用户名: 密码: 验证码:
微胶囊化葡萄糖氧化酶的制备及对小麦粉品质的改良研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国的小麦普遍存在强筋不强,弱筋不弱的特点,具有优秀焙烤品质的小麦品种较少,本研究从改善小麦粉的焙烤品质、保证小麦粉安全性的角度出发,制备一种安全高效的小麦粉改良剂。目前葡萄糖氧化酶(GOD)被认为是“最有前途的绿色小麦粉强筋剂”,其改良效果已得到广泛认同,但仍存在一定的缺陷:首先GOD属于快速氧化剂,催化速度很快,在面团吸水形成过程中就已经生成了大量的H_2O_2,后者使面团搅拌过程中二硫键断裂产生的大量游离巯基(-SH)再次发生氧化交联,而这种强且快速的交联反应是无选择性的,不利于后期大分子谷蛋白的聚合,影响了其改良效果;其次GOD在面团中稳定性较差,容易发生变性失活。基于此,本文采用海藻酸钠-壳聚糖为壁材,乳化-内部凝胶化法对GOD进行微胶囊化包埋,从三方面改善GOD的改良品质。首先微胶囊化使GOD与外界小麦粉环境隔离,提高了酶的稳定性;其次在面团加水后CAGC有一个吸水膨胀过程,延迟了GOD氧化作用起始时间;最后微胶囊对底物葡萄糖的扩散阻力减慢了H_2O_2的生成速度。
     首先对海藻酸钠-壳聚糖微胶囊化葡萄糖氧化酶(CAGC)制备工艺进行系统研究,考察了海藻酸钠浓度、CaCO_3添加量、Span 80浓度、搅拌速度和水油比对海藻酸钙凝胶珠(CA)粒度分布和球形度的影响;分析了壳聚糖分子量、浓度、pH和GOD吸附pH值对CAGC微胶囊化效率和蛋白装载量的影响。确定微胶囊化的最佳条件为:海藻酸钠浓度1.5%, CaCO3 4.0 mg/mL,水油比1:5, Span 80 2.0%,搅拌速度1000 rpm,在此条件下制得的CA凝胶珠平均粒径[D4,3]为87.332μm,球形度良好;以此CA作为微胶囊的内核,进一步确定分子量20万的壳聚糖为壁材,壳聚糖浓度为1.5%,复凝聚反应pH 4.0、反应时间60min该条件下GOD微胶囊化效率达81.7%、蛋白装载量为37.7mg/g、所制得CAGC的壁膜厚度约为13.22μm,体积平均粒径[D4,3]为59.332μm,4℃贮藏半衰期为105天。激光共聚焦显微镜观察表明,GOD通过离子键等次级键均匀吸附“捆绑”在CAGC内部,而非沉淀聚集在CAGC的表面,微胶囊的壁膜完整、厚度均匀。采用喷雾干燥技术将湿态CAGC进行干燥,以期提高CAGC的常温贮藏稳定性和实际应用便利性。通过响应面优化干燥条件,最终产品得率和酶活保留率分别达到72.19%和80.64%;建立4℃、25℃和45℃条件下干态CAGC酶活力衰减动力学方程,计算得相应的酶活力半衰期为240天、190天和74天。
     研究CAGC对面团中湿面筋含量(WG)、水溶性和水不溶性蛋白中-SH含量(W-SH,SDS-SH)、面团粉质特性、拉伸特性、动态流变学特性和微观结构的影响。结果表明:在面团形成过程中,CAGC处于吸水膨胀阶段尚未发挥其氧化能力,延迟了酶的作用起始时间,显著改善了面团伴随着GOD快速氧化而发生的变干变硬现象;而在面团保温阶段,随着保温时间的延长CAGC的氧化能力逐渐体现出来,表现在WG含量增大、W-SH和SDS-SH含量下降、面团的粘弹性、回复性和发酵持气能力等都显著提高。与未微胶囊化GOD相比,CAGC的氧化作用起始时间滞后,氧化速度减慢,作用时间延长,最终在保温阶段结束时对面团内巯基的氧化程度提高,有利于促进面团中大分子谷蛋白链间交联和面团面筋网络结构的架构,SDS-PAGE电泳和面团显微结构观察都对此给出了直观的证明。
     以GOD和KBrO_3为对比,考察了面团发酵过程中,在CAGC不同添加水平下,面团高度、持气率、CO_2泻出时间以及W-SH和SDS-SH含量等指标的变化,并通过面包焙烤和质构测试分析了CAGC对面团面筋网络结构与面包多项品质的影响。结果表明:CAGC在发酵过程中不断氧化W-SH和SDS-SH,使之形成二硫键,进而提高面团的持气能力,增大面包比容,改善面包芯品质。同时通过各项参数的分析比较,讨论GOD与KBrO_3在改良小麦粉品质方面的差异,并以KBrO_3氧化模式为基准,讨论了与GOD相比CAGC的优势所在。
     以不同分子量大小的聚乙二醇和蛋白分子为扩散底物,研究线性高分子和球状大分子在微胶囊内的扩散速度和截留分子量,并测定纯水体系下,干态CAGC的吸水膨胀性和葡萄糖的扩散曲线,为建立实际面团体系中CAGC催化速度模型打下基础。
     综合以上CAGC对面团面筋蛋白构架、流变学特性、发酵能力与焙烤面包的各项品质指标的影响,采用距离分析法建立面团各项参数与面包品质之间的相关性,通过揭示各参数之间的内在关系并结合简单小麦粉模拟体系,探讨微胶囊化提高GOD酶活稳定性、减慢氧化速度和延长氧化作用时间的内在机制。
The gluten in wheat flour is neither strong nor weak ubiquitously in our country, with less wheat varieties with excellent baking quality. The study is to prepare a safe and efficient flour improver under the premise of baking quality and safety. At present, glucose oxidase (GOD), whose improvement effect has been widely recognized, is considered to be "the most promising agent of green gluten flour", but there are still some drawbacks. Firstly, as a fast oxidizer, GOD catalyzes fast and large amount of H_2O_2 is generated during the dough formation process, which produces a large number of disulfide bonds to break free thiol (-SH) and be oxidized again, and this strong and fast cross-linking reaction is not selective, not conducive to post-polymerization of glutenin molecules and affecting the improvement effect.Secondly, GOD is less stable in dough, prone to degeneration and inactivation. Based on this, we embedded GOD using emulsion-internal gelation method with alginate -chitosan as wall material, improving the quality of GOD from three respects. Firstly, GOD was isolated from the outside environment by microencapsulation, improving the stability of the enzyme. Secondly, there is a swelling process for CAGC after adding water to the flour, delaying the oxidation onset. Lastly, diffusion resistance of substrate glucose from the microcapsules slows down the H_2O_2 generation rate.
