exchange and chlorophyll fluorescence parameters[J]. PlantScience,1996,118:177-184.
    C.Leyval, J.Berthelin, Cd-tolerant arbuscular mycorrhizal (AM) fungi from heavy-metal polluted soils.Plant and Soil[J],1993,157(2):247-256
    C K KirK.Dictionary of the Fungi[M].2001,1-100
    Cromack K., P.Sollins, W.C.Granstein, et al. Calcium oxalate accumulation and soil weathering in mate of the hypogeous fungus Hysterangium crassum.Soil Biology and Bioehemistry, 1979,11:463-468
    Cumming J R,L H Weinstein.Aluminum-mycorrhizal interactions in the physiology of pitch pine seedlings.Plant and Soil,1990,125:7-18
    E. Owusu-Bennoah, A. Wild.Effects of vesicular-arbuscular mycorrhiza on the size of the labile pool of soil phosphate.Plant and Soil[J],1980,54(2):233-242
    Fogel R.Interactions among soil biota in confiferous ecosystems.Agricultural Ecosystem Environment.1988,24:69-85
    Gaimey J. W. G.,A. A. Meharg. Influences of anthropogenic pollution on mycorrhizal fungal communities. Environmental Pollution[J],1999,106:169-182.
    Gardes M, White T J, Fortin J A et al.Identifieation of indigenous and introdueed symbiotie fungi in ectomyeorrhizae by amplifieation of nuelear and mitoehondrial ribosomal DNA.Can J Bot, 1991,69:180-190
    Gemma J N, Koske R E, Roberts E M, et al.Myeorrhizal fungi improve drought resistance in Creeping bentgrass.Jorunal of Turfgrass Seienee[J],1997,73:15-29.
    Griffiths R.P, J.E.Baham, B.A.Caldwell.Soil solution chemistry of ectomycorrhizal mats In forest soil.Soil Biology and Biochemistry.1994,26:331—337
    Griffiths R P Baham J E Caldwell B A.Soil soluiton chemistry of ectomycorrhizal mats in forest soi[J]l.Soil Biology and Biochemistry.1994.26:331-337
    He MX., Huang LM., Shi JH., et al. Variability of ribosomal DNA ITS-2 and its utility in detecting genetic relatedness of pearl oyster mar. Biotechnol [J].2005,7 (1):40-45.
    Henron,B.Tacon,F.L.,Martin,A.Rapid identification of genetic variation of ectomycorrhizal fungi by amplification of ribosomal RNA genesNew phytol[J].1992.122:289-298
    Hibbett D S, Pine E M, Langer E,et al..Evolution of gilled mushrooms and puffballs inferred from iribosomal DNA sequences[J].Proc Natl Acad Sci USA,1997,94(22):12002-12006
    Huang J.G,F Lapeyrie.Ability of ectomycorrhizal fungus Laccaria bicolor S238N to increase the growth of Douglas fir seedlings and their phosphorus and potassium uptake[J].Pedosphere, 1996,6(3):217-223
    Jocelyn T Z.Surrey of Ectomycorrhizal Fungi Associated with Pines and Dipterocarps in the Philipines[M].In Preceedings of Yogyakarta workshop.BIO-REFOR,1993:182-185
    John D,Tuininga A R,Gray D M,et al.. Impacts of atmospheric deposition on New Jersey pine barrens forest soils and communities of ectomycorrhizae[J].Forest Ecology Management, 2004,201:131-144
    Jongmans A G,Berenmen N,Lundstroem U,et al.Rock-eating fungi[J]. Nature.1997,389:628-629
    Johnson D,Ijdo M,Genney D R,et al..How do plants regulate the function,community structure,anddiversity of mycorrhizal fungi[J]?Journal of Experimental Botany,2005,56 (417):1751-1760
    Julich W.Dipterocarpaceae and Mycorrhizae.German Forestry Group Report No.9 at Mulawaman University[C].Samaridda,Indonesia,April,1988
    Kawahara N, Sekita S, Satake M. Two steroids from Calvatia cytthiformis[J]. Phytochemistry, 1995,38(4):947-950.
    Kruger D, Kreisel H. Proposing Morganella subg. Apioperdon subg. nov. for the puffball Lycoperdon pyriform[J]. Mycotaxon,2003,86:169-177.
