用户名: 密码: 验证码:
不同来源脂肪对仔猪的营养效应及对E.coli攻毒的保护作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
试验一不同来源脂肪对断奶仔猪生长及血液生化指标的影响
     本试验通过饲喂不同来源脂肪的日粮,研究脂肪来源对断奶仔猪生长及血液指标的影响。采用单因子试验设计,选用48头28±1日龄断奶杜x长x大仔猪,分别饲养在48个猪栏中,随机分为3个处理组,每个处理组16个重复,每个重复1头猪。3组仔猪分别饲喂10%椰子油、鱼油、猪油纯和日粮。试验期21d。
     试验结果表明,与鱼油和猪油组相比,椰子油极显著增加仔猪1-3W ADG (p<0.01),极显著降低1-3W F/G (P<0.01);鱼油降低第21d仔猪血清甘油三酯(P<0.01)、总胆固醇(P<0.01)、血糖(P<0.05)、胰高血糖素(P<0.01)。与10%猪油组相比,10%鱼油显著降低仔猪血清皮质醇浓度13.54%(P<0.05),显著降低血清IL-1β水平19.21%(P<0.05);与10%椰子油相比,鱼油显著降低血清TNF-α水平12.32%(P<0.05)。
     试验结果表明,不同来源脂肪具有不同的营养生理效应,椰子油的促生长效果优于鱼油和猪油;但鱼油降低仔猪血脂、血糖、血清皮质醇及细胞因子水平。
     试验二不同来源脂肪对E. coli攻毒仔猪的保护效应研究
     本试验通过研究脂肪来源和E. coli攻毒对仔猪生产性能、糖脂代谢、脂肪酶活性、肠道发育及肠道菌群的影响,探讨不同脂肪来源对E. coli攻毒对仔猪的保护效果。采用2(E. coli攻毒和对照)×3(三种脂肪来源)因子试验设计,即试验一的48头仔猪第在21d称重采血后,每个处理选12头共36头猪(公母各半)进入试验二,12头仔猪中随机选6头接近该组平均体重的猪实施E. coli攻毒,另外6头作为对照。试验第7d所有仔猪称重、采血后屠宰。结果表明:
     E. coli攻毒影响仔猪生长及代谢,表现为降低ADG、ADFI,相应的增加F/G;显著增加血清总胆固醇水平,血清胰高血糖素有增加趋势(P=0.107);血清IL-1β显著升高,IgG和IgA则显著降低;仔猪胰腺脂肪酶活性显著降低;显著降低空肠绒毛高度和粘膜厚度;降低盲肠内容物C14:1、C16:0、C16:1、C18:3、CLA, C20:0、C20:1、C20:2、C20:5n3、C22:1、C22:4n6、C24:1、MUFA及PUFA含量;增加盲肠内容物大肠杆菌数量,降低乳酸杆菌、双歧杆菌数量及乳酸杆菌/大肠杆菌、双歧杆菌/大肠杆菌的比值。日粮不同来源脂肪影响E. coli攻毒仔猪生长、代谢及肠道菌群平衡。椰子油和鱼油增加仔猪ADG,血清IgG,降低F/G、IL-1β;鱼油降低血清甘油三酯、总胆固醇及胰岛素水平;椰子油增加空肠绒毛高度、绒毛高度/隐窝深度及粘膜厚度;猪油增加盲肠内容物SFA和MUFA含量,鱼油增加盲肠内容物PUFA含量;椰子油降低盲肠内容物中大肠杆菌数量,增加乳酸杆菌、双歧杆菌数量及乳酸杆菌/大肠杆菌、双歧杆菌/大肠杆菌的比值,鱼油次之,猪油组最差。
     结论:E. coli攻毒降低仔猪生产性能、改变糖脂代谢水平及细胞因子和免疫球蛋白分泌、影响肠道形态、降低盲肠内容物多种脂肪酸含量、扰乱肠道菌群平衡,脂肪来源特别是椰子油和鱼油可通过调控仔猪生长、代谢、肠道发育及菌群平衡等途径降低E. coli攻毒对仔猪的影响程度。
     试验三不同来源脂肪对E. co I i攻毒仔猪的保护机制研究
     本试验通过研究不同来源脂肪对E. coli攻毒仔猪小肠脂肪酸结合蛋白mRNA表达,空肠和肝脏炎症因子PPAR-γ、IL-1β、IL-6、TNF-amRNA表达,以及回肠、盲肠TLR受体mRNA表达的影响,探讨脂肪来源对E. coli攻毒仔猪保护作用的可能机理。试验设计同试验二。结果表明:
     E. coli.攻毒降低仔猪十二指肠FABP1、空肠TNF-α和PPAR-γ、肝脏IL-6和PPAR-γ、盲肠TLR-4 mRNA表达;增加空肠FABP1和FABP1空肠IL-1β和IL-6、肝脏IL-1β和TNF-α、回肠TLR-2和TLR-4 mRNA表达。日粮不同脂肪来源影响E. coli攻毒仔猪脂肪酸结合蛋白、炎症因子及TLR受体mRNA表达。相对于10%猪油组,椰子油和鱼油有增加十二指肠FABP1、空肠FABP1和FABP2 mRNA表达,降低空肠IL-1β和IL-6、回肠和盲肠TLR-2及TLR-4 mRNA表达的趋势。相对于10%鱼油和10%猪油组,椰子油降低肝脏IL-6和TNF-α、回肠和盲肠TLR-2及TLR-4 mRNA表达,增加空肠PPAR-γ、肝脏PPAR-γ和IL-1βmRNA表达。
     结论:E. coli攻毒可影响仔猪脂肪酸结合蛋白表达、炎症因子及TLR受体mRNA表达;脂肪来源通过调控上述基因表达,从脂肪酸吸收、炎症过程及肠道屏障途发挥对E. coli攻毒仔猪的保护效应。
     本研究表明,不同来源脂肪具有不同的营养生理效应;E coli攻毒降低仔猪生产性能、改变糖脂代谢水平和免疫球蛋分泌、影响肠道形态、降低盲肠内容物多种脂肪酸含量、扰乱肠道菌群平衡,影响脂肪酸结合蛋白、TLR受体mRNA表达,以及细胞因子的表达和分泌;脂肪对仔猪脂肪代谢、肠道结构和微生物菌群结构和炎症反应具有调节作用,对E. coli攻毒具有保护作用,并表现出脂肪来源的差异性。
Exp.1 Effects of different dietary fat sources on growth performance and blood biochemical index of weaned pigs
     This study was designed to evaluate the effects of dietary fat sources on growth performance and biochemical index in weaned pigs. According to a single factorial arrangement, a total of 48 Duroc×Landrance×Yorkshire (DLY) weaned pigs were randomly assigned to one of three dietary groups of 16 animals each. The three dietary groups were purified diet supplemented with 10% either coconut oil, fish oil, or lard. The experiment had two stages and lasted for 21d. Results showed that:
     From 1 to 3 w, the ADG and F/G of coconut oil group was significant higher the lower, respectively, than that of fish oil and lard group. On day 21, the serum triglyceride (P< 0.01), total cholesterol (P< 0.01), blood sugar (P< 0.05), glucagons (P< 0.01) in piglets of fish oil group were reduced. The serum cortisol concentration and IL-1βlevels in pigs of 10% fish-oil group were significantly reduced, compared to 10% lard group. The serum TNF-αlevel in fish oil group was decreased 12.32%(P < 0.05), comparing result of 10% coconut oil group.