     First, the preparation process of sodium alginate-chitosan micro-capsulated glucose oxidase (CAGC) was systematically studied. The effects of concentration of sodium alginate, CaCO_3 dosage, concentration of Span 80, stirring speed and water-oil ratio on the particle size distribution and sphericity of calcium alginate beads (CA), as well as the chitosan molecular weight, concentration and pH on the CAGC microencapsulation efficiency and the amount of protein loaded were investigated. The ultimate optimum microencapsulation conditions are as follows: alginate concentration 1.5%, CaCO_3 4.0mg/mL, water to oil ratio of 1:5, Span 80 2.0% and stirring speed 1000 rpm, under these conditions the CA gel beads presented average particle size [D4,3] as 87.332μm, with good sphericity. The CA as the core of microcapsules, the chitosan with molecular weight 200,000 as the wall material, chitosan concentration of 1.5%, complex coacervation reaction pH 4.0, 60min reaction time generated the microencapsulation efficiency of 81.7%, protein loading capacity of 37.7mg/g, the volume of the prepared CAGC average size of [D4, 3] for 59.332μm,wall thickness of about 13.22μm and 4℃storage half-life of 105 days. Confocal laser microscopy showed that GOD evenly distributed in the inside of CAGC and the microcapsule presented membrane integrity and uniform thickness.
     Wet CAGC was dried using spray drying technology to improve the storage stability at room temperature and practical convenience. The final product yield and enzyme activity retention rate reached 72.19% and 80.64%, through response surface optimization. Decay Kinetic equation of dry CAGC has been built under 4℃, 25℃and 45℃, by which the corresponding enzyme activity half-life as 240 days, 190 days and 74 days.
     The effects of CAGC on the wet gluten content (WG), water-soluble and water insoluble protein-SH content (W-SH, DS-SH), dough properties, tensile properties, dynamic rheological properties and micro-structure were investigated. The results showed that CAGC did not exert its oxidative capacity during the dough formation process due to swelling stage, delaying the enzyme functioning and significantly improving the dry and harden phenomenon of dough with the rapid oxidation of GOD. However, the oxidation capacity of CAGC gradually embodied, reflected in WG content increases, W-SH and SDS-SH content decreased and improved viscoelasticity of dough, holding gas recovery and fermentation capacity. Compared with un-microencapsulated GOD, CAGC has starting time lag, low oxidization and extended action time, leading to increased oxidization degree after insulation and promoting the dough gluten chains cross-linking and dough gluten network structure.
