用户名: 密码: 验证码:
铁磁性平板腐蚀缺陷多通道漏磁信号的反演与重构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国战略原油体系的建立和经济的发展,储罐的数量和容量增加很快,随之而来的安全问题也受到了人们的日益关注。储罐最容易腐蚀的部位是储罐底板,当今储罐底板多由铁磁性材料制造而成,其常用的无损检测方法有超声检测、渗透检测、磁粉检测等,其中漏磁检测凭借其低成本、高灵敏度等优点在储罐底板腐蚀缺陷大面积普查中得到了广泛的应用。
     漏磁检测方法对检测结果做出评价的依据是漏磁信号,目前对漏磁信号的研究可分为正、逆两个方向,正问题是指由缺陷到信号的研究,它往往是针对一定尺寸的缺陷,来研究其产生的漏磁信号。逆问题则是指由缺陷的信号反推缺陷的形状,也就是所谓的反演。本文以铁磁性平板的漏磁信号为基础,分别对缺陷识别、缺陷定位、缺陷量化等方面进行了深入的研究,提出一种基于多通道的铁磁性平板腐蚀缺陷量化反演方法,实现了缺陷检测的可视化。
     针对目前缺陷漏磁场有限元分析没有考虑到磁化结构移动的影响,模拟结果与实测信号有一定的误差,本文提出了磁化结构在移动状态下的缺陷漏磁场分析方法。实验结果表明,该方法的计算结果更加贴近于漏磁场的实际空间分布。根据有限元仿真结果和实测漏磁场空间分布,对缺陷几何尺寸、缺陷形状与漏磁场之间的关系进行了定性与定量分析。采用小波分析和EMD分解相结合的信号去噪方法,对漏磁信号进行去噪处理。采用小波多尺度分析方法,对缺陷漏磁信号进行研究,使原来单一的时域漏磁信号分解为系列不同频率尺度下的信号。以漏磁场的垂直分量为研究对象对缺陷漏磁信号进行了时域、频域及频谱分析,并选取了用于描述缺陷波形的特征量。针对实验采集到的漏磁信号噪声大、采集间隔大等问题,对其进行了去噪及圆滑处理,同时在相邻两路传感器之间及两个采集点之间分别进行了三次样条插值处理,构造出了一系列“虚拟传感器”及“虚拟采集点”,提高了特征提取的精度。通过实验方法与仿真方法建立了不同尺寸、不同形状的缺陷漏磁信号样本。根据建立的缺陷样本分别构造了用于识别缺陷类型和实现缺陷量化的神经网络,实现了腐蚀缺陷的识别与反演。最后针对缺陷三维轮廓重构问题提出了建立缺陷矩阵的反演思想,并根据神经网络的量化、识别结果实现了缺陷轮廓的可视化。
With the foundation of strategic oil system and development of economy, the number and capacity of tanks increase rapidly, and the security issues of tanks have also attracted people's increasing attention. The bottom of the tank is the most susceptible to corrode. Nowadays most of the tank bottoms are made of ferromagnetic materials. The usual nondestructive detection methods used for detecting tank bottom are ultrasonic testing, penetrant testing, magnetic particle testing, etc, among which magnetic flux leakage testing has got widely development in corrosion defects large area census of tank bottom, with the advantage of its low-cost, high sensitivity, etc.
     In the field of magnetic flux leakage testing, magnetic leakage signal is the basis of test results evaluation, the study of magnetic leakage signal can be divided into forward and inverse directions. The forward problem refers to the study which is from the defect of a certain size to the magnetic leakage signals that defect generate. While the inverse problem refers to making a reverse deducing from the magnetic leakage signals to the shapes of defects, it is so-called inversion. This paper is based on magnetic flux leakage signals of the ferromagnetic floor, the defect recognition, defect location, disfigurement quantitative, etc were deeply studied, then a quantization inversion method based on multiple channels was raised, at last defect test visualization was realized.