     These results suggested that different dietary fats had different nutritional and physiological effects, and cocunut oil had better growth performance of weaned pigs than fish oil and lard. But fish oil could reduce serum glucose, lipid, cortisol, and cytokine levels.
     Exp.2 The protective effects of different dietary fat sources on E. coli-administrated pigs
     The study was conducted to evaluate the protective effects of different dietary fat sources on growth performance, lipid metabolism, activity of lipase, intestinal development and intestinal flora of pigs challenged with E. coli. Blood samples were collected from all pigs on d 21 in Exp.1. After blood collection,12 pigs (6 female and 6 male) of each dietary groups in Exp.1 were assigned into Exp.2. The three dietary groups were the same as described in Exp.I. Six piglets (three female and three male) of each group received E. coli challenge, and the others received sterile normal saline at the same dose. Results showed that:
     Pigs received E. coli challenge had lower ADG and ADFI but higher F/G. The serum total cholesterol and IL-1βlevels were increased, while the surum IgG and IgA, activity of lipase, villi height and mucous thickness in jejunum, and fatty acids (C14:1, C16:0, C16:1, C18:3, CLA, C20:0, C20:, C20:2, C20:5n3, C22:1, C22:4n6, C24:1, MUFA and PUFA) in cecum were decreased in E. coli-challenged pigs. There was a tendency toward elevated surum glucagon. E. coli-administrated pigs aslo had lower Lactobacillus and Bifidobacterium population, the ratio of Lactobacillus to E. coli, and the ratio of bifidobacterium to E. coli. Results also showed that different dietary fat sources influenced growth performance, metabolism and the intestinal folra balance of pigs challenged with E. coli. Coconut oil and fish oil increased ADG and serum IgG level, and reduced F/G and serum IL-1βlevel. Fish oil reduced serum triglyceride, total cholesterol and insulin levels. Coconut oil increased willi height, villi height/crypt depth, and mucous thickness. Lard increased MUFA and PUFA content in cecum. Coconut oil reduced E. coli population and increased Lactobacillus and Bifidobacterium population, and the ratios of Lactobacillus/E. coli and Bifidobacterium/E. coli, and lard group was the worst.
     These results suggested that E. coli challenge suppressed growth, changed glucose and lipid metabolism. influenced intestinal morphology and cytokine and immunoglobulin secretion, decreased fatty acid content in cecum, and disrupted the belance of intestinal flora.Dietary fat, especially coconut oil and fish oil protected pigs against E. coli infection by regulating growth, metabolism, intestinal develpoment, and the balance of intestinal flora.
     Exp.3 The mechanism of protective effects of different dietary fat sources on E. coli-administrated pigs
     The purpose of this experiment was to investigate the possible mechanism of protective effects of different dietary fat sources on E. coli-administrated pigs by detecting the mRNA level of FABPs in small intestines, the mRNA level of inflammatory factors, such as PPAR-y, IL-1β, IL-6 and TNF-a, in jejunum and liver, and the Toll-like receptor (TLR) mRNA level in ileum and caecum. Experimental design was the same as Exp.2. The results showed that:
     E. coli challenge suppressed the mRNA expression levels of FABP1 in duodenum, TNF-a and PPAR-y in jejunum, IL-6 and PPAR-y in liver, and TLR-4 in cecum. E. coli challenge also increased the mRNA expression levels of FABP1, FABP2, IL-1βand IL-6 in jujunum, IL-1βand TLR-4 in ileum. Different dietary fat sources influenced the mRNA expression levels of related genes as mentioned in E. coli-administrated pig. Compared to lard group, coconut oil and fish oil increased the mRNA levels of FABP1 in duodenum, FABP1 and FABP2 in jujunum, and suppressed the mRNA levels of IL-1βand IL-6 in jejunum, TLR-2 and TLR-4 in ileum and cecum. Compared to fish oil and lard groups, coconut oil decreased the mRNA expression levels of IL-6 and TNF-a in liver, TLR-2 and TLR-4 in ileum and cecum, and increased the mRNA expression levels of PPAR-y in jujunum and liver, and IL-1βin liver.
     These results suggested that E. coli challenge influenced the mRNA expression levels of FABPs, cytokines and TLRs in intestinal tract and cytokines in liver. Ditary fat especially cocunut oil and fish oil played protective role by regulating the mRNA expression levels of FABPs, inflammatory factor and TLK genes in E. coli-challenged pigs.
     In conclusion, Oue results showed that different dietary fats had different nutritional and physiological effects and E. coli challenge decreased growth performance, changed glucose and lipid metabolism, influenced intestinal morphology and cytokine and immunoglobulin secretion, decreased fatty acid content in cecum, disrupted the balance of intestinal flora, influenced FABPs and TLRs mRNA abundance. Dietary fats had a regulatory role in lipid metabolism, intestinal structure, intestinal flora and inflammatory response. Different dietary fats also had different protective effects on pigs challenged with E. coli.
引文
[1]Chwalibog A, Jakobsen K, thorbek G. Loss of body fat in piglets in spite of gain in live weight. J Anim Physiol Anim Nutr.1994:80-85
    [2]Wiseman J, Cole DJA, Hardy B. The dietary energy values of soya-bean oil, tallow and their blends for growinF/Ginishing pigs. Anim Prod.1990,50:513-518
    [3]Cera KR, Mahan DC, reinhart GA. Apparent fat digestibilities and performance responses of postweaning swine fed diets supplemented with coconut oil, corn oil or tallow. J Anim Sci.1989: 2040-2047
    [4]牟永斌,董国忠.提高早期断奶仔猪免疫功能及健康水平的营养措施.饲料工业.2007,28:18-20
    [5]赖长华,尹靖东,李德发,刘慕欣,陈辉.共轭亚油酸对断奶仔猪生产性能和免疫功能的影响.中国畜牧杂志.2004,40:9-12
    [6]Kuda T, Enomoto T, Yano T, Fujii T. Cecal environment and TBARS level in mice fed corn oil, beef tallow and menhaden fish oil. J Nutr Sci Vitaminol (Tokyo).2000,46:65-70
    [7]Danicke S, Simon O, Jeroch H, Bedford M. Interactions between dietary fat type and xylanase supplementation when rye-based diets are fed to broiler chickens 2. Performance, nutrient digestibility and the fat-soluble vitamin status of livers. British Poultry Science.1997,38: 546-546
    [8]Danicke S, Vahjen W, Simon O, Jeroch H. Effects of dietary fat type and xylanase supplementation to rye-based broiler diets on selected bacterial groups adhering to the intestinal epithelium. on transit time of feed, and on nutrient digestibility. Poult Sci.1999,78:1292-1299
    [9]Thormar H, Isaacs CE, Brown HR, Barshatzky MR, Pessolano T. Inactivation of enveloped viruses and killing of cells by fatty acids and monoglycerides. Antimicrob Agents Chemother. 1987,31:27-31
    [10]Isaacs CE. The antimicrobial function of milk lipids. Adv Nutr Res.2001,10:271-285
    [11]Decuypere JA, Dierick NA. The combined use of triacylglycerols containing medium-chain fatty acids and exogenous lipolytic enzymes as an alternative to in-feed antibiotics in piglets: concept, possibilities and limitations. An overview. Nutr Res Rev.2003,16:193-210
    [12]Kabara JJ, Swieczkowski DM, Conley AJ, Truant JP. Fatty acids and derivatives as antimicrobial agents. Antimicrob Agents Chemother.1972,2:23-28
    [13]Gordon JH, Dubos R. The anaerobic bacterial flora of the mouse cecum. J Exp Med.1970, 132:251-260
    [14]郭云霞,王树香,郝庆红,吴国江,李红亚,朱宝成.动物肠道微生态系统及益生菌的营养功能.饲料研究.2009:24-25
    [15]李玉娥.动物肠道微生态环境的研究.畜牧兽医科技信息.2006:6-8
    [16]Benno Y, Sawada K, Mitsuoka T. The intestinal microflora of infants:composition of fecal flora in breast-fed and bottle-fed infants. Microbiol Immunol.1984,28:975-986
    [17]Schiffrin EJ, Blum S. Interactions between the microbiota and the intestinal mucosa. Eur J Clin Nutr.2002,56 Suppl 3:S60-S64
    [18]Fuller R. Probiotics in man and animals. J Appl Bacteriol.1989,66:365-378
    [19]van Heugten E, Coffey MT, Spears JW. Effects of immune challenge, dietary energy density, and source of energy on performance and immunity in weanling pigs. J Anim Sci.1996,74: 2431-2440
    [20]何明清.Study on the relationship between the normal bacteria population and bacillary diarrhea bacteria for piglets in the different digestive tract sites.四川农学院学报.1983,1:243-269
    [21]Conway PL, Kjelleberg S. Protein-mediated adhesion of Lactobacillus fermentum strain 737 to mouse stomach squamous epithelium. J Gen Microbiol.1989,135:1175-1186
    [22]Gan BS, Kim J, Reid G, Cadieux P, Howard JC. Lactobacillus fermentum RC-14 inhibits Staphylococcus aureus infection of surgical implants in rats. J Infect Dis.2002,185:1369-1372
    [23]Brashears MM, Reilly SS, Gilliland SE. Antagonistic action of cells of Lactobacillus lactis toward Escherichia coli O157:H7 on refrigerated raw chicken meat. J Food Prot.1998,61: 166-170
    [24]Ogawa M, Shimizu K, Nomoto K, Tanaka R, Hamabata T, Yamasaki S, Takeda T, et al. Inhibition of in vitro growth of Shiga toxin-producing Escherichia coli O157:H7 by probiotic Lactobacillus strains due to production of lactic acid. Int J Food Microbiol.2001,68:135-140
    [25]Reid G. The potential role of probiotics in pediatric urology. J Urol.2002,168:1512-1517
    [26]Aroutcheva A, Gariti D, Simon M, Short S, Faro J, Simoes JA, Gurguis A, et al. Defense factors of vaginal lactobacilli. Am J Obstet Gynecol.2001,185:375-379
    [27]Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM, Gibson GR, et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia.2007,50:2374-2383
    [28]Porter P, Allen WD. The relationship between intestinal flora and the immunity of the intestinal tract. Rev Sci Tech Off Int Epiz.1989:465~489
    [29]Miller ER, Ku PK, Wang ZQ, Zhang WR, Hogberg MG. Efficacy and safety of perenteral iron orotate. Michigan Report of Swine Research.1985:AS-SW-8519