     The variations of the dough height, gas holdup, CO2 spilled out of time, and W-SH and SDS-SH content were studied during the dough fermentation with different CAGC dose, with GOD and KBrO_3 as control. And the effects of CAGC on the dough gluten network structure and bread quality were analyzed through bread baking and texture analysis. The results showed that CAGC continuously oxidized W-SH and SDS-SH during fermentation, leading to formation of disulfide bonds and improved gas-holding capacity of dough, increased bread specific volume and quality of bread core. Furthermore, the difference of GOD and KBrO_3 in improving the quality of wheat flour was discussed as well as the advantages of CAGC compared with GOD, with the oxidization model as a benchmark.
     The diffusion rate inside the microcapsules and the molecular weight cutoff of linear polymer and spherical molecules was investigated with PEG of different molecular weight as spreading substrate and the curves for dry CAGC expansion and glucose diffusion, laying the foundation for the establishment of the actual catalytic rate of CAGC in dough system.
     Integrating the effects of CAGC on the dough components, rheological properties, fermentation capacity and bread baking etc, we established the correlation between the parameters and bread quality through distance analysis, analyzed the principle of microencapsulation to increase the GOD stability and discussed the mechanism of CAGC slow oxidation relative to GOD.
引文
[1]丁声俊.中国的小麦结构与迎接“入世”挑战[J].粮油食品科技, 2001, 9(1): 42-43.
    [2]李庆龙.小麦粉工业的发展与醉制剂的应用前景[J].西部粮油科技, 2001, 26(1): 3-9.
    [3] Vemulapalli V, Miller K A, Hoseney R C. Glucose oxidase in bread making systems [J]. Cereal Chemistry, 1998, 75: 439-442. [4] Vemulapalli V, Hoseney R C. Glucose oxidase effects on gluten and water solubles [J]. Cereal Chemistry, 1998, 75: 859-862.
    [5] Bonet A, Rosell, C M, Caballero P A, et al. Glucose oxidase effect on dough rheology and bread quality: A study from macroscopic to molecular level [J]. Food Chemistry, 2006, 99: 408-415.
    [6]张树政.酶制剂工业[M].北京:科学出版社, 1998.
    [7]王树庆,刘秀华.葡萄糖氧化酶及其在食品工业上的应用[J].食品科技技, 2001, 6(3): 30-31.
    [8] Bennett E, Swoboda P, Massey V. Purification and properties of the glucose oxidase from Aspergillus niger [J]. Biol Chem, 1965, 240: 2209-2215.
    [9] Shi Yan, Jiang Zhe, Chen Qingxi, et al. Inhibitory kinetics of phenol on the enzyme activity ofβ-N-acetyl-d-glucosaminidase from green crab(Scylla serrata) [J]. Elsevier Masson SAS, 2007, 89(3): 347-354.
    [10] Ko J H, Hahm M S, Kang H A. Secretory expression and purification of Aspergillus niger glucose oxidase in Saccharomyces cerevisiae mutant deficient in PMR1gene [J]. Protein Expr Purif, 2002, 25(3): 488-493.
    [11]王璋.食品酶学[M].北京:中国轻工业出版社,1990.
    [12] Caballero P A, Gómez M, Rosell C M. Improvement of dough rheology, bread quality and bread shelf-life by enzymes combination [J]. Journal of Food Engineering, 2007, 81: 42-53.
    [13] Steffolani M E, Ribotta P D, Alberto E L, et al. Effect of glucose oxidase, transglutaminase, and pentosanase on wheat proteins: Relationship with dough properties and bread-making quality [J]. Journal of Cereal Science, 2010, 51: 366-373.
    [14] Pirozi M R, Margiotta B, Lafiandra D, et al. Composition of polymeric proteins and bread-making quality of wheat lines with allelic HMW-GS differing in number of cysteines. Journal of Cereal Science, 2008, 48: 117-122.
    [15] Wong Chunming, Wong Kunhei, Chen Xiaodong. Glucose oxidase: natural occurrence, function, properties and industrial applications [J]. Applied Microbiology and Biotechnology, 2008, 78: 927-938.
    [16] Hanft F, Koehler P. Studies on the effect of glucose oxidase in bread making [J]. Journal of the Science of Food and Agriculture, 2006, 86: 1699-1704.
    [17] Yue Liao, Miller R A, Hoseney R C. Role of hydrogen produced by baker' s yeast on dough rheoZogy. Cereal Chem, 1998, 75 (5):612-616.
    [18] Wikstrom K, Eliasson A C. Effect of enzymes and oxidizing agents on shear stress relaxation of meat flour dough: Addition of protease, glucose oaidase, ascorbic acid,and potassium bromate. Cereal Chem, 1998, 75:331-337.
    [19]蔚然.面团流变学特性品质分析方法比较与研究[J].中国粮油学报, 1998, 13 (3): 10-12.
