用户名: 密码: 验证码:
大庆油田气体钻井关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,大庆油田勘探的工作重点已由中浅层石油转向深层天然气。随着油田天然气勘探的逐步深入,对钻井工艺技术的要求也在不断地提高。由于大庆油田深层具有地温梯度高、岩石硬度高、研磨性强等特点,目前大庆深井钻井技术与国内外先进水平相比,仍存在一定的差距。为有利于发现和保护储层,提高深井钻井速度,大庆油田先后开展了欠平衡钻井技术、复合钻井技术等研究,虽然提高了深井钻井速度,但还不能完全满足高温地层、致密岩性、低渗储层天然气勘探的需要。深层天然气要实现规模勘探,不仅需要大幅度提高钻井速度,缩短勘探周期,更需要及时发现和保护储层,降低勘探成本。气体钻井是一种负压钻井方式,提高钻井速度4-8倍,有利于及时发现和有效保护储层及提高天然气采收率和单井产量,特别对坚硬地层、致密储层的天然气勘探有着重要的意义。因此,气体钻井技术的研究与应用是大庆油田加快深层天然气勘探步伐,提高深层天然气勘探效益的理想技术手段。
     气体钻井技术是一种革命性的钻井技术,目前气体钻井技术在国内外已经得到了广泛的应用。本文在借鉴国内外气体钻井研究成果的基础上,对大庆油田气体钻井的气体钻井参数方法、气体钻井井斜控制技术、气体钻井地层出水判断方法及反向承压封堵水层等六项关键技术进行了研究,形成了大庆油田气体钻井的系统理论方法与配套技术,对大庆油田更推广推广气体钻井技术,有效缩短钻井周期,降低钻井成本,提高勘探成功率具有重要的意义。通过全面系统的研究及应用,论文得出以下主要结论:
     1)通过对大庆油田深井钻井速度现状的分析以及气体钻井技术优势的阐述,气体钻井技术是提高大庆深层钻井速度最有效的手段。而且应用最小动能法和最小速度法,根据常用井身结构、地层可钻性、井眼稳定性、出水层位等综合分析,确定了大庆油田气体钻井推荐使用满眼钻具组合和钻进参数;
     2)通过气体钻井与常规钻井的井斜情况的对比分析,明确了影响气体钻井井斜的主要因素和井斜机理。由于气体钻井没有压持作用,岩石受力发生变化,钻头吃入岩石的破碎力就大大减小,破碎的体积也明显增大,钻头沿着破碎坑钻进,从而更易引起井斜。即气体钻井改变了井底岩石的应力状态,放大了地层各向异性指数,从而使地层自然造斜力增大,这是造成气体钻井容易井斜,且井斜后不易控制的根本原因。
     3)应用渗流力学理论,给出了地层出水量计算公式,并确定了井底压差的求解方法。通过计算分析,给出了大庆油田各区块气体钻井适应性评价结果,为大庆油田今后气体钻井技术的进一步应用提供了理论依据。
     4)本文首次提出反向承压封堵水层的观点,并进行了室内实验研究工作。物理模拟实验表明,选用丙烯酰胺单体聚合体系做为冻胶封隔器配方,选用过硫酸铵-硫酸亚铁的氧化还原体系做为液体冻胶封隔器破胶剂,采用微胶囊缓释法进行破胶,只要液体冻胶封隔器的达到高度要求,就能有效封堵水层。
In recent years, the focus of the oil exploration has shifted from the middle/shallow layer to deep natural gas exploration. With the thorough development of oil and gas exploration, higher drilling technology is requested. In deep formations of Daqing oilfield, it has high geothermal gradient, high degree of hardness and abrasivity. Compared daqing deep well drilling technology with the international advanced level, there is great gap between them. In order to discover and protect reservoirs, improve penetration rate of drilling deep wells, Daqing oilfield has successively carried out researched on underbalanced drilling technology, combined drilling technology etc, although it had increased deep well drilling speed, they can not fully meet the requirements of the natural gas exploration of high temperature layer, compact rock formation and low permeability reservoirs. To realize exploration of deep natural gas, it need to largely enhance the drilling speed, shorten the drilling time, discover and protect reservoirs without delay and decrease the drilling cost. Gas drilling is a kind of underbalanced drilling, it can increase the drilling speed by 4-8 times and can be beneficial to discover and protect reservoirs timely and improve ROP, and it is of great significance especially for competent formation and compact reservoir. So the study and appliance on gas drilling is an ideal technology to speed up the pace of exploration of deep natural gas and increase exploration and development benefit.