    [30]Suzuki K, Fagarasan S. How host-bacterial interactions lead to IgA synthesis in the gut. Trends Immunol.2008,29:523-531
    [31]李德发.猪的营养(第二版).中国农业出版社.2003
    [32]姜晓明,王大会,赵献军,齐雪峰,刘洪明,黄介鑫.益生菌.低聚木糖制剂对仔猪生长性能和黄白痢的预防效果.西北农业学报.2009,18:2009,18(6):59-62
    [33]王海东,潘宝海,高玉鹏.鼠李糖乳酸杆菌对断奶仔猪生产性能的影响.中国畜牧杂志.2009,45:43-46
    [34]Hooper LV, Midtvedt T, Gordon JI. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr.2002,22:283-307
    [35]Metges CC. Contribution of microbial amino acids to amino acid homeostasis of the host. J Nutr.2000,130:1857S-1864S
    [36]Forsythe SJ, Parker DS. Nitrogen metabolism by the microbial flora of the rabbit caecum. J Appl Bacteriol.1985,58:363-369
    [37]Moreau MC, Ducluzeau R, Raibaud P. Hydrolysis of urea in the gastrointestinal tract of "monoxenic" rats:effect of immunization with strains of ureolytic bacteria. Infect Immun.1976, 13:9-15
    [38]王金全,蔡辉益.动物营养微生态饲料添加剂的研究与应用进展.饲料广角.2002:11-16
    [39]Vrieze A, Holleman F, Zoetendal EG, de Vos WM, Hoekstra JB, Nieuwdorp M. The environment within:how gut microbiota may influence metabolism and body composition. Diabetologia.53:606-13
    [40]Cummings JH, Englyst HN. Fermentation in the human large intestine and the available substrates. Am J Clin Nutr.1987,45:1243-1255
    [41]Cummings JH, Macfarlane GT. Role of intestinal bacteria in nutrient metabolism. JPEN J Parenter Enteral Nutr.1997,21:357-365
    [42]Salyers AA, West SE, Vercellotti JR, Wilkins TD. Fermentation of mucins and plant polysaccharides by anaerobic bacteria from the human colon. Appl Environ Microbiol.1977,34: 529-533
    [43]Salyers AA, Vercellotti JR, West SE, Wilkins TD. Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon. Appl Environ Microbiol.1977, 33:319-322
    [44]Venema K. Role of gut microbiota in the control of energy and carbohydrate metabolism. Curr Opin Clin Nutr Metab Care.13:432-438
    [45]高巍,孟庆祥.生长育肥猪胃肠道正常厌氧菌群的数量和分区.中国农业大学学报.2000,5:88-93
    [46]Varel VH, Yen JT. Microbial perspective on fiber utilization by swine. J Anim Sci.1997,75: 2715-2722
    [47]Yen JT, Nienaber JA, Hill DA, Pond WG. Potential contribution of absorbed volatile fatty acids to whole-animal energy requirement in conscious swine. J Anim Sci.1991,69:2001-2012
    [48]Varel VH. Activity of fiber-degrading microorganisms in the pig large intestine. J Anim Sci. 1987,65:488-496
    [49]Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A.2004, 101:15718-1523
    [50]Velagapudi VR, Hezaveh R, Reigstad CS, Gopalacharyulu P, Yetukuri L, Islam S, Felin J, et al. The gut microbiota modulates host energy and lipid metabolism in mice. J Lipid Res.51: 1101-1112
    [51]Newmark PA, Green R, Musso AM, Mollin DL. A comparison of the properties of chicken serum with other vitamin B12 binding proteins used in radioisotope dilution methods for measuring serum vitamin B12 concentrations. Br J Haematol.1973,25:359-373
    [52]王俐.不同剂量金霉素和核黄素对肉鸡生产性能的影响.中国饲料.2002:18-19
    [53]Buenrostro JL, Kratzer FH. Effect of Lactobacillus inoculation and antibiotic feeding of chickens on availability of dietary biotin. Poult Sci.1983,62:2022-2029
    [54]高巍,孟庆翔,肖训军,夏兆刚.生长猪胃肠道乳酸菌、双歧杆菌和大肠杆菌的数量和分布规律.中国农业大学学报.2001,6:81-86
    [55]Robinson IM, Whipp SC, Bucklin JA, Allison MJ. Characterization of predominant bacteria from the colons of normal and dysenteric pigs. Appl Environ Microbiol.1984,48:964-969
    [56]范志勇,沈静玲,王康宁,周定刚.猪胃肠道微生态平衡的调控技术研究进展.饲料工业.2005,26:38-43
    [57]Moore WE, Moore LV, Cato EP, Wilkins TD, Kornegay ET. Effect of high-fiber and high-oil diets on the fecal flora of swine. Appl Environ Microbiol.1987,53:1638-1644
    [58]Mao Y, Nobaek S, Kasravi B, Adawi D, Stenram U, Molin G, Jeppsson B. The effects of Lactobacillus strains and oat fiber on methotrexate-induced enterocolitis in rats. Gastroenterology. 1996,111:334-344
    [59]Gibson GR. Dietary modulation of the human gut microflora using prebiotics. Br J Nutr. 1998,80:S209-S212
    [60]De Cupere F, Deprez P, Demeulenaere D, Muylle E. Evaluation of the effect of 3 probiotics on experimental Escherichia coli enterotoxaemia in weaned piglets. Zentralbl Veterinarmed B. 1992,39:277-284
    [61]陈洪,余冰,陈代文,邹成义,罗亚波.日粮中添加恩拉霉素对仔猪生产性能和肠道菌群的影响.中国畜牧杂志.2010,46:42-47
    [62]姚建国.化学益生素和益生素在动物营养中的应用.粮食与饲料工业.2000:34-36
    [63]叶成远.寡糖饲料添加剂.畜禽业.1999:12-13
    [64]毛倩,陈代文,余冰,Choi JS.复合益生素对生长肥育猪生产性能、盲肠菌群及代谢产物的影响.中国畜牧杂志.2010,46:34-39
    [65]贾得宏,胡仓云,冶占顺.产酶益生素对断奶仔猪防腹泻促生长的效果.China Swine Industry.2010:15
    [66]杨海英,杨在宾,杨维仁,李兆勇.益生素和低聚木糖对断奶仔猪生产性能、消化酶活性、血液指标和肠道微生物的影响.中国兽医学报.2009,29:914-919
    [67]董国忠.饲粮蛋白水平和氨基酸平衡对早期断奶仔猪大肠蛋白腐败作用和生产性能的影响.四川农业大学博士学位论文.1996.