    Landeweert R,Hoffland E,Finlay R D,et al..Linking plants to rocks:ectomycorrhizal fungi mobilize nutrients from minerals[J].Trends in Ecology&Evolution,2001,16(5):248-254
    Larsson E, Jeppson M. Phylogenetic relationships among species and genera of Lycoperdaceae based on ITS and LSU sequence data from north European taxa[J]. Mycological Research,2008, 112(1):4-22.
    Linderman R.GMyeorrhizal intractions with the rhizosphere microflora the mycorrhizosphere effect[J].Phytopathology.1988,78:366-370
    Malajczuk N.,N. Bouugher.Ectomycorrhizas of Cusuaria and Eucalyptus[M]. CSIRO, Australia, 1993,32-34
    Mark C,Brunddreet.Coevolution of roots and mycorrhizal of land plants[J].New Phytol,2002, 154:275-304
    Marx D H,Beattie D J et al.,Mycorrhizae promising aid totimber growers[J].For Farmer,1977,36: 6-9
    Meharg A A,Cairney J.Ectomycorrhizas extending the capabilities of rhizosphere remediation [J].Soil.Biol.Biochem.,2000,32:1475-1484.
    Miller O K Jr.Taxonomy of ecto-and Ecterdomycorrhizal fungi[M].In Methods & Principles of Mycorrhizal Research(Ed.Schenck),1982,91-102
    Miao M, Warrenb A, Song W, et al. Analysis of the internal transcribed spacer 2 (ITS2) region of scuticociliates and related taxa (Ciliophora, Oligohymenophorea) to infer their evolut-ion and phylogeny[J]. Protist,2008,159:519-533.
    Nasholm T.Ekblad A.Nordin A et al. Boreal forest plants take up organic nitrogen[J]. Natrure,1998,392:914-916
    NedelchevaD, Antonova D, Tsvetkova S, et al. TLC and GC-MS probes into the fatty acid composition of some Lycoperdaceae mushrooms[J]. Journal of Liquid Chromatography & Related Technologies,2007,30(18):2717-2727.
    Nicolotti G,Egli S.Soil contamination by crude oil:impact on the mycorrhizosphere and on the revegetation potential of forest trees[J].Environ Pollut.1998,99(1):37-43
    Niellolson M S, Bunyard B A et al. Phylogeny of the genus Lentinula based on Ribosomal DNA restriction fragment length polymorphism analysis[J].Mycologia,1997,89(3):400-407
    Pampolina NM,Dell B,Malajczuk N.Dynamics of ectomycorrhizal fungi in an Eucalyptus globulus plantation:effect of phosphorus fertilization[J]. For.Ecol.Man.,2002,158(1-3):291-304
    Pankow W, Boller T, Wiemken.The significance of mycorrhizas for protective ecosystems. Experientia[J],1991,47:391-394
    Paolocci,F.Rubini,A.Graneti,B.Rapid molecular approach for a reliable identification of Tuber spp.ectomycorrhizae.FEMS-microbiol-ecol.1999,28(1):23-30
    Rambold,G.Agerer,R.DEEMY-the concept of a characterization and etermination system for ectomycorrhizae[J].Mycorrhiza.1997.7(2):113-116
    Read D J.Mycorrhizas in Eeosystems[J].Experientia.1991,47:376-391
    Read D J.The ties that bind[J].Nature,1997,338:517-518
    Ruizlozano J M,Azcon R.Superoxide dismutase activity in arbuscular mycorrhizal Lactuce sativa plant subjected to drought stress[J].New Phytol,1996,134(2):327-333
    Sall S N, Chotte J L. Phosphatase and Urease activities in a t ropical sandy soil as affected by soil water holding capacity and assay conditions[J]. Soil Science and Plant Analysis,2002,33 (19):3745-3751
    Sarand I,Timone S,et al.Microbial biofilms and catabolic plasmid harbouring degradative fluorescent pseudomonads in Scots pinemycorrhizosphere developed on petroleum contaminated soil[J].FEMS Microbiology Ecology,1998,27(2):115-126.
    Scottk O, Rogers.Extraction of DNA from Basidiomycetes for rDNA hybridizations[J].Can J Bot, 1989,67:1235-1243
    Schimel J P,Chapin F S.Tundra plant uptake of amino acid NH4+nitrogen in situ:plants copete Well for amino acid N[J].Eeology.1996,77:2142-2147
    Smith S E,D J Read.Mycorrhizal Symbiosis(2nd edition) [M].Cambridge:Academic Press, 1997,126-160
    SunP, Clamp JC, Xu D. Analysis of the secondary structure of ITS transcripts in peritrich ciliates (Ciliophora, Oligohymenophorea) [J]. Implications for structural evolution and phylogenetic reconstruction,2010,56:242-251.
    Sylvia,D.M.,Sinclair, W.A.Suppressive influence of Laccaria laccata on Fusarium oxysporum and Douglas-fir seedlings[J].Phytopathology,1983.73:384-389.
    Turnbull M.H., R.Goodall, G.R Stewart.The impact of mycorrhizal colonization upon nitrogen source utilization and metabolism in seedlings of Eucolyptus grandis Hill ex Maiden and Eucalyptus maculata Hook[J].Plant cell and Environment.1995,18:1386-1394
    Van der Heijden M,Klironomos J,Ursic M et al.Mycorrhizal fungal diversity determines plant biodiversity,ecosystem variability and productivity[J].Nnture,1998a,396:68-72
    Xian-Zhao K, Shan-Shan W, Xin D, et al. Structural evolution of nrDNA ITS in Pinaceae and its phylogenetic implications[J]. Molecular Phylogenetics and Evolution,2007,44:765-777.
    Zhang J, Yang W Q. Ecosystem researches on Eucalyptus grandis short-term managed plantation [M].Sichuan science and technology Press,2008, Chengdu
    Zhang P,Chen Z H,Hu J S,et al.Production and characterization of Amanitin toxins from a pure culture of Amanita exitialis[J].FEMS Microbiol Lett,2005,252(2):223-228
    白淑兰,赵春杰等.菌根技术在重金属污染修复中的研究与展望[J].生态环境,2004,13(1):92-94
    白淑兰,刘勇,周晶.大青山外生菌根真菌资源与生态研究.生态学报[J],2006,26(3):837-841
    白淑兰.内蒙古大青山外生菌根真菌分布与筛选的研究[C].北京林业大学博士学位论文,2006
    宝月岱造.森林生态系树木外生菌根菌的共生系[J].蛋白质核酸酵素,1998,43(9):1246-1253
    巴图,乌云高娃,图力古尔.内蒙古高格斯台罕乌拉自然保护区大型真菌区系调查[J].吉林农业大学学报,2005,27(1):29-34,42.
    毕银丽,任婧.接种菌根对根际微生物群落和磷营养的影响[J].能源环境保护.2007,21(3):25-28
    柴忠金,李晓红,等.马尾松芽苗移栽根菌根化育苗试验[J].贵州林业科技,2001,29(4):23-27,32.
    陈梅梅,阴红彬,王幼珊.不同N、P水平下接种摩西球囊霉对白三叶草中C:N:P比和RNA含量的影响[J].生态学报2010,30(15):4093-4102
    陈丽,李晓明,张鞍灵,等.黄硬皮马勃提取物抑菌活性初步研究[J].西北农业学报,2006,15(3):87-90.
    陈辉,唐明.外生菌根真菌对杨树抗溃疡病的影响[J].植物病理学报,1995,26:370-375
    陈丹明,郭娜,郭绍霞.丛枝菌根真菌对牡丹生长及相关生理指标的影响[J].西北植物学报,2010,30(1):0131-0135
    陈应龙,弓明钦,王凤珍,等.混合接种Glomus与Pisolithus菌株对尾叶桉矿质营养吸收的影响[J].林业科学研究1999,12(3):262-267
    常河,朱红惠,陈杰忠,姚青.土著AM真菌对荔枝实生苗生长和光合特性的影响[J].热带作物学报,2009,30(7):912-917.
    樊永军,闫伟,王黎元.油松外生菌根真菌对其幼苗根际其它真菌的影响[J].北方园艺,2009(2).15-20
    董世林.植物资源学[M].哈尔滨:东北林业大学出版社,1994:202-203.
    冯远娇,陈卓娜,王建武,等.Bt玉米丛枝菌根真菌侵染率与养分含量的变化研究[J].中国生态农业学报,2010,18(3):486?491
    弓明钦,陈羽.华南地区松、桉树外生菌根调查[J].林业科学研究,1991;4(3):323-327
    弓明钦,陈羽.桉树幼苗菌根接种及其生长效应的研究[J].林业科学研究,1992,5(6):639-645.
    弓明钦.海南岛尖峰冷热带林区牛肝菌类的研究[J].林业科学研究,1996,9(3):255-260.
    弓明钦.《菌根研究及应用》[M].中国林业出版社,1997,1-88
    弓明钦,王凤珍等.西南桦对菌根的依赖性及其接种效应研究[J].林业科学究,2000a,13(1):8-14.
    弓明钦,王凤珍等.相思菌根的菌种筛选及其接种效应研究[J].林业科学究,2000b,13(3):268-273.
    郭秀珍.松树某些外生菌根真菌对防治松苗猝倒病的作用[J].云南植物研究,1981,3(3):359-366.
    龚先玲,曾任森,骆世明,等.多根硬皮马勃中子实体的化学成分[J].天然产物研究与开发,2005,17(4):431-433.
    高悦,吴小芹,孙民琴.马尾松不同菌根苗对氮磷钾的吸收利用[J].南京林业大学学报(自然科学版),2009,33(4):78-80
    高悦,吴小芹.6种外生菌根菌对3种松苗叶绿素含量及叶绿素荧光参数的影响[J].南京林业大学学报(自然科学版),2010,34(6):9-12
    韩桂云,孙铁珩,李培军,等.外生菌根真菌在大型露天煤矿生态修复中的应用研究[J]应用生态学报,2002,13(9):1150-1152
    韩旭,宋述尧.矮生菜豆叶片衰老过程中碳氮代谢指标的变化[J].长江蔬菜,2009(10):42-44.
    贺小香,谭周进,肖启明,等.外生菌根的功能及与环境因子的关系[J].中国生态农业学报,2007,2:201-204
    贺学礼,李生秀,不同VA菌根真菌对玉米生长及抗旱性的影响[J].西北农业大学学报,1999,27(6):49-53
    黄勇,黄宝灵,吕成群,等.马勃类真菌对桉树苗木生长效应的研究[J].四川林业科技,2008,29(5):34-38.
    花晓梅,姜春前.我国南方松树外生菌根真菌资源调查[J].南京林业大学学报,1995,19(3):29-36
    惠竹梅,李华,龙妍,张瑾,庞学良.葡萄园行间生草体系中土壤微生物数量的变化及其与土壤养分的关系[J].园艺学报.2010,37(9):1395-1402
    李建宗,孙三茂,但新求.舜皇山自然保护区的大型真菌资源[J].生命科学研究,2006,3:89-94.
    李晓林,曹一平.VA菌根菌丝-土壤界面(菌丝际)养分分布模拟方法研究[J].北京农业大学学报,1992,18(1):59-63.
    李自慧,冯宪敏,卢思奇,等.以ITS1-5.8S rDNA-ITS2序列为标记的肺孢子菌分子系统发育研究[J].中国科学C辑:生命科学,2008,38(4): 377-385.
    李泰辉,章卫民,宋斌,等.南岭自然保护区真菌资源调查名录之一[J].生态科学,1996,1:35-39
    李泰辉,章卫民,宋斌,等.南岭自然保护区真菌资源调查名录之三[J].生态科学,1997,02:56-64
    李勇.外生菌根真菌侵染马尾松土壤酶活性变化研究[C].西南农业大学硕士学位论文.2005
    李英.浅谈微生物肥料在农业生产中的应用[J].现代农业,2011:03:18-19
    刘先宝,高宏华,蔡吉苗,等.橡胶树白粉病菌rDNA-ITS序列及其系统发育分析[J].热带作物学报,2008,29(2):215-219
    刘翠花,张红锋,大次卓嘎,李菊.灌水和接种丛枝菌根真菌对青稞光合作用的影响[J].贵州农业科学,2010,38(7):52-54
    刘辉,吴小芹,陈丹.4种外生菌根真菌对难溶性磷酸盐的溶解能力[J].西北植物学报,2010,30(1):143-149
    刘世好,卢立,但新求.高望界自然保护区冬季大型真菌资源考察初报[J].湖南林业科技,2006,33(4):24-26
    刘淑艳,李玉.几种主要分子生物学技术在菌物系统学研究中的应用[J].吉林农业大学学报,2000,22(3):47-51.
    刘作易.DNA指纹技术的发展及其在真菌分类上的应用[J].贵州大学学报(农业与生物科学版),2000,19(6):460-469
    梁宇,郭良栋,马克平.菌根真菌在生态系统中的作用[J].植物生态学报,2002,26(6):739-745梁洪萍.四川巨桉外生菌根研究[C].四川农业大学硕士论文,2010
    廖德聪,陈强,李登煜,等.四川省雅江松茸菌的分离与系统发育[J].生态学报,2005,25(4):792-794
    林晓民.大型真菌的生态多样性及分子鉴定[C].西北农林科技大学博士论文.2004.