     Gas drilling is a revolutionary technology and has been applied widely in domestic and abroad. On the basis of what has already been achieved in this field, this paper studied six key technologies such as the gas drilling parameter, deviation control, judgment method of formation water and blockage of water influx to wellbore etc, and formed a system theory and matching technology for gas drilling of Daqing oilfield. It is of great significance to expand the use of gas drilling, effectively reduce drilling cycle, reduce the drilling cost and raise the successful probability of exploration of Daqing oilfield. Through research and application, the paper gets some main conclusions as follows.
     1) By analyzing present situation on penetration rate of drilling deep wells in Daqing Oilfield and elaborating on the advantages of gas drilling, gas drilling has been the most effective method to improve drilling efficiency in deep formation. By using the method of minimum speed and minimum kinetic energy, a set of reasonable drilling parameters and full-size bottom hole assembly(BHA) are determined according to the comprehensive analyze about well structure, formation drill ability, hole stability and water exit.
     2) By a comparison with hole deviation of gas drilling and conventional drilling, influencing factors and the mechanism of well deviation in gas drilling are clarified. Owing to the existence of negative pressure, force conditions of the wellbole are changed. The force to break the rock decrease and fragmentation volume increase significantly. The bit drill along the craters, hole deviation is easy to take place. Gas drilling change the stress state of bottom hole rock, anisotropy index of formation is magnified, so that the formation natural deviation force increase. This is the root cause of well deviation and uncontrollable during gas drilling.
     3) On the basis of seepage mechanics, the computation formula of formation water yield and the solving method of differential pressure are presented. Through computing and analyzing, evaluation results of gas drilling adaptability in Daqing oilfield are provided. The results provide theoretical base for the further application of gas drilling in Daqing oilfield.
     4) This article firstly indicates the water shutoff method with bearing oppositely, and a series of laboratory experiments are performed. Physical simulation experiment show that acrylamide gel is adapt to gel packer formulation, oxides of Ammonium sulfate and Ferrous sulfate are adapt to gel breaker for the gel plug and slow releasing of capsules is used to break. As long as the fluid gel packer can meet the requirements, water yield formations can be blocked effectively during air drilling.
引文
[1]Cooper, L.W., Hook, R.A. and Payne, B.R.:"Air Drilling Techniques," paper SPE 6435 presented at the 1977 SPE Deep Drilling and Production Symposium, Amarillo, TX.
    [2]Sheffield, J.S. and Sitzman, J.J.:"Air Drilling Practices in the Midcontinent and Rocky Mountain Areas," paper SPE/IADC 13490 presented at the 1985 SPE/IADC Drilling Conference, New Orleans, LA.
    [3]Graves, S.L., Niederhofer, J.D. and Beavers, W.M.:"A Combination Air and Fluid Drilling Technique for Zones of Lost Circulation in the Black Warrior Basin," SPEDE (February 1986) 57-61.
    [4]Santarelli, F.J., Dardeau, C. and Zurdo, C.:"Drilling Through Highly Fractured Formations:A Problem, A Model and A Cure," paper SPE 24592 presented at the 1992 SPE Annual Technical Conference and Exhibition, Washington, D.C.
    [5]Graham, R.L., Foster, J.M., Amick, P.C. and Shaw, J.S.:"Reverse Circulation Air Drilling Can Reduce Wellbore Damage," Oil and Gas J. (March 22,1993) 85-94.
    [6]Bennion, D.B., Thomas, F.B., Bennion, D.W. and Bietz, R.F.:"Formation Damage Control and Research in Horizontal Wells," presented at 1993 International Conference on Horizontal Well Technology, Houston, TX.
    [7]Bennion, D.B. and Thomas, F.B.:"Underbalanced Drilling of Horizontal Wells:Does it Really Eliminate Formation Damage?" paper SPE 27352 presented at the 1994 SPE International Symposium on Formation Damage Control, Lafayette, LA.
    [8]UnderBalanced Drilling Technology:Unlocking your Reservoir potential, Harts E&P supplement sponsored by Weatherford, September 2003.
    [9]Martin,D.J." Use of Air or Gas as a Circulating Fluid in Rotary Drilling—Volumetric Requirements."Hughes Engineering Bulletin, vol.23,1952, pp.35-42.
    [10]Angel, R.R.:"Volume Requirements for Air and Gas Drilling," Pet Trans., AIME (1957) 210,325-220; also Volume Requirements for Air and Gas Drilling, Gulf Publishing Co.,Houston,TX(1958).
    [11]Hower, W.F., McLaughlin, C., Ramos, J. and Land, J.:"Water Can be Controlled in Air and Gas Drilling," paper SPE 1099-G presented at the 1958 SPE Annual Fall Meeting, Houston, TX.
    [12]Goodwin, R.J. and Teplitz, A.J.:"A Water Shut-off Method for Sand-Type Porosity in Air Drilling," paper SPE 1098-G, Pet. Trans., AIME (1959) 216,163-167。
    [13]Schoeppel, R.J. and Sapre, A.R.:"Volume Requirements in Air Drilling," paper SPE 1700(1967).
    [14]Ikoku,C.U., Azar,J.J.,and Williams,C.R. "Practial Approach to Volum Requirements for Air and Gas Drilling." 55th Annual Fall Technical Conference and Exhibition, SPE of AIME, 1980,SPE paper 9445.
    [15]Machado, C.J. and Ikoku, C.U.:"Experimental Determination of Solids Friction Factor and Minimum Volumetric Requirements in Air and Gas Drilling," paper SPE 9938 presented at the 1981 California Regional Meeting, Bakersfield, CA.
    [16]Lyons, W.C.:Air and Gas Drilling Manual, Gulf Publishing Co., Houston, TX (1984) 84.
    [17]Grace, R.D. and Pippin, M.:"Downhole Fires During Air Drilling," World Oil (May 1989)42-44.
    [18]Tian, S. and Adewumi, M.A.:"Multiphase Hydrodynamic Model Predicts Important Phenomena in Air-Drilling Hydraulics," SPE Drill. Eng. (June 1991) 145-152.
    [19]Supon, S.B. and Adewumi, M.A.:"An Experimental Study of the Annulus Pressure Drop in a Simulated Air-Drilling Operation," SPE Drill. Eng. (March 1991) 74-80.
    [20]Carden, R.S:"Technology Assessment of Vertical and Horizontal Air Drilling Potential in the United States," U.S. Department of Energy Report No. DOE/MC/28252-3514 (DE94000044), (August 1993).
    [21]Shale, L. and Curry, D.A.:"Drilling a Horizontal Well Using Air/Foam Techniques," paper OTC 7355 presented at 1993 Annual Offshore Technology Conference, Houston, TX.
    [22]Dreiling, T., McClelland, M.L. and Bilyeu, B.:"Horizontal and High Angle Air Drilling in the San Juan Basin, New Mexico," The Brief, Murphy Publishing Inc. (June 1996).
    [23]Guo, B., Miska, S.Z. and Lee, R. L.:"Volume Requirements for Directional Air Drilling,"IADC/SPE paper 27510 presented at the 1994 IADC/SPE Drilling Conference, Dallas, TX.
    [24]Johnson, P.W.:"Design Techniques in Air and Gas Drilling:Cleaning Criteria and Minimum Flowing Pressure Gradients," J. Cdn. Pet. Tech. (May 1995) 34, No.5,18-26.
    [25]William C.Lyons, Ph.D., P.E.and Boyun Guo, Ph.D.and Frank A.Seidel, B.S.and McGraw-Hill. Air and Gas Drilling Manual[M]. McGraw-Hillcompanies.2001:41-45.
    [26]Boyun Guo and Ali Ghalambor.Gas Volume Requirements for Underbalanced Drilling[M]. University of Louisiana at Lafayette.2002:34-35.
    [27]Adewumi M A and Shi fengTian. Analysis of Air Drilling Hydrualies.SPE2127
    [28]Guo, B., Hareland, G. and Rajtar, J.:"Computer Simulation Predicts Unfavorable MudRate and Optimum Air Injection Rate for Aerated Mud Drilling," paper SPE 26892 presented at the 1993 SPE Eastern Regional Conference and Exhibition, Pittsburgh, PA.
    [29]Teichrob, R.R.:"Low Pressure Reservoir Drilled with Air/N2 in a Closed System," Oil and Gas J. (March 21,1994) 80-90.