    [68]陈代文.应用通径分析法讨论仔猪断奶后腹泻的原因.中国畜牧杂志.1995,31:6-7
    [69]Azuma H, Mishima S, Oda J, Homma H, Sasaki H, Hisamura M, Ohta S, et al. Enteral supplementation enriched with glutamine, fiber, and oligosaccharide prevents gut translocation in a bacterial overgrowth model. J Trauma.2009,66:110-114
    [70]Liu P, Piao XS, Kim SW, Wang L, Shen YB, Lee HS, Li SY. Effects of chito-oligosaccharide supplementation on the growth performance, nutrient digestibility, intestinal morphology, and fecal shedding of Escherichia coli and Lactobacillus in weaning pigs. J Anim Sci.2008,86: 2609-2618
    [71]韩仁圭,李德发,朴香淑.2000最新猪营养与饲料.中国农业大学出版社.2000
    [72]Jouany JP. Manipulation of microbial activity in the rumen. Arch Tierernahr.1994,46: 133-153
    [73]Christensen K, Thorbek G. Methane excretion in the growing pig. Br J Nutr.1987,57: 355-361
    [74]邹芳,余冰,何军,陈代文.不同脂肪来源日粮对大鼠生长及餐后糖脂代谢的影响.动物营养学报.2009,21:769-776
    [75]梅绍峰,余冰,鞠翠芳,祝丹,陈代文.高锌和高铜对断奶仔猪生产性能、消化生理和盲肠微生物数量的影响.动物营养学报.2009,21:903-909
    [76]杨玫,周安国,王之胜.锌对断奶仔猪肠道屏障的影响.中国饲料.2008:17-21
    [77]冷向军,王康宁,杨凤,端木道,周安国.酸化剂对早期断奶仔猪胃酸分泌、消化酶活性和肠道微生物的影响.动物营养学报.2002,14:44-48
    [78]晏家友,贾刚,王康宁,王立志.缓释复合酸化剂对断奶仔猪消化道酸度及肠道功能的影响.畜牧兽医学报.2009,40:1747-1754
    [79]Krause DO, Harrison PC, Easter RA. Characterization of the nutritional interactions between organic acids and inorganic bases in the pig and chick. J Anim Sci.1994,72:1257-1262
    [80]Clarke SD. Polyunsaturated fatty acid regulation of gene transcription:a molecular mechanism to improve the metabolic syndrome. J Nutr.2001,131:1129-1132
    [81]翁新楚,董新伟,任国谱.EPA和DHA的生理功能及其氧化稳定性.生物工程进展.1994,14:56-60
    [82]阮征,吴谋成,胡筱波.多不饱和脂肪酸的研究进展.中国油脂.2003,28:55-59
    [83]杨凤.动物营养学.中国农业出版社.2004.78-80
    [84]Jump DB, Clarke SD. Regulation of gene expression by dietary fat. Annu Rev Nutr.1999,19: 63-90
    [85]李相勤,李越平,郑建平.α-亚麻酸降血脂作用的研究.中国油脂.1995,20:46-49
    [86]Wang PY, Caspi L, Lam CK, Chari M, Li X, Light PE, Gutierrez-Juarez R, et al. Upper intestinal lipids trigger a gut-brain-liver axis to regulate glucose production. Nature.2008,452: 1012-1016
    [87]Badman MK, Flier JS. The gut and energy balance:visceral allies in the obesity wars. Science.2005,307:1909-1914
    [88]Murphy KG, Bloom SR. Gut hormones and the regulation of energy homeostasis. Nature. 2006,444:854-859
    [89]Coll AP, Farooqi IS, O'Rahilly S. The hormonal control of food intake. Cell.2007,129: 251-262
    [90]金波,龚春晖.高新分离技术在天然PUFAs功能食品开发中的应用.中国食品添加剂.1996:11-15
    [91]Chilliard Y. Dietary fat and adipose tissue metabolism in ruminants, pigs, and rodents:a review. J Dairy Sci.1993,76:3897-3931
    [92]杭晓敏,唐涌濂,柳向龙.多不饱和脂肪酸的研究进展.生物工程进展.2001,20:18-21
    [93]王镜岩,朱圣庚,徐长法.生物化学.高等教育出版社.2002.79-120
    [94]Clarke SD. Polyunsaturated fatty acid regulation of gene transcription:a mechanism to improve energy balance and insulin resistance. Br J Nutr.2000,83 Suppl 1:S59-S66
    [95]Nakamura MT, Cho HP, Clarke SD. Regulation of hepatic delta-6 desaturase expression and its role in the polyunsaturated fatty acid inhibition of fatty acid synthase gene expression in mice. J Nutr.2000,130:1561-1565
    [96]王建辉,贺建华,范志勇.母猪脂肪营养研究进展.饲料工业.2007,28:16-21
    [97]Alao SJ, Balnave D. Growth and carcass composition of broilers fed sunflower oil and olive oil. Br Poult Sci.1984,25:209-219
    [98]Mercer SW, Trayhurn P. Effect of high fat diets on energy balance and thermogenesis in brown adipose tissue of lean and genetically obese ob/ob mice. J Nutr.1987,117:2147-2153
    [99]Su W, Jones PJ. Dietary fatty acid composition influences energy accretion in rats. J Nutr. 1993,123:2109-2114
    [100]李娟娟.油脂类型和日粮能量及其互作对肉仔鸡脂肪代谢的影响.北京:中国农业科学院硕士学位论文.2008
    [101]齐广海.家禽肠道微生态系统及其调控的研究进展.新进展.2006:5-8
    [102]谭支良.动物胃肠道微生态理论与实践.应用生态学报.2003,14:148-150
    [103]李丽莉.肠道微环境对动物的影响及其调控.新进展.2009:33-37
    [104]Gunn JS. Mechanisms of bacterial resistance and response to bile. Microbes Infect.2000, 2:907-913
    [105]Strompfova V, Laukova A, Ouwehand AC. Selection of enterococci for potential canine probiotic additives. Vet Microbiol.2004,100:107-114
    [106]Tsuchido T, Hiraoka T, Takano M, Shibasaki I. Involvement of autolysin in cellular lysis of Bacillus subtilis induced by short-and medium-chain fatty acids. J Bacteriol.1985,162:42-46
    [107]Isaacs CE, Litov RE, Thormar H. Antimicrobial activity of lipids added to human milk, infant formula, and bovine milk. J Nutr Biochem.1995,6:362-366
    [108]Wang LL, Johnson EA. Inhibition of Listeria monocytogenes by fatty acids and monoglycerides. Appl Environ Microbiol.1992,58:624-629
    [109]Schmelz EM, Crall KJ, Larocque R, Dillehay DL, Merrill AH, Jr. Uptake and metabolism of sphingolipids in isolated intestinal loops of mice. J Nutr.1994,124:702-712
    [110]Bergsson G, Arnfinnsson J, Steingrimsson O, Thormar H. Killing of Gram-positive cocci by fatty acids and monoglycerides. APMIS.2001,109:670-678
    [111]Petschow BW, Batema RP, Talbott RD, Ford LL. Impact of medium-chain monoglycerides on intestinal colonisation by Vibrio cholerae or enterotoxigenic Escherichia coli. J Med Microbiol.1998,47:383-389