     Considering that conventional method for analysising defect magnetic flux leakage field ignors the factor of magnetic structure movement, there is a certain error between simulation results and measured signal, defect magnetic flux leakage field analysis method in the condition of magnetic structure movement was proposed in this paper. Experimental results show that the simulation results of this method are more approximative to the actual distribution of leakage magnetic field. According to the simulation results and the spatial distribution of measured magnetic flux leakage, qualitative and quantitative analysis between defect size, shape and its leakage magnetic field was done. Magnetic flux leakage signals were denoised by the combination of wavelet analysis and EMD. Magnetic flux leakage signals were broken down into different frequency signal scales by wavelet multiresolution analysis. The vertical component of leakage magnetic field is researched and characteristics which are used to describe the defect waveform were selected through time domain analysis, frequency domain analysis and time-frequency analysis. Low SNR and large collection interval are major problem of experimental data, so de-noising and smooth was done before feature extraction. At the same time cubic spline was applied between adjacent sensors and adjacent collection points, then a series of virtual collection points and sensors were created, so the accuracy of feature extraction was raised. Defect signal samples of different sizes and different shapes were constructed through experimental method and simulation method. Neural networks which were used to identify defect types and quantify defect size were established through defect signal samples, identification and inversion of corrosion defects were realized. The thought of creating defect matrix were proposed in order to reconstruct three-dimensional contour of defect. At last visualization of defect contour was realized through recognition results and quantifiable results of neural networks.
引文
[1]曹华珍.原油贮罐底板的腐蚀机理研究与防护措施[D].浙江:浙江工业大学,2002:3-7.
    [2]杨志军.储罐底板磁检测技术研究[D].黑龙江:大庆石油学院,2003:1,8-11.
    [3]刘志平.基于有限元分析的储罐底板磁性检测与评价方法研究[D].武汉:华中科技大学,2003:4-8.
    [4]孙贵舟.便携式储罐底板腐蚀漏磁检测仪研制[D].武汉:华中科技大学,2006:3-7.
    [5]戴光.压力容器安全工程学[M].哈尔滨:黑龙江科学技术出版社,1995:145-152.
    [6]陈加兴,陈勇,邓云峰.漏磁技术在储罐钢板腐蚀检测中的应用[J].油气储运,2005,24(2):56-58.
    [7]李春树,李涛,武新军等.常压储罐底板漏磁检测技术开发与应用[J].石油化工设备技术,2004,25(2):57-58.
    [8]李子成.漏磁检测技术在常压储罐底板检测中的应用[J].石油化工腐蚀与防护,2004,21(4):51-53.
    [9]J.A.de Raad. New techniques for storage tank inspection [J]. Corrosion Prevention and Control,1990,37(6):43-46.
    [10]Amos D M. The Truth about Magnetic Flux Leakage as Applied to Tank Floor Inspections [J]. INSIGHT,1996, (38):168-174.
    [11]S.GMallat. A Theory for Multi-Resolution Signal Decomposition:The Wavelet Representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7):237-239.
    [12]Sunho Yang. Finite element modeling of current perturbation method of nondestructive evaluation application [D]. Iowa,Ames:Iowa state University,2002:57-63.
    [13]D L A therton. Finite element calculations on the effects of permeability variation on magnetic flux leakage signals [J]. NDT International,1987,20(4):239.
    [14]D.L Atherton. Magnetic Inspection is Key to Ensuring Safe Pipelines [J]. Oil and Gas Journal,1989,80(8):13-15.
    [15]蒋奇,王太勇.钢管缺陷漏磁场及影响漏磁信号因素的分析[J].钢铁研究,2002,(5):20-24.
    [16]K Mandal, D L Atherton. A study of magnetic flux-leakage signals [C]. Kingston: Queen's University,1998,3211-3217.
    [17]P C Charlton, K E Donne. Computer modeling of magnetic flux leakage methods [J]. British Journal of NDT,1994,36(3):128-133.
    [18]Y K Shin, W Lord. Numerical modeling of moving probe effects for electromagnetic nondestructive evaluation [J]. IEEE transaction on magnetics,1993,29(2):1856-1867.
    [19]吴欣怡,赵伟,黄松岭.基于漏磁检测的缺陷量化方法[J].电测与仪表,2008,45(509):20-22.
    [20]周翀,王湛,姚金苗等.多元线性回归优化聚偏氟乙烯/乙酸纤维素共混微滤膜成膜因素[J].化工学报,2007,58(7):1840-1846.
    [21]张敏,李陶深,钟淑瑛.基于matlab的主成分分析方法(PCA)的实现[J].广西大学学报,2005,30:74-77.
    [22]陈振林,许晔.基于多元线性回归分析的高精度温度测量[J].电子测量与仪器学报,2000,14(3):9-12.
    [23]叶峰.运用matlab软件进行回归分析建模[J].成都航空职业技术学院学报,2007,23(2):44-47.
    [24]谢彦红,杨理践,王向东.基于小波分析的管道缺陷量化识别研究[J].沈阳工业大学学报,2005,27(6):648-651.
    [25]宋小春,黄松岭,康益华等.漏磁无损检测中的缺陷信号定量解释方法[J].无损检测,2007,29(7):407-411.
    [26]付炜,彭光剑.基于小波阈值去噪的改进方法[J].电子测量技术,2006,29(6):47.
    [27]杨理践,冯海英.基于双正交样条小波的管道漏磁信号的去噪和数据压缩技术[J].沈阳工业大学学报,2001,23(6):479-482.
    [28]王长龙,傅君美,徐章遂等.应用小波变换的炮管裂纹漏磁信号去噪研究[J].测控技术,2004,23(12):22-23.
    [29]韩文花,阙沛文.无缝管道漏磁信号去噪新方法[J].无损检测,2005,27(12):628-631.
    [30]沈兆鑫,何辅云.基于小波变换的在役管线漏磁信号的去噪[J].电子工程师,2006,32(7):41-44.
    [31]Zhijun Yang, Guang Dai, Hailong Zhao et al. Research of Magnetic Flux Leakage Signal Processing Based on Wavelet De-noising and EMD[J]. CISP'09-BMEI'09, tianjin, 2009:4954-4957.
    [32]Chen Liang, Li Xing, Li Xun-Bo et al. Signal extraction using ensemble empirical mode decomposition and sparsity in pipeline magnetic flux leakage nondestructive evaluation[J]. Review of Scientific Instruments,2009,80(2):0251051-0251056.
    [33]Mukhopadhyay S, Srivastava G.P. Characterization of metal loss defects from magnetic flux leakage signals with discrete wavelet transform[J]. NDT and E International,2000, 33(1):57-65.
    [34]Chen Liang, Li Xunbo, Qin Guangxu et al. Signal processing of magnetic flux leakage surface flaw inspect in pipeline steel[J]. Russian Journal of Nondestructive Testing,2008, 44(12):859-867.
    [35]蒋奇.管道缺陷漏磁检测量化技术及其应用研究[D].天津:天津大学,2002:37-107.
    [36]洪仁植,王树达,常亮.基于BP神经网络的管道缺陷模式识别与精确定量识别[J].大庆石油学院学报,2008,32(1):83-85.
    [37]宋小春,黄松岭,赵伟.基于小波分析的水冷壁管缺陷识别和分类方法[J].电测与仪表,2006,43(486):9-12.
    [38]胡浪涛,何辅云,查君君.基于盲源分离和时频分析的漏磁信号处理[J].技术研发,2008,(1):90-92.
    [39]王长龙,陈鹏,刘美全等.漏磁信号特征提取及检测研究[J].军械工程学院学报,2004,16(4):1-4.
    [40]张国光.管道漏磁检测中漏磁信号与缺陷特征关系的研究[J].检测与仪表,2008,35(2):39-41.
    [41]Ji Feng-Zhu, Wang Chang-Long, Wang Jin et al.3-D defect profile reconstruction from magnetic flux leakage signals based on sparsity LS-SVM[J]. Acta Armamentarii,2008, 29(5):592-595.
    [42]Ji Fengzhu, Wang Changlong, Zuo Xianzhang et al. LS-SVMs-based reconstruction of 3-D defect profile from magnetic flux leakage signals[J]. Insight:Non-Destructive Testing and Condition Monitoring,2007,49(9):516-520.
    [43]Ji Feng-Zhu, Wang Chang-Long, Liang Si-Yang et al.2D defect reconstruction of pipeline from magnetic flux leakage signals based on LS-SVM[J]. Journal of Southwest Petroleum University,2007,29(5):134-136.
    [44]彭永胜.基于漏磁检测机理的钢管小缺陷精确量化识别理论及系统研究[D].天津:天津大学,2005:21-92.