    [30]Y.Masuda. Critical Cuttings Transport Velocity in Inclined Annulus:Experimental Studies and Numerical Simulation, SPE/Petroleum Society of CIM65502,2000
    [31]Li,Y.,Kuru,E.Numerical Modeling of Cuttings Transport with Foam in Horizontal Wells[J].2002
    [32]Ahmed,R.,Kuru,E.and Ssasen,A..Mathematical Modeling of Drilling Foam Flows[D].2003
    [33]Li,Y..Numerical Modeling of Cuttings Transport with Foam in Vertical and HorizontalWells[D].2004.
    [34]Cress, L.A., Stone C.R. and Tangedahl, M.:"History and Development of a Rotating Blowout Preventor," paper IADC/SPE 23931 presented at the 1992 IADC/SPE Drilling Conference, New Orleans.
    [35]Shale, L.:"Underbalanced Drilling Equipment and Techniques," ASME paper PD-Vol. 65, Drilling Technology, presented at the 1995 ASME Energy and Environment Expo'95, Houston, TX, January 29-February 1.
    [36]Bourgoyne, A.T., Jr.:"Rotating Control Head Applications Increasing," Oil & Gas J.(October9,1995).
    [37]Whiteley, M.C. and England, W.P.:"Air Drilling Operations Improved by Percussion-Bit/Hammer-Tool Tandem," SPEDE (October 1986) 377-382.
    [38]Lyons, W.C., Miska, S.Z. and Johnson, P.W.:"Downhole Pneumatic Turbine Motor: Testing and Simulation Results," paper SPE 18040 presented at the 1988 SPE Annual Technical Conference and Exhibition, Houston, TX.
    [39]Shale, L.:"Development of Air Drilling Motor Holds Promise for Specialized Directional Drilling Applications," paper SPE 22564 presented at the 1991 SPE Annual Technical Conference and Exhibition, Dallas, TX.
    [40]Brannon, K.C., Grimes, R.E. and Vietmeier, W.R.:"New Oilfield Air Bit Improves Drilling Economics in Appalachian Basin," PD-Vol.56, Drilling Technology (1994), ASME (1994).
    [41]Shale, L. and Moberley, GT.:"Development of a Cartridge Data Transmission System for Use with Air Drilling Motor," IADC/SPE paper 23907 presented at the 1992 IADC/SPE Drilling Conference, New Orleans, LA.
    [42]Soulier, L. and Lemaitre, M.:"E.M. MWD Data Transmission Status anPerspectives,"paper SPE/IADC 25686 presented at the 1993 SPE/IADC Drilling Conference,Amsterdam, The Netherlands, February 23-25
    [43]R.J.Lorentzen. Underbalanced Drilling:Real Time Data interpretation and Decision Support. SPE-67693,2001
    [44]Ellen Coopersmith, Graham Dean etc. Making Deeisions in the Oil and Gas Industry. Winter 2000/2001:2-9
    [45]周英操,翟洪军.欠平衡钻井技术与应用[M].北京:石油工业出版社,2003.
    [46]白家祉,苏义脑.井斜控制理论与实践[M].北京:石油工业出版社,1990,199~230.
    [47]张书瑞.松辽盆地石油天然气钻井技术文集[M].北京:石油工业出版社,2008.
    [48]张玉明,夏响华.松辽盆地南部低渗透油气田勘探技术[M].北京:石油工业出版社,2002,1~10.
    [49]陈孔全,吴金才.松辽盆地南部断陷成藏体系[M].武汉:中国地质大学出版社,1999,1~16.
    [50]曾义金,樊洪海.空气和气体钻井手册[M].北京:中国石化出版社,2006,70~80.
    [51]李景明,魏国齐.中国大中型气田富集区带[M].北京:地质出版社,2002,1~61.
    [52]宗健,陈磊等.微胶囊化技术及应用[M].北京:化学工业出版社,2001:214.
    [53]苏义脑,周川等.空气钻井工作特性分析与工艺参数的选择研究[J].石油勘探与开发,2005,32(2):86-122.
    [54]赵业荣.长庆气田陕242井天然气钻井实践[C].中国石油学会2001年度技术文集,218-221.
    [55]沈忠厚.现代钻井技术发展趋势[J].石油勘探与开发,2005,(1):89-91
    [56]罗世应,孟英峰.欠平衡钻井的应用前景[J].天然气工业,1999,19(4):3-5.