    [112]Sprong RC, Hulstein MF, Van der Meer R. Bactericidal activities of milk lipids. Antimicrob Agents Chemother.2001,45:1298-1301
    [113]Rivellese AA, De Natale C, Lilli S. Type of dietary fat and insulin resistance. Ann N Y Acad Sci.2002,967:329-335
    [114]张涛,刘源,赵爽,高青松,王志红.不同脂肪高脂日粮诱发胰岛素抵抗综合征大鼠模型的比较.中国比较医学杂志.2009,19:44-49
    [115]高青松,刘源,张涛,赵爽,王志红.不同类型脂肪酸对SD大鼠血清生化指标及胰岛素抵抗的影响.实验动物科学.2010,27:16-21
    [116]康艳明.代谢综合征的研究现状.内科.2008,3:771-773
    [117]邓斌,马静.中链脂肪酸与胰岛素抵抗.国外医学卫生学分册.2006,33:362-366
    [118]Luo J, Rizkalla SW, Boillot J, Alamowitch C, Chaib H, Bruzzo F, Desplanque N, et al. Dietary (n-3) polyunsaturated fatty acids improve adipocyte insulin action and glucose metabolism in insulin-resistant rats:relation to membrane fatty acids. J Nutr.1996,126: 1951-1958
    [119]高艳玲.不同脂肪源和复合肉碱对团头鲂生长、部分生理机能及体组织脂肪酸组成的影响. 苏州大学硕士学位论文.2009
    [120]诸葛燕.不同脂肪(能量)蛋白比饲料及不同脂肪源饲料对花(鱼骨)生长、生理机能和体脂肪酸组成的影响.苏州大学硕士学位论文.2009
    [121]Kunau WH, Dommes V, Schuiz H. Beta-oxidation of fatty acids in mitochondria, peroxisomes, and bacteria:a century of continued p rogress. Prog Lipid Res.1995:267-342
    [122]关紫烽,姜波,白卉.食用动物油与植物油中脂肪酸组成的比较研究.中国公共卫生杂志.2002:1438
    [123]Storlien LH, Higgins JA, Thomas TC, Brown MA, Wang HQ, Huang XF, Else PL. Diet composition and insulin action in animal models. Br J Nutr.2000,83 Suppl 1:S85-S90
    [124]程万里,王彦华,宋光耀,王岚,张玉清.不同脂肪酸饮食导致大鼠肝脏脂代谢紊乱的实验研究.中国老年学杂志.2008,28:742-744
    [125]杨胜著.饲料分析与饲料质量检测技术.北京:中国农业大学出版社.1999
    [126]Sukhija PS, Palmquist DL. Rapid method for determination of total fatty acids content and composition of feed stuffs and feces. Journal of Agricultural and Food Chemistry.1988,36: 1202-1206
    [127]欧阳五庆.动物生理学.科技出版社.2006:171
    [128]刘元述,戴德渊.椰子油在猪日粮中的应用探讨.饲料工业.2010,31:50-52
    [129]冷董碧.不同脂肪来源对断奶仔猪生产性能的影响.湖南农业大学硕士学位论文.2007
    [130]Freeman CP. Properties of fatty acids in dispersions of emulsified lipid and bile salt and the significance of these properties in fat absorption in the pig and the sheep. Br J Nutr.1969,23: 249-263
    [131]J(?)rgensen H, Gabert VM, Hedemann MS, Jesen SK. Digestion of fat dose not differ in growing pigs fed diets containing fish oil, rapeseed oil or coconut oli. Journal of Nutrition 2000: 852-857
    [132]Li S, Sauer WC. The effect of dietary fat content on amino acid digestibility in young pigs. Journal of Animal Science.1994:1734-1743
    [133]Berschauer F. [Nutrition physiology effects of dietary fats in rations for growing pigs.5. Effects of soy bean oil and lard on protein retention in piglets]. Arch Tierernahr.1984,34: 123-133
    [134]Cera KR, Mahan DC, Reinhart GA. Weekly digestibilities of diets supplemented with corn oil, lard or tallow by weanling swine. J Anim Sci.1988,66:1430-1437
    [135]Haug A, Hostmark AT. Lipoprotein lipases, lipoproteins and tissue lipids in rats fed fish oil or coconut oil. J Nutr.1987,117:1011-1017
    [136]Faeh D, Minehira K, Schwarz JM, Periasamy R, Park S, Tappy L. Effect of fructose overfeeding and fish oil administration on hepatic de novo lipogenesis and insulin sensitivity in healthy men. Diabetes.2005,54:1907-1913
    [137]Cheema SK, Agellon LB. Metabolism of cholesterol is altered in the liver of C3H mice fed fats enriched with different C-18 fatty acids. J Nutr.1999,129:1718-1724
    [138]Hill JO, Peters JC, Lin D, Yakubu F, Greene H, Swift L. Lipid accumulation and body fat distribution is influenced by type of dietary fat fed to rats. Int J Obes Relat Metab Disord.1993, 17:223-236
    [139]Pighin D, Karabatas L, Rossi A, Chicco A, Basabe JC, Lombardo YB. Fish oil affects pancreatic fat storage, pyruvate dehydrogenase complex activity and insulin secretion in rats fed a sucrose-rich diet. J Nutr.2003,133:4095-4101
    [140]Storlien LH, Jenkins AB, Chisholm DJ, Pascoe WS, Khouri S, Kraegen EW. Influence of dietary fat composition on development of insulin resistance in rats. Relationship to muscle triglyceride and omega-3 fatty acids in muscle phospholipid. Diabetes.1991,40:280-289
    [141]Vedin I, Cederholm T, Freund Levi Y, Basun H, Garlind A, Faxen Irving G, Jonhagen ME, et al. Effects of docosahexaenoic acid-rich n-3 fatty acid supplementation on cytokine release from blood mononuclear leukocytes:the OmegAD study. Am J Clin Nutr.2008,87:1616-1622
    [142]Moller S, Lauridsen C. Dietary fatty acid composition rather than vitamin E supplementation influence ex vivo cytokine and eicosanoid response of porcine alveolar macrophages. Cytokine.2006,35:6-12
    [143]Mizota T, Fujita-Kambara C, Matsuya N, Hamasaki S, Fukudome T, Goto H, Nakane S, et al. Effect of dietary fatty acid composition on Thl/Th2 polarization in lymphocytes. JPEN J Parenter Enteral Nutr.2009,33:390-396
    [144]Andoh A, Tsujikawa T, Ishizuka I, Araki Y, Sasaki M, Koyama S, Fujiyama Y. N-3 fatty acid-rich diet prevents early response of interleukin-6 elevation in trinitrobenzene sulfonic acid-induced enteritis. Int J Mol Med.2003,12:721-725
    [145]Yin H, Liu W, Goleniewska K, Porter NA, Morrow JD, Peebles RS, Jr. Dietary supplementation of omega-3 fatty acid-containing fish oil suppresses F2-isoprostanes but enhances inflammatory cytokine response in a mouse model of ovalbumin-induced allergic lung inflammation. Free Radic Biol Med.2009,47:622-628