    [45]王长龙,刘兵,纪凤珠等.基于BP神经网络的漏磁定量化检测[J].兵器材料科学与工程,2007,30(11:8-10.
    [46]金涛,阙沛文,陈天璐等.基于改进BP神经网络算法的管道缺陷漏磁信号识别[J].上海交通大学学报,2005,39(7):1140-1144.
    [47]杨理践,马凤铭,高松巍.基于神经网络及数据融合的管道缺陷定量识别[J].无损检测,2006,28(6):281.
    [48]韩文花,阙沛文.基于遗传优化算法的二维漏磁缺陷重构[J].中国石油大学学报,2006,30(1):138-141.
    [49]RAMUHALLI P, UDPA L, UPDA S S. Electromagnetic NDE signal inversion by function-approximation neural networks [J]. IEEE Transactions on Magnetics,2002, 38(6):3633-3642.
    [50]韩文花,阙沛文,梁巍.改进的遗传局部搜索算法在漏磁逆问题中的应用研究[J].上海交通大学学报,2007,41(5):751-754.
    [51]Wenhua Han, Peiwen Que. Defect Reconstruction from MFL Signals Using an Improved Genetic Local Search Algorithm [J]. IEEE International Conference on Industrial Technology,2005,2005:1438-1443.
    [52]Ramuhalli Pradeep, Udpa Lalita, Udpa Satish S. Electromagnetic NDE signal inversion by function-approximation neural networks [J]. IEEE Transactions on Magnetics,2002, 36(6):3633-3642.
    [53]Joshi Ameet. Wavelet transform and neural network based 3D defect characterization using magnetic flux leakage [J]. International Journal of Applied Electromagnetics and Mechanics,2007,28(1-2):149-153.
    [54]Zhang Qinghua, Benveniste A. Wavelet networks [J]. IEEE Transactions NN,1992, 3(6):889-898.
    [55]王长龙,徐章遂,傅君眉等.基于小波神经网络的火炮裂纹形状重构[J].兵工学报,2005,26(3):379-382.
    [56]王长龙,纪凤珠,王建斌等.油气管道漏磁检测缺陷的三维成像技术[J].石油学报,2007,28(5):146-148.
    [57]Lim Jaein. Data fusion for NDE signal characterization [D]. Ames IA:Lowa State University,2001.
    [58]Hwang K, Mandayam S, Udpa S S. Characterization of gas pipeline inspection signals using wavelet basis function neural networks [J]. NDT&E International,2000, 33(5):531-545.
    [59]Hwang K.3-D defect profile reconstruction from magnetic flux leakage signatures using wavelet basis function neural networks [D]. Ames IA:Iowa State University,2000.
    [60]Ramuhalli P. Neural network based iterative algorithms for solving electromagnetic NDE inverse problems [D]. Ames IA:Iowa State University,2002.
    [61]徒云.罐底板腐蚀缺陷漏磁场分析及可视化技术研究[D].大庆:大庆石油学院,2002:17-31.
    [62]王策.管材缺陷漏磁场特征分析及其检测方法研究[D].陕西:西北大学,2009:12.
    [63]廖绍彬.铁磁学[M].北京:科学技术出版社,2000.18-20.
    [64]刘绍亮.油气管道缺陷无损检测与在线检测诊断技术[J].天然气与石油,2007,25(2):9-12.
    [65]孙明礼,胡仁喜,崔海蓉等ANSYS10.0电磁学有限元分析实例指导教程[M].北京:机械工业出版社,2007:4.
    [66]Xing Li, Liang Chen, Xiaohong Zeng. FEA of pipeline magnetic flux leakage NDE[J]. Applied Superconductivity and Electromagnetic Devices,2009,25(27):312-315.
    [67]杜志叶,阮江军,余世峰等.油管漏磁检测的有限元建模技术研究[J].中国电机工程学报,2007,27(27):108-113.
    [68]李寒林,林金表,蔡振雄等.船用钢板漏磁检测的三维有限元分析[J].集美大学学报,2010,15(6):58-60.
    [69]Fengzhu Ji, Changlong Wang, Shiyu Sun et al. Application of 3-D FEM in the simulation analysis for MFL signals[J]. Insight,2009,51(1):48-52.