    [57]许文波,孟英峰.气体钻井井内动力学分析[J].内蒙古石油化工,2005,(11):102~105.
    [58]罗世应,孟英峰等.气藏泡沫欠平衡钻井数学模型研究[J].天然气工业,2005,25(5):18~20.
    [59]万里平,孟英峰等.气基流体欠平衡钻井腐蚀/冲蚀研究进展[J].天然气工业,2007,27(6):64~67.
    [60]张宜平,孟英峰,罗平亚等.空气钻井替换过程中防止地层损害对策[J].西南石油学院学报,1996,(1):39~45.
    [61]张书瑞,田汝才.欠平衡钻井技术在大庆油田深层天然气勘探钻井中的应用[D].钻井承包商协会文集,2003.
    [62]张书瑞,张曙光等.空气钻井在徐深21井的应用与认识[D].钻井承包商协会文集,2006.
    [63]张书瑞,吕长文等.大庆庆深气田深井快速钻井技术[J].石油钻井技术,2007,35(6),63~65.
    [64]张书瑞,刘永贵,周英操.大庆外围探井钻井速度的影响因素分析[S].石油学报,2007,28(2):45-49.
    [65]张书瑞,郭盛堂等,减震器的位置对钻柱纵向振动的影响[J].振动、测试与诊断.2007.27.
    [66]张书瑞,吕长文.大庆庆深气田深井提速攻关效果与认识[J].中国科学文化出版社,2007.
    [67]闫铁,张书瑞等.基于范例推理的钻井参数优化方法研究[J].复杂油气藏,2008,1(1).49-53
    [68]杨智光,赵德云等.大庆外围深层实施气体钻井的可行性分析[J].探矿工程,2005,17(9):55~59.
    [69]候绪田.多相流井筒压力分布规律探讨[J].石油钻探技术,2004,32(4):32~34.
    [70]魏斌,柯启宇等.中、深部天然气层识别及其分布特征[J].测井技术,1996,20(2),244~255.
    [71]华学理,佘明军等.空气钻井技术对地质录井工作的影响及对策[J].录井工程,2007,18(1):5~10.
    [72]余敏,颜其彬.致密砂岩气层的识别方法[J].天然气工业,1995,15(6):21~23.
    [73]刘刚.空气钻井中的压力及注气量问题研究[J].钻采工艺,2005,28(2):4~6.
    [74]韩宝山.欠平衡钻井技术与煤层气开发[J].煤田地质与勘探,2002,30(4).:61~62
    [75]王群,张淑梅等.大庆深部致密砂岩气层识别方法[J].大庆石油学院学报,1994,18(2):22~26.
    [76]康竹林.中国深层天然气勘探前景[J].天然气工业,2000,20(5):1~4.
    [77]刘铁砚.空气钻井概述与井斜控制[J].石油钻采工艺,1982,5(6):35~47.
    [78]张育慈.国外低压钻井钻井情况简介[J].石油钻采工艺,1986,9(5):27~36.
    [79]申瑞臣,安秋田.应用泡沫流体技术钻中深井及其工艺的研究[J].石油钻采工艺,1986,9(6):
    [80]李小泉.国外泡沫钻井发展概况[J].天然气工业,1988,8(4):106~109.
    [81]晁文学,林勇.国外空气钻井钻头的研究及应用[J].石油钻探技术,2001,29(1):39~40.
    [82]马光长,杜良民.空气钻井技术及其应用[J].钻采工艺,2004,27(3):4~8.
    [83]孙继明,侯树刚等.空气钻井技术在普光D-1井的应用[J].石油钻探技术,2006,34(4):24~26.
    [84]魏学成,张新旭等.空气钻井技术在老君1井的应用[J].石油钻探技术,2006,34(4):20~23.
    [85]陈永明.欠平衡钻井技术在南方海相应用探讨[A].石油钻探技术,2005,33(4)
    [86]张宏英,张国田等.JZH165-Ⅱ空气机械减震器的设计[A].矿场机械,2006,11.
    [87]万里平.空气钻井中钻具腐蚀与防护及其机理研究[D].西南石油学院学报.2004,7.
    [88]林铁军.空气钻井中岩石力学及钻进仿真模拟[D].西南石油大学学报,2006,4.