    [146]Warstedt K, Furuhjelm C, Duchen K, Falth-Magnusson K, Fageras M. The effects of omega-3 fatty acid supplementation in pregnancy on maternal eicosanoid, cytokine, and chemokine secretion. Pediatr Res.2009,66:212-217
    [147]Reimund JM, Scheer O, Muller CD, Pinna G, Duclos B, Baumann R. In vitro modulation of inflammatory cytokine production by three lipid emulsions with different fatty acid compositions. Clin Nutr.2004,23:1324-1332
    [148]邹芳.不同种类脂肪对大鼠生长性能及微生态效应的影响研究.四川农业大学硕士学位论文.2009
    [149]Rivellese AA, DeNatale C, Lilli S. Type of dietary fat and insulin resistance. Ann N Y Acad Sci.329-335
    [150]Gorjao R, Azevedo-Martins AK, Rodrigues HG, Abdulkader F, Arcisio-Miranda M, Procopio J, Curi R. Comparative effects of DHA and EPA on cell function. Pharmacol Ther. 2009, 122:56-64
    [151]王春光,张铁,蒋桂娥.鸡大肠杆菌病NO、TNF-α水平检测及临床意义.黑龙江畜牧兽医.2010:86-87
    [152]王佳贺,顾海伦,李慧,牛慧彦,何平.肠致病性大肠杆菌感染时血清TNF-α和IL-1β含量的检测及意义.中国现代医学杂志.2009,19:12-15
    [153]Gutman RA, Basilico MZ, Bernal CA, Chicco A, Lombardo YB. Long-term hypertriglyceridemia and glucose intolerance in rats fed chronically an isocaloric sucrose-rich diet. Metabolism.1987,36:1013-1020
    [154]Lombardo YB, Drago S, Chicco A, Fainstein-Day P, Gutman R, Gagliardino JJ, Gomez Dumm CL. Long-term administration of a sucrose-rich diet to normal rats:relationship between metabolic and hormonal profiles and morphological changes in the endocrine pancreas. Metabolism.1996,45:1527-1532
    [155]Chicco A, Basabe JC, Karabatas L, Ferraris N, Fortino A, Lombardo YB. Troglitazone (CS-045) normalizes hypertriglyceridemia and restores the altered patterns of glucose-stimulated insulin secretion in dyslipidemic rats. Metabolism.2000,49:1346-1351
    [156]Saraux B, Girard-Globa A, Ouagued M, Vacher D. Response of the exocrine pancreas to quantitative and qualitative variations in dietary lipids. Am J Physiol.1982,243:G10-G15
    [157]Van Veldhoven PP, Swinnen JV, Esquenet M, Verhoeven G. Lipase-based quantitation of triacylglycerols in cellular lipid extracts:requirement for presence of detergent and prior separation by thin-layer chromatography. Lipids.1997,32:1297-1300
    [158]Li DF, Thaler RC, Nelssen JL, Harmon DL, Allee GL, Weeden TL. Effect of fat sources and combinations on starter pig performance, nutrient digestibility and intestinal morphology. J Anim Sci.1990,68:3694-3704
    [159]Nabuurs ML. Effect of weaning and enterotoxigenic Escherichia coli on net absorption in the small intestine of pigs. Research in Veterinary Science.1994:379-385
    [160]Kunau WH, Dommes V, Schulz H. beta-oxidation of fatty acids in mitochondria, peroxisomes, and bacteria:a century of continued progress. Prog Lipid Res.1995,34:267-342
    [161]Conley AJ, Kabara JJ. Antimicrobial action of esters of polyhydric alcohols. Antimicrob Agents Chemother.1973,4:501-506
    [162]Wu Z, Ohajuruka OA, Palmquist DL. Ruminal synthesis, biohydrogenation, and digestibility of fatty acids by dairy cows. J Dairy Sci.1991,74:3025-3034
    [163]Dierick NA, Decuypere JA, Molly K, Beek EV, Vanderbeke E. The combined use of triacylglycerols (TAGs) containing medium chain fatty acids (MCFAs) and exogenous lipolytic enzymes as an alternative to nutritional antibiotics in piglet nutrition:Ⅱ. In vivo release of MCFAs in gastric cannulated and slaughtered piglets by endogenous and exogenous lipases; effects on the luminal gut flora and growth performance Livestock Production Science 2002,76:1-16
    [164]Dierick NA, Decuypere JA, Molly K, Beek EV, Vanderbeke E. The combined use of triacylglycerols (TAGs) containing medium chain fatty acids (MCFAs) and exogenous lipolytic enzymes as an alternative to nutritional antibiotics in piglet nutrition:Ⅰ. In vivo release of MCFAs in gastric cannulated and slaughtered piglets by endogenous and exogenous lipases; effects on the luminal gut flora and growth performance Livestock Production Science 2002:129-142
    [165]Van Immerseel F, De Buck J, Boyen F, Bohez L, Pasmans F, Volf J, Sevcik M, et al. Medium-chain fatty acids decrease colonization and invasion through hilA suppression shortly after infection of chickens with Salmonella enterica serovar Enteritidis. Appl Environ Microbiol. 2004,70:3582-3587
    [166]Sprong RC, Hulstein MF, Van der Meer R. High intake of milk fat inhibits intestinal colonization of Listeria but not of Salmonella in rats. J Nutr.1999,129:1382-1389
    [167]Skrivanova E, Molatova Z, Skrivanova V, Marounek M. Inhibitory activity of rabbit milk and medium-chain fatty acids against enteropathogenic Escherichia coli O128. Vet Microbiol. 2009,135:358-362
    [168]颜士禄,张铁鹰,刘强.脂肪酸的吸收与脂肪酸结合蛋白.饲料工业.2008,29:17-21
    [169]Cario E, Brown D, McKee M, Lynch-Devaney K, Gerken G, Podolsky DK. Commensal-associated molecular patterns induce selective toll-like receptor-trafficking from apical membrane to cytoplasmic compartments in polarized intestinal epithelium. Am J Pathol. 2002,160:165-173
    [170]Cario E. Barrier-protective function of intestinal epithelial Toll-like receptor 2. Mucosal Immunol.2008,1 Suppl 1:S62-S66
    [171]Murphy EJ. L-FABP and I-FABP expression increase NBD-stearate uptake and cytoplasmic diffusion in L cells. Am J Physiol.1998,275:G244-G249
    [172]Meunier-Durmort C, Poirier H, Niot I, Forest C, Besnard P. Up-regulation of the expression of the gene for liver fatty acid-binding protein by long-chain fatty acids. Biochem J. 1996,319 (Pt 2):483-487
    [173]Besnard P, Niot I, Poirier H, Clement L, Bernard A. New insights into the fatty acid-binding protein (FABP) family in the small intestine. Mol Cell Biochem.2002,239:139-147
    [174]Levy E, Menard D, Delvin E, Montoudis A, Beaulieu JF, Mailhot G, Dube N, et al. Localization, function and regulation of the two intestinal fatty acid-binding protein types. Histochem Cell Biol.2009,132:351-367
    [175]Puskas LG, Bereczki E, Santha M, Vigh L, Csanadi G, Spener F, Ferdinandy P, et al. Cholesterol and cholesterol plus DHA diet-induced gene expression and fatty acid changes in mouse eye and brain. Biochimie.2004,86:817-824
    [176]Guilmeau S, Niot I, Laigneau JP, Devaud H, Petit V, Brousse N, Bouvier R, et al. Decreased expression of Intestinal I-and L-FABP levels in rare human genetic lipid malabsorption syndromes. Histochem Cell Biol.2007,128:115-123
    [177]Makowski L, Hotamisligil GS. Fatty acid binding proteins-the evolutionary crossroads of inflammatory and metabolic responses. J Nutr.2004,134:2464S-2468S
    [178]Makowski L, Boord JB, Maeda K, Babaev VR, Uysal KT, Morgan MA, Parker RA, et al. Lack of macrophage fatty-acid-binding protein aP2 protects mice deficient in apolipoprotein E against atherosclerosis. Nat Med.2001,7:699-705
    [179]Jacobi SK, Gabler NK, Ajuwon KM, Davis JE, Spurlock ME. Adipocytes, myofibers, and cytokine biology:new horizons in the regulation of growth and body composition. J Anim Sci. 2006,84 Suppl:E140-E149
    [180]Kota BP, Huang TH, Roufogalis BD. An overview on biological mechanisms of PPARs. Pharmacol Res.2005,51:85-94
    [181]Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell.1994,79:1147-1156
    [182]Chinetti G, Griglio S, Antonucci M, Torra IP, Delerive P, Majd Z, Fruchart JC, et al. Activation of proliferator-activated receptors alpha and gamma induces apoptosis of human monocyte-derived macrophages. J Biol Chem.1998,273:25573-25580
    [183]Gelman L, Fruchart JC, Auwerx J. An update on the mechanisms of action of the peroxisome proliferator-activated receptors (PPARs) and their roles in inflammation and cancer. Cell Mol Life Sci,1999,55:932-943
    [184]Liu YL, Shi JX, Lu J, Che ZQ, Zhu HL, Hou YQ, Yin YL, et al. Up-regulated expression of peroxisome proliferator-activated receptor gamma in the hypothalamic-pituitary-adrenal axis of weaned pigs after Escherichia coli lipopolysaccharide challenge. Vet J.2009
    [185]Ruth MR, Proctor SD, Field CJ. Feeding long-chain n-3 polyunsaturated fatty acids to obese leptin receptor-deficient JCR:LA-cp rats modifies immune function and lipid-raft fatty acid composition. Br J Nutr.2009,101:1341-1350
    [186]Cotogni P, Muzio G, Trombetta A, Ranieri VM, Canuto RA. Impact of the omega-3 to omega-6 polyunsaturated fatty acid ratio on cytokine release in human alveolar cells. JPEN J Parenter Enteral Nutr.35:114-121
    [187]van Dijk SJ, Feskens EJ, Bos MB, Hoelen DW, Heijligenberg R, Bromhaar MG, de Groot LC, et al. A saturated fatty acid-rich diet induces an obesity-linked proinflammatory gene expression profile in adipose tissue of subjects at risk of metabolic syndrome. Am J Clin Nutr. 2009,90:1656-1664
    [188]Melmed G, Thomas LS, Lee N, Tesfay SY, Lukasek K, Michelsen KS, Zhou Y, et al. Human intestinal epithelial cells are broadly unresponsive to Toll-like receptor 2-dependent bacterial ligands:implications for host-microbial interactions in the gut. J Immunol.2003,170: 1406-1415
    [189]Otte JM, Cario E, Podolsky DK. Mechanisms of cross hyporesponsiveness to Toll-like receptor bacterial ligands in intestinal epithelial cells. Gastroenterology.2004,126:1054-1070
    [190]Song J, Bishop BL, Li G, Grady R, Stapleton A, Abraham SN. TLR4-mediated expulsion of bacteria from infected bladder epithelial cells. Proc Natl Acad Sci U S A.2009,106: 14966-14971
    [191]van Aubel RA, Keestra AM, Krooshoop DJ, van Eden W, van Putten JP. Ligand-induced differential cross-regulation of Toll-like receptors 2,4 and 5 in intestinal epithelial cells. Mol Immunol.2007,44:3702-3714
    [192]Andonegui G, Zhou H, Bullard D, Kelly MM, Mullaly SC, McDonald B, Long EM, et al. Mice that exclusively express TLR4 on endothelial cells can efficiently clear a lethal systemic Gram-negative bacterial infection. J Clin Invest.2009,119:1921-1930
    [193]Xu M, Dai MS, Mi C. [Expression of cytokines in murine BMDCs induced by recombinant E.coli LLO/OVA via TLR4 and NOD1 receptors]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi.2009,25:9-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700