    [70]Dutta S.M., Ghorbel F.H., Stanley R.K. Simulation and Analysis of 3-D Magnetic Flux Leakage[J]. Magnetics,2009,45(4):1966-1972.
    [71]Rajesh T Keshwani. Analysis of Magnetic Flux Leakage Signals of Instrumented Pipeline Inspection Gauge Using Finite Element Method[J]. ARTICLE,2009,55(2): 73-82.
    [72]Xun-Bo Li, Xiang Li, Liang Chen et al. Numerical simulation and experiments of magnetic flux leakage inspection in pipeline steel[J]. Journal of Mechanical Science and Technology,2009,23(1):109-113.
    [73]马春庭,马爱文,徐章遂等.铁磁材料裂纹漏磁信号的定量检测[J].军械工程学院学报,1998,10(2):12-16.
    [74]王太勇,杨涛,蒋奇.油气输运管道缺陷漏磁检测量化技术研究[J].计量学报,2004,25(3):247-249.
    [75]陈正阁,王长龙,纪凤珠等.回归分析在漏磁定量检测中的应用[J].军械工程学院学报,2006,18(4):32-34.
    [76]徐章遂,马爱文,马春庭.基于模糊模式识别的裂纹漏磁信号定量分析[J].中国机械工程,1998,9(6):41-43.
    [77]陈喜娣.钢管漏磁定量检测方法的研究[J].现代机械,2007,(6):26-28.
    [78]王太勇,胡世广,杨涛.一种油管缺陷量化识别技术[J].中国机械工程,2005,16(20):1802-1804.
    [79]于永亮.管道漏磁检测缺陷与部件漏磁场识别技术研究[D].大庆:东北石油大学,2010:15.
    [80]兵器工业无损检测人员技术资格鉴定考核委员会.常用钢材磁特性曲线速查手册[M].北京:机械工业出版社,2003:14-15.
    [81]邓凡平.ANSYS10.0有限元分析自学手册[M].北京:人民邮电出版社,2009:343-354.
    [82]马凤铭,杨理践.高速漏磁检测中的速度效应及信号补偿[J].无损探伤,2005,29(3):12-15.
    [83]PARK G S, PARK SH. Analysis of the Velocity-induced EddyCurrent inMFL TypeNDT[J]. IEEE Transactions on Magnet-ics,2004,40(2):663-666.
    [84]王贤琴,阮江军,杜志叶.小波分析与漏磁检测信号处理[J].无损检测,2005,27(9):482-499.
    [85]黄厚辉,郭科,唐菊兴.基于小波多尺度分析的异常下限确定方法[J].地质找矿论丛,2007,22(4):311-313.
    [86]马秀红,曹继平,董晟飞.小波分析及其应用[J].微机发展,2003,13(8):93-94.
    [87]杨涛.基于多传感器融合的油管无损检测与缺陷量化技术研究[D].天津:天津大学,2004:45-59.
    [88]郭建,孙炳南.基于小波变换的桥梁健康监测多尺度分析[J].浙江大学学报(工业版),2005,39(1):114-118.
    [89]Donoho D L, Johnstone I M.Adapting to unkonwn smoothess via wavelet shrinkage[J]. Journal of American Star Assoc,1995,90:1200-1224.
    [90]Zhang Xiao Ping. Desai M D+adaptive denoising based on sure risk[J]. IEEE Signal Processing Letters,1998,5:265-267.
    [91]余永增.基于小波和EMD的滚动轴承非接触声学诊断方法研究[D].黑龙江:大庆石油学院,2009:28-30.
    [92]赵进平.异常事件对EMD方法的影响及其解决方法研究[J].青岛大学学报,2001,31(6):805-814.
    [93]熊学军,郭炳火,胡筱敏等.EMD方法和Hilbert谱分析方法的应用与探讨[J].海洋科学进展,2002(2):12-21.
    [94]陈忠,郑时雄.EMD信号分析方法边缘效应的分析fJ].数据库采集与处理,2003,18(1):114-118.
    [95]李建平,唐远炎.小波分析方法的应用[M].重庆:重庆大学出版社,1999.9-34.
    [96]飞思科技产品研发中心MATLAB6.5辅助小波分析与应用[M].北京:电子工业出版社,2003:19-26.
    [97]房文静,范宜仁,邓少贵等.测井多尺度分析方法中最优小波基的选取[J].煤田地质与勘探,2006,34(4):71-73.
    [98]刘素美,李书光.超声检测信号处理的小波基选取[J].无损探伤,2004,28(6):12-15.
    [99]张恒,李安宗,屈景辉.无线随钻测量系统信号处理的小波基选取[J].测井技术,2007,31(3):285-288.
    [100]谭继承,张华昌,赵汝俭.熵及其应用[J].临沂师范学院学报,2001,23(6):39-40.
    [101]刘敏华,萧德云.基于信息熵的多传感器数据分类方法[J].控制与决策,2006,21(4):411-413.
    [102]苏玉霞.金属材料韧性的熵分析[J].龙岩师专学报,2002,20(3):5-6.
    [103]李强,王太勇,胥永刚等.基于混沌和二维近似熵的滚动轴承故障诊断[J].振动工程学报,2007,20(3):268-273.
    [104]杨进,文玉梅,李平.基于相关分析和近似熵的管道泄漏声信号特征提取及辨识方法[J].仪器仪表学报,2009,30(2):272-279.
    [105]房文静.测井多尺度分析方法及应用[D].山东:中国石油大学(华东),2007.
    [106]刘红星,左洪福,姜澄宇等.信号频谱的二维向量及其应用[J].中国机械工程,1999,10(5):537-539.
    [107]王太勇,刘兴荣,秦旭达等.谱熵分析方法在漏磁信号特征提取中的应用[J].天津大学学报,2004,37(3):216-220.
    [108]罗裴,姜德生,郭丹.小波包多尺度分析在智能复合材料板损伤检测中的应用[J].中国测试技术,2006,32(3):48-50.
    [109]周小勇,叶银忠.小波多尺度分析故障检测方法的应用研究[J].控制工程,2007,14:65-67.
    [110]董长虹Matlab神经网络与应用[M].北京:国防工业出版社,2005:68-71.
    [111]飞思科技产品研发中心.神经网路理论与MATLAB7实现[M].北京:电子工业出版社,2005:101-102.
    [112]刘卫国.MATLAB程序设计教程[M].北京:中国水利水电出版社,2005:138.
    [113]邓建中,刘之行.计算方法[M].西安:西安交通大学出版社,2003:78-83.
    [114]何辅云.采油管的高速检测与缺陷类型识别[C].北京:中国科学技术歇会,1999:166-169.
    [115]李锐.管道缺陷类型判别和参数分析的研究[D].合肥:合肥工业大学,2008:24-26.
    [116]胡浪涛,何辅云,查君君.小波变换和神经网络在漏磁缺陷信号识别中的应用[J].无损检测,2007,29(4):197-199.
    [117]夏玉宝.数据融合技术在无损检测中应用的研究[D].合肥:合肥工业大学,2008:16-19.
    [118]杨万海.多传感器数据融合及其应用[M].西安:西安电子科技大学出版社,2004:17-22.
    [119]杨理践,马凤铭,高松巍.基于神经网络及数据融合的管道缺陷定量识别[J].无损检测,2006,28(6):281-284.
    [120]麦小琴.管道缺陷智能识别的研究[D].沈阳:沈阳工业大学,2005:55-56.
    [121]梁继民.多传感器决策融合方法研究[D].西安:西安电子科技大学,1999:2-3.
    [122]马国胜.基于多传感器融合技术的瓦斯监控系统实现[D].武汉:武汉理工大学,2010:8-10.
    [123]王会清,韩艳玲.基于多传感器与数据融合技术的研究[J].计算机与现代化,2002,(9):64-67.
    [124]黎果,李志蜀,李奇等.基于神经网络的多传感器融合技术研究[J].传感器与仪器仪表,2009,25(6-1):145-147.
    [125]梁建成,李圣怡,温熙森等.基于神经网络多传感器融合的刀具磨损定量监测的研究[J].机械科学与技术,1995,(6):125-130.
    [126]凌林本,李滋刚,陈超英等.多传感器数据融合时权的最优分配原则[J].中国惯性技术学报,2000,8(2):36-39.
    [127]纪凤珠,王长龙,王瑾等.基于稀疏化LS-SVM的漏磁缺陷三维轮廓重构[J].兵工学报,2008,29(5):592-595.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700