    林晓民,李振岐,侯军,等.大型真菌的生态类型[J].西北农林科技大学学报(自然科学版),2005,33(2):89-94
    雷增普,金均然,王昌温.外生菌根菌对植物根部病原菌拮抗作用的研究[J].林业科学,1989,25(6):502-507
    龙妍.行间生草条件下葡萄园土壤微生物、酶活性、养分的动态变化及相关性分析[C].西北 农林科技大学硕士学位论文.2005
    吕全,雷增普.外生菌根提高板栗苗木抗旱性能及其机理的研究[J].林业科学研究,2000,13(3):249-256
    吕桂云,陈贵林,齐国辉,等.菌根化育苗对大棚黄瓜生长发育和果实品质的影响[J].应用生态学报,2006,17(12):2352-235
    栾庆书.外生菌根真菌应用技术研究现状[J].辽宁林业科技,1994(3):67-69.
    卯晓岚.《中国大型真菌图鉴》[M].河南科学技术出版社,1999,188-238,540-557
    卯晓岚.我国的食菌资源及其利用[J].食用菌,1988(1):59-64
    马大龙,杨国亭,穆立蔷,等.赤松外生菌根ITS-PCR体系的建立及优化[J].林业科技,2010,35(5):25-28
    孟繁荣,牟宝昌.在高寒地区落叶松育苗中应用外生菌根真菌的效应[J].东北林业大学学报,1996,24(1):44-49.
    牛永春.核酸技术在真菌系统分类与鉴定中的应用[J].生命科学,1996,1:23-27
    马克平,刘玉明.生物群落多样性的测度方法Ⅰα多样性的测度方法(下)[J].生物多样性,1994,2:231-239
    潘欣,邹立扣,彭培好,等.杜鹃褐斑病病原菌的分离与鉴定[J].北方园艺,2008,6:198-200
    潘超美,郭庆荣.VA菌根真菌对玉米生长及根际土壤微生态环境的影响[J].土壤与环境,2000,9(4):304-306
    孙民琴,吴小芹,叶建仁.外生菌根真菌对不同松树出苗和生长的影响[J].南京林业大学学报:自然科学版,2007,31(5):39-43.
    宋瑞清,鞠洪波,祁金玉,等.外生菌根菌对樟子松苗木生长的影响[J].菌物研究,2007,5(3):142-145
    宋福强,杨国亭,孟繁荣,等.丛枝菌根对大青杨苗木生长的影响[J].林业科学研究,2004,17(6):770-776.
    宋微,吴小芹,叶建仁.江苏几种杨树优良外生菌根真菌的筛选[J].南京林业大学学报(自然科学版),2009,33(2):81-84
    唐明,薛婕,任嘉红,等.AMF提高沙棘抗旱性的研究[J].西北林学院学报,2003,18(4):29-31
    唐明娟,郭顺星.菌根增强植物抗病性机理的研究进展[J].微生物学通,2000,6:446-449
    佟丽华,连宾.一株食用外生菌根菌乳牛肝菌的分子鉴定.[J]食品科学,2005,26(8):318-320
    魏江春.菌物多样性、系统性及其对人类发展的意义[J].生物多样性,1993,1(1):23-25
    魏景超.《真菌鉴定手册》[M].上海科学技术出版社,1979,393-403
    吴炳云,梁乃申.外生菌根对油松苗木抗旱性的影响[J].北京林业大学学报,1991,13(增刊):281-289
    薛小平,杨勇,黄建国.外生菌根促进植物磷素营养研究进展[J].中国食用菌,2006,25(6):3-4
    薛小平,张深,李海涛.磷对外生菌根真菌松乳菇和双色蜡蘑草酸、氢离子和磷酸酶分泌的影响[J].菌物学报,2008,27(2):193-200
    向春阳,张宝石,关义新.玉米氮素效率基因型差异的研究进展[J].玉米科学,2002,10(1):75.
    徐大平,Bernie Dell,弓明钦,Nick Malajczuk,王志和.施P肥和外生菌根菌接种对蓝桉林产量和养分积累的影响[J].林业科学研究,2004,17(1):26-35
    严东辉,姚一键.菌物在森林生态系统中的功能和作用研究进展[J].植物生态学报,2003,27(2):143-150.