    [89]王培峰.苏里格气田气体钻井技术应用研究[D].中国石油大学学报,2007,31(11)
    [90]刘绘新,孟英峰.注气欠平衡钻水平井的新技术[J].石油钻探技术,2005,33(1)
    [91]费洪明.大庆油田欠平衡钻井工艺技术应用研究[D].大庆石油学院学报,2006,4.
    [92]王波.欠平衡钻井流体动力学参数计算理论及方法研究[D].西南石油学院学报,2005,4.
    [93]朱江,王萍等.空气钻井技术及其应用[J].钻采工艺,2007,30(2):145~149.
    [94]张铜洲.夏72井欠平衡钻井技术研究及应用[D].西南石油学院学报,2005,3.
    [95]许期聪,刘奇林等.四川油气田气体钻井技术[J].天然气工业,2007,27(3):60~62.
    [96]张金成,位华等.空气钻井技术在普光气田的应用[J].石油钻采工艺,2006,28(6):8~12.
    [97]郑冲涛,韩烈祥.空气钻井的装备配套技术[J].钻采工艺,2003,26(4):63~69.
    [98]郭文才,刘绘新.空气钻井计算方法及应用软件[J].钻采工艺,2001,24(1):8~11.
    [99]杨洪志,朱建峰等.植物胶液体胶塞CQTD-95及其暂堵技术研究[J].油田化学,1998,15(3):224~227.
    [100]杨建平,王浩等.LH-Ⅰ型液体桥塞的研制及应用[J].特种油气藏.2002,9(1):57~58,67.
    [101]胡凯易,绍金等.生物酶破胶剂的现状及展望[J].科技咨询导报,2007,(21):159.
    [102]涂云,牛亚斌.微胶囊缓释破胶剂的室内研制[J].油田化学,1997,14(3):213-217.
    [103]涂云,刘璞.胶囊延迟破胶剂及其在油田中的应用[J].精细石油化工,1995,15(5):1~4.
    [104]唐孝芬,李红艳.交联聚合物冻胶调堵剂性能评价指标及方法[J].石油钻采工艺,2004,26(2):49~53.
    [105]夏家祥.川西马井构造钻井问题及对策探讨[J].石油钻探技术,1998,26(4):10~12.
    [106]侯树刚,舒尚文.空气钻井安全钻进特性分析[J].石油钻探技术,2007,35(6):50~53.
    [107]蒋祖军,地层出水后的气体钻井携岩携水机理研究[J].钻采工艺,2008,31(1):12~14.
    [108]吴仕荣,邓传光.空气钻井地层出水限定值的探讨[J].钻采工艺,2006,29(5):7~8.
    [109]周平,何振同.双液注浆法在封堵突水(流水层)巷道中的应用[J].中国煤田地质,2000,12(3):36~38.
    [110]陈大钧,黄辉远.渗透性微细水泥堵水技术研究[J].特种油气藏,2005,12(6):88~90.
    [111]张永满,严战友等.沥青胶浆锥入度试验与分析[J].西部探矿工程2005,15(11):268~269.
    [112]何纶,刘梅等.气基流体空气钻井的应用技术[J].钻井液与完井液,2007,(24):14~22.
    [113]王健,罗平亚.新型缔合聚合物调堵体系的研制[J].石油钻采工艺,2000,22(3):54~56.
    [114]滕福景,齐俊芳等.改性超细水泥堵剂的研究与应用[J].西安石油大学学报(自然科学报),2006,21(4):79~82.
    [115]刘洪章.中国硅胶的生产现状和发展探讨[J].无机盐工业,1961,(6):16~19.
    [116]杨本宏.超强高分子吸水材料的研究进展与应用[J].合肥联合大学学报,12(3):97~101.
    [117]陈时忠,徐伟亮.聚丙烯酸吸水树脂的反相悬浮聚合研究[J].科技通报,2001,17(1):52~55.
    [118]黄美玉.超高吸水性聚丙烯酸钠的制备[J].高分子通讯,1984,10(2):129~134.
    [119]刘合,杨智光,张书瑞等.大庆油田气体钻井技术研究与应用[J].大庆石油地质与开发,2009,28(5):198~202.
    [120]王海波,张书瑞等.大庆油田气体钻井常见复杂问题探讨[J].石油钻井完井技术,2009,10(2):24~27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700