    [20] Dexter J E, Matsuo R R, Preston, et al. Comparison of gluten strength, mixing properties, baking quality and spaghetti quality of some Canadian durum and common wheat [J]. Cana Institute. Journal of Food Science Technology, 1981, 14: 108-111.
    [21] Miller K A, Hoseney R C. Effect of oxidation on the dynamic rheological properties of wheat flour water-doughs [J]. Cereal Chemistry, 1999, 76 (1): 100-104.
    [22] Dunnewind B, van Vliet T, Orsel R. Effect of oxidative enzymes on bulk rheological properties properties of wheat flour doughs [J]. Journal of Cereal Science, 2002, 36: 357-366.
    [23] Miller K A, Hoseney R C. Dynamic rheological properties of wheat starch-gluten doughs [J]. Cereal Chemistry, 1999, 76(1): 105-109.
    [24] Delour J A, Vanhamel S, Geest C D. Physicochemical and functional properties of rye nonstarch polysaccharides I colormetric analysis of pentosans and their relative monosaccharides composition in fraction (milled ) rye products [J]. Cereal Chemistry, 1989, 66: 107-111.
    [25] Cornell H J, Hoveling A W. Wheat: Chemistry and Utilization [M]. USA: Technomic Publishing Company Inc, 1998.
    [26] Poulsen C, Hostrup P B. Purification and characterization of a hexose oxidase with excellent strengthening effects in bread [J]. Cereal Chemistry, 1998, 75(1): 51-57.
    [27] Tilley K A, Benjamin R E, Bagorogoza K E, et al. Tyrosine crosslinks: molecular basis of gluten structure and function [J]. Journal of Agricultural and Food Chemistry, 2001, 49: 2627-2632.
    [28]周素梅,王璋,许时婴.戊聚糖酶与氧化酶对面团流变性质影响的研究[J].食品工业科技, 2002, 23(8): 15-18.
    [29] Delcour J A, Vanhamer S, Hoseney R C. Physicochemical and functional properties of rye non-starch polysaccharides.Ⅱ. Impact of a fraction containing water-soluble pentosans and proteins on gluten starch loaf volumes [J]. Cereal Chemistry, 1991, 68(1): 72-76.
    [30] Michniewicz J, Biliaderls C G, Bushuk W. Effect of added pentosans on some physical and technological characteristics of dough and gluten [J]. Cereal Chemistry, 1991, 68(3): 252-258.
    [31] Izydorczykms, Biliaderiscg, Bushukw. Oxidative gelation studies of water soluble pentosans from wheat [J]. J Cereal Sci, 1990, 11:153-169.
    [32] Cleemputg, Bleukxw. Evidence for the presence of arabinox ylan hydrolysing enzymesin European wheat flours [J]. J Cereal Sci, 1995, 22:139-145.
    [33] Izydorczyk M S, Biliaderis C G, Bushuk W. Physical properties of water-soluble pentosans from different wheat varieties [J]. Cereal Chemistry, 1991, 68: 145-150.
    [34] Kulp K, Bechtel W G. Effect of water-insoluble pentosan fraction of wheat endosperm on the quality of white bread [J]. Cereal Chemistry, 1963, 40: 665-675.
    [35] Kieffer R, Wieser H, Henderson M J, et al. Correlations of the bread making performance of wheat flour with rheological measurements on a micro-scale [J]. J Cereal Sci, 1998, 27: 53-60.
    [36] Gan Z, Ellis P R, Schofield J D. Mini review: Gas cell stabilisation and gas retention in wheat bread dough [J]. Journal of Cereal Science, 1995, 21: 215-230.
    [37] Wang MW, Vliet T V and Hamer R J. Evidence that pentosans and xylanase affect the re-agglomeration of the gluten network [J]. J Cereal Sci, 2004, 39:341-349.
    [38] C Primo-Martin, M A. Martínez-Anaya. Influence of pentosanase and oxidases on water-extractable pentosans during a straight breadmaking process [J]. J Food Sci, 2003, 68: 31–41.
    [39] Martinez-Anaya M A, Jimenez T. Physical properties of enzyme-supplemented doughs and relationship with bread quality parameters [J]. Z Lebensm Unters Forsch A, 1998, 206:134-142.
    [40] Martinez-Anaya M A, Jimenez T. Rheological properties of enzyme supplemented doughs [J]. J Texture Stud, 1997, 28:569-583.
    [41] Primo-Martin C, Martínez-Anaya M A. Possibilities of the combined use of pentosanases and oxidases in breadmaking [J]. Molineria y Panaderia, 2003,1114: 30-38.
    [42] Rasiah I A, Sutton K H, Low F L, et al. Crosslinking of wheat dough proteins by glucose oxidase and the resulting effects on bread and croissants [J]. Food Chemistry, 2005, 89: 325-332.
    [43] Rakotozