用户名: 密码: 验证码:
混凝土梁桥沥青铺装结构分析与材料优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对混凝土梁桥沥青铺装存在的开裂、推移、车辙等问题,以简支空心板梁沥青混凝土铺装为研究对象,以弹性力学作为理论基础,应用有限元法,运用ANSYS、LSDYNA等软件,建立混凝土梁桥沥青铺装结构有限元分析模型,采用实体子午线轮胎加载,进行混凝土梁桥沥青铺装结构的静力学、动力学以及温度响应分析,在此基础上探讨了空心板梁沥青桥面铺装结构设计方法。结合广东地区实体工程对空心板梁沥青桥面铺装材料组成进行了优化,并铺筑了试验段。
     通过本文的研究发现,混凝土梁桥沥青铺装结构受力与普通路面结构有很大不同,其中上层沥青混凝土铺装与轮胎接触区域应力最大,该区域存在从上往下开裂的趋势,适当增加上层沥青混凝土铺装的厚度以及提高层间粘结性能可有效改善结构的受力状况。车辆通过桥头接缝时产生很大冲击力,容易造成接缝附近铺装破损。在刹车时及大纵坡路段,由于轮胎产生水平力主要作用在上层沥青混凝土铺装上,因而对混凝土梁桥沥青铺装上层沥青混凝土的抗剪切能力提出了更高的要求。同时混凝土梁桥沥青铺装温度效应不可忽略,温度应力是造成铺装层边缘撕开及开裂的主要原因,温度车辆荷载耦合作用加剧了混凝土梁桥沥青铺装的破坏。
     通过力学模型分析,本文对桥面沥青混凝土铺装结构设计方法进行了探讨,提出以沥青混凝土铺装层表面最大拉应力作为结构设计的主要指标,以沥青混凝土最大剪应力作为辅助指标,明确了沥青混凝土桥面铺装结构设计的主要流程。
     采用多级嵌锁抗剪级配设计方法对集料级配进行优化,基于层位功能对铺装上、下层沥青混合料配合比进行了优化设计。通过沥青混凝土桥面铺装层中掺加玻璃纤维前后力学性能对比测试,可知,玻璃纤维对铺装上、下层的力学性能改善作用均较好,能有效提高沥青混合料的抗拉、抗剪及疲劳性能,使玻璃纤维沥青混凝土铺装更能适应桥面铺装的受力特点,因此推荐铺装层均采用玻璃纤维加筋沥青混凝土;同时还详细分析研究了四种不同防水粘结层材料的力学及路用性能,推荐工程使用。
According to the problems of cracking, lapse, rutting exist in asphalt concrete beam bridge deck, this paper takes simply supported hollow slab of asphalt concrete pavement as the research object. Based on the theory of elasticity finite element method, using ANSYS, LSDYNA and other software to establish the finite element analysis model of the concrete beam bridge asphalt bridge deck, using radial tire to load entities, On the basis of analyzing statics, dynamics, and temperature response of the structure of the composite bridge deck, this article discusses the design method of the structure of the bridge deck asphalt concrete. By combining with the project in Guangdong Province, the material composition of hollow slab of asphalt concrete pavement is optimized and a test road is paved.
     Researches in this paper show that force of concrete beam bridge asphalt bridge deck structure is different from that of the ordinary road, the stress of the upper asphalt concrete pavement which contacts with the tire is the largest and the region has tendency of cracking from top to bottom, so by increasing the thickness of the upper asphalt concrete pavement appropriately and improving the adhesion properties of the interlayer the stress state of structure the can be enhanced effectively. The huge impact force generated by passing vehicle can easily causes damage near the pavement joints. When braking or on the longitudinal slope, the horizontal force generated by tire mainly acts on the upper asphalt concrete pavement, so it has a higher requirement for the antishear ability of asphalt concrete of the upper asphalt concrete bridge deck. At the same time, the temperature effect of concrete beam bridge deck can't be ignored, because the temperature stress is the main reason that causes the tearing and cracking of pavement edge. The temperaturevehicle load coupling function aggravates the destruction of the composite bridge deck.
     After the analysis of mechanics model, this paper discusses the design method of the asphalt concrete bridge deck structure and proposes asphalt concrete pavement surface maximum tensile stress as the main indicators of structural design, and maximum shear stress of asphalt concrete as the auxiliary indicators, and the main flow of asphalt concrete pavement structure design is also proposed.
     By using multilevel embedded antishear grading design method to optimize the gradation, and the lower and upper pavement asphalt mixture is designed based on layer functions. Glass fiber reinforced asphalt concrete is recommended to use in this paper, through the comparison test in the mechanical properties before and after asphalt concrete deck by mixing glass fibers, it can be known that the glass fiber had an improvement on the mechanical performance in the lower and the upper deck, can effectively improve the tensile strength, shear and fatigue properties of asphalt mixture, make the deck adapt to the force characteristics, at the same time, this paper deeply analyzed four different mechanical bonding layer waterproof and performance, recommended engineering to use it.
引文
[1]广东华路交通科技有限公司,长安大学.复合桥面铺装结构与材料优化设计及施工关键技术研究[R].西安,长安大学,2010
    [2]曾耀华,彭力.PE法计算正交异性钢桥面板的应用[J].中外公路,2001,21(5):2729
    [3]N. E. Shanmugam. Strength of Axially Loaded Orthotropic Plates[J]. Journal of Structure Engineering,113(2),1987.
    [4]A H. Sheikh, M. Mulhopadhyay. Geometric nonlinear analysis of stiffened plates by the spline finite strip method[J]. Computers and Structures, No.76,2000.
    [5]小西一郎.钢桥[M].北京:中国铁道出版社,1984.
    [6]多田宏行.桥面铺装的设计与施工[M].日本:鹿岛出版会,1993
    [7]O.C.Zienkiewcz and YK.Cheng.The Finite Element Method for Analysis of Elastic Isotropic and Orthotropic Slabs.Proc.the Inst. of Civ. Engrs.28 (Aug.1964)
    [8]JTJ02189,公路桥涵设计通用规范[S].北京:人民交通出版社,1989
    [9]JTJ00197,公路工程技术标准[S]北京:人民交通出版社,1997
    [10]王晓,程刚,黄卫.环氧沥青混凝土性能研究.东南大学学报,2001,31(6),10
    [11]黄卫等.南京长江第二大桥钢桥而环氧沥青混凝土铺装技术及应用,课题研究报告.2000,12
    [12]黄卫等.润扬长江公路大桥钢桥而铺装阶段研究报告.2002,4
    [13]Uan Dijk W. Practical Fatigue Characterization of Bituminous Mixes, Proceedings. Association of Asphalt Paving Technologists.44,1975 PP:3874
    [14]Tayebali A, G. M. Rove, J. B. Souse. Fatigue Response ofAsphaltAggregate Mixtures. Paper to be Presented atAnnual Meeting ofAssociation ofAsphalt. Paving Technologist. February 1992.
    [15]Uan Dijk W, Moreand H, Quedeville. The fatigue of bitumen and bituminous mixes. Proc. 3rd Int. Conf On Structure Design ofAsphelt Pavement. London,1972, Uol.1, PP:354366
    [16]卓家寿.弹性力学中的有限单元法[M].等教育出版社,1987(9)
    [17]胡光伟,黄卫,张晚春.润扬大桥钢桥而铺装层力学分析.公路交通科技,2002,19(4):13.
    [18]童乐为,沈祖炎.正交异性钢桥面板静力试验和有限元分析[J].同济大学学报,25(6),1997.
    [19]徐军,陈忠延.正交异性钢桥面板的结构分析[J].同济大学学报,27(2),1999.
    [20]肖秋明,查旭东.沥青混凝土钢桥面铺装的剪切分析[J].中南公路工程,25(1),2000.
    [21]胡光伟,钱振东,黄卫.正交异性钢箱梁桥面第一体系结构优化设计[J].东南大学学报,31(3),2001.
    [22]罗立峰,钟鸣,黄成造.桥面铺装设计方法探讨[J].中南公路工程,1999,24(2)
    [23]方萍,何兆益,周虎鑫正交异性钢桥面板与沥青混凝土铺装的计算分析[J].第十二届全国桥梁学术会议论文集,1998.
    [24]徐勤武,胡长顺等.混凝土桥面复合式铺装层受力分析和设计[J].长安大学学报,2007,27(4):2832.
    [25]伍波,方萍.钢桥面铺装的有限元分析和环道模型设计[J].公路,(1)2001.
    [26]余叔藩,陈仕周,陈献南.大跨径悬索桥钢桥面沥青铺装技术[J].中国公路学报,11(3),1998.
    [27]顾兴宇.悬索桥桥面沥青铺装层力学分析及结构设计研究[D].南京,东南大学,2002.
    [28]邓学钧,顾兴宇,周世忠,周建林.钢桥面沥青铺装层裂缝破坏趋势研究[J].公路交通科技,19(4),2002.
    [29]李昶.大跨径钢箱梁桥面铺装深入研究[D].南京,东南大学,2002.
    [30]李昶,邓学钧,周世忠,周建林.加劲肋对铺装层应变的影响[J].公路交通科技,19(4)2002.
    [31]张占军.水泥混凝土桥面沥青混凝土铺装结构研究[D].西安,长安大学,2000
    [32]丁庆军,王发洲,黄绍龙等.桥面铺装层材料设计[J].武汉理工大学学报,2002,24(4):3537
    [33]李雪莲.系杆拱桥面铺装结构力学性能研究[D].长沙,长沙理工大学,2005
    [34]王京元.水泥混凝土桥面沥青混凝土铺装早期病害原因分析和结构设计方法[D].大连,大连理工大学,2003
    [35]Stenko,M.S.,Chawalwala, A.J. Thin polysulfide epoxy bridge deck overlays [J]. Transportation Research Record,2001,(1749).
    [36]Hulsey, J. Leroy, Yang, Liao, Raad, Lutfi. Wearing surfaces for orthotropic steel bridge decks [J]. Transportation Research Record,1999,(1654).
    [37]Hicks,R.G.,Dussek,LJ.,Seim,C.Asphalt surfaces on steel bridge decks [J]. Transportation Research Record,2000,(1740).
    [38]Kolstein,M.H. and Wardenier, J. Stress Reduction Due to Surfacing on Orthotropic Steel Decks [R]. Lausanne:Proceedings of the ISAB Workshop,1997.
    [39]Nakanishi,N.and Okochi,T. The Structural Evaluation for an Asphalt Pavement on a Steel Plate Deck [C]. Proceedings of the ISt International Conference. Sydney,Australia: World of Asphalt Pavement(AAPA),2000:112123.
    [40]Hulsey, J. Leroy Raad, Lutfi, Connor, Billy. Deck Wearing Surfaces for the Yukon River Bridge [C].Engineering Proceedings of the 1 lte International Conference.Yukon:Cold Regions Cold Regions Impacts on Transportation and Infrastructure,2002.
    [41]王新生,罗晓辉.SBS改性沥青在桥面铺装中的应用[J].国外公路.2000(3):3940
    [42]徐世法.SBS改性沥青及SMA的桥面铺装技术[J].北京建筑工程学院学报.2000,(2):7077
    [43]吴旷怀,叶国铮,邵定强等.现场改性沥青体积法密断级配混合料在桥面铺装中的应用[J].华南建设学院西院学报.2000,8(1):2631
    [44]梁清源,郝培文,鸥建伟.改性沥青在桥面铺装处治工程中的应用[J].公路.1999,(7):3738
    [45]李宇峙,吴国平,邵腊庚.环氧沥青混凝土材料在钢桥铺装中的应用[J].中南公路工程,2005,30(3):168172.
    [46]Waterproofing of Concrete Bridge Decks, Organization for Economic and Development (OECD),Paris, France(1972).
    [47]A.R.Price a Field Trial of Waterproofing Systems for Concrete Bridge Decks,1989
    [48]NCHRP.Waterproofing Membranesfor Concrete Bridge Decks.NCHRP,SYNTHESIS 220,1995.
    [49JNCHRP Synthesis of Highway Practice 220, Waterproofing Membranes for Concrete Bridge Decks, Transportation Research Board, National Research Council,Washington, D.C.(1995).
    [50]Waterproofing Membranes for Concrete Bridge Decks.NCHRR,1995
    [51]Gretz. Asphalt pavement resistance to rutting [J].Bitumens, February,1999(9):24 28
    [52]张占军.混凝土桥桥面防水系统性能及设计方法研究[D].西安,长安大学,2004
    [53]王笑风,胡仁东,张占军,裴建中.混凝土桥面防水层直剪试验,2002,26(4):3034
    [54]王秉纲,胡长顺.跨构造物路面结构修筑技术研究综述[J].西安公路交通大学学报,1998,1838(38):3438
    [55]中华人民共和国行业标准.公路沥青路面设计规范[S](JTG D502006).北京:人民交通出版社,2006.
    [56]张登良.沥青与沥青混合料[M].北京:人民交通出版社,1993.
    [57]龚曙光.黄云清有限元分析与ANSYS APDL编程及高级应用[M].北京:机械工业出版社,2009.
    [58]李裕春,时党勇,赵远.ANSYS 10.0/LSDYNA基础理论与工程实践[M].北京:中国水利水电出版社,2006.
    [59]丁剑平,贾德民,黄小清.三维非线性有限元法在子午胎分析中的应用[J],华南理工大学学报,2005.
    [60]张林波,迟学斌,莫则芝等.并行计算导论[M].北京:清华大学出版社,2006.
    [61]孟书涛等,柔性基层沥青路面沥青混合料优化设计研究[J],公路交通科技,2006,(1)
    [62]许志鸿,李淑明,高英,丰晓.沥青混合料疲劳性能研究[J].西安,交通运输工程学报,2001,03(01)2024
    [63]林绣贤.关于沥青混凝土路面设计中抗剪指标的建议[J].公路,2004,12(04):6669
    [64]吴传海.重载交通沥青路面车辙成因及混合料组成设计研究[D].西安:长安大学,2008.
    [65]王艳丽.沥青混合料级配优化研究[D].西安,长安大学,2008.
    [66]薛小刚.沥青混合料级配优化及配合比设计方法研究[D].西安,长安大学,2008.
    [67]杜顺成,戴经梁.基于散体力学理论的多级抗剪密集配设计方法[J].中国公路学报,2008,21(1):3537.
    [68]吕文江.沥青路面结构与材料设计一体化研究[D].西安,长安大学,2006.
    [69]常兴文.掺加纤维的沥青混合料性能研究[J].中外公路,2006,(04)
    [70]Kochi Oba and Manfred N.Partl. Adhesion of Bituminous Waterproofing Membranes for Bridge Applications.Science and Technology of Buidling Seals. Sealants, Glazing,and Waterproofing,1998
    [71]罗晓辉,高金歧,傅裕寿等.桥面铺装基底粘连结材料性能研究[J].北京建筑工程学院学报,1999,15(2)
    [72]TRRL. A Field Trial of Waterproofing Systems for Concrete Bridge Decks[S]. TRRL 1989
    [73]中华人民共和国行业标准.《路桥用水性沥青基防水涂料》(JT/T5352004)[S].北京:人民交通出版社,2004
    [74]Gretz B. Asphalt pavement resistance to rutting[J].Bitumens,1999,(l):2428.
    [75]Myers L A. Mechanism of surface2initiated wheel path crack in hightype bituminous pavements[R].Chicago:AAPT,1998.
    [76]AmeriGaznon M,Little D N. Octahedral shear analyses of an ACP overlay on a rigid base[J].roceeding of Association of Asphalt Paving Technology,1989,58:443479.
    [77]Sener J C.Triaxial compression test method of bituminous mixture design[R].Boise:Boise State University,1999.
    [78]李明国,牛晓霞,申爱琴.山区高速公路沥青路面的抗车辙能力[J].长安大学学报(自然科学版),2006,26(6).
    [79]李明国,牛晓霞.外部条件对沥青路面抗车辙能力影响分析[J].广东公路交通,2006,(06).
    [80]毕玉峰,孙立军.沥青混合料抗剪试验方法研究[J].同济大学学报(自然科学版),2005,33(8).
    [81]王涓,水泥混凝土桥面沥青混凝土铺装防水粘结层的性能研究[D].西安,长安大学,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700