    阎明珍,任玉环,张朝亮.吉林美味牛肝菌分布及生态习性的初步研究[J].吉林林学院学报,1996,12(4):244-246
    于淑玲.腐生真菌在有机质分解过程中的作用研究进展[J].河北师范大学学报(自然科学版),2003,27(5):519-522.
    王志勇,李晓宏,胡博.外生菌根菌的研究进展[J].湖北林业科技,2005,3:42-45
    王斌,连宾.食药用真菌的多糖的研究与应用[J].FOOD & MACHINERY(食品与机械),2005,21(6):96-100
    王淼焱,王洪娴,李敏等.菌根生物肥料的研究现状[J].山东科学,2006,19(6):94-97
    王学聘,赵志鹏,等.外生菌根真菌—厚环乳牛肝菌发酵条件的研究[J].林业科学研究,1990,3(4):310-313.
    王曙光,冯兆忠等.环境污染物对丛枝菌根(AM)形成及功能的影响[J].应用生态学报,2006,17(7):1321-1325.
    王元贞,柯玉琴,潘廷国.不同类型菌根菌对烟草幼苗生理代谢的影响[J].应用生态学报,2002,13(1):87-90
    杨玉盛,何宗明.格氏栲天然林与人工林根际土壤微生物及其生化特性的研究[J].生态学报,1998,18(2):198-202
    谢雪丹,刘培贵,于富强.云南松幼苗上红菇类菌根真菌的物种多样性及其菌根形态[J].云南植物研究,2010,32(3):211-220
    袁明生,孙佩琼.《中国蕈菌原色图集》[M].四川科学技术出版社,2007,496-503
    昝立峰,图力古尔.大型真菌色素的研究现状与应用前景[J].菌物研究,2005,3(4):57-62
    昝立峰.紫红丝膜菌了实体色素的化学成分及其应用研究[C].吉林农业大学硕士学位论文.2007
    赵会珍,胥艳艳,付晓燕,等.马勃的食药用价值及其研究进展[J].微生物通报,2007,34(2):367-369.
    赵志鹏、郭秀珍.外生菌根研究动态[J].世界林业研究,1988;4:23-26
    赵菡,郭素娟,马履一.3种菌根菌对栓皮栎接种的效应[J].林业科技开发,2009,23(1):64-65
    赵昕,阎秀峰.丛枝菌根对喜树幼苗生长和氮、磷吸收的影响[J].植物生态学,2006a,30(6):947-953
    赵昕.丛枝菌根真菌对喜树幼苗的接种效应[C].东北林业大学博士学位论文,2006b
    赵忠,刘西平.外生菌根与VA菌根混合接种对毛白杨光合及蒸腾特性的影响[J].西北林学院学报,1997,12(3):63-68.
    郑来友,李文钿,成小飞,等.彩色豆马勃与松树形成内外生菌根的研究[J].林业科学研究,2003,16(3):262-268.
    朱先灿,宋凤斌,徐洪文.低温胁迫下丛枝菌根真菌对玉米光合特性的影响[J].应用生态学报,2010,21(2):470-475
    朱天辉,张健,胡庭兴,等.四川桉树外生菌根真菌的研究[J].四川农业大学学报,2001a,19(2):138-140
    朱天辉,张健,胡庭兴,等.四川桉树菌根类型及林分密度对菌根真菌的影响[J].四川农业大学学报,2001b,19(3):222-224.
    张树庭.关于蕈类种类的评估[J].中国食用菌.2002,21(2):3-4
    张小龙,张洪,张香.外生菌根菌剂对白皮松幼苗生长效应的研究[J].林业科学研究,2005,18(2):133-136
    张小燕,黄建国,许金山,范春丽,孙群.外生菌根真菌与重金属相互作用研究现状[J].江苏林业科技,2004,31(2):41-43.
    张晓兵,李喜梅,向儒江,宋瑞清.外生菌根菌对红松苗木生长的影响[J].林业科技2009,34(3):30-32
    张树庭.蕈菌及其应用[J].真菌学报,1993,12(4):323-326
    张丹桔.一个年龄序列巨桉人工林地上/地下生物多样性[C].四川农业大学博士论文,2010
    朱衡,瞿峰,朱立煌.利用氯化苄提取适用于分子生物学分析的真菌DNA[J].真菌学报,1994,13(1):34-40
    曾丽琼.几种优良外生菌根菌的应用和胶丸菌剂的制备[C].南京林业大学硕士论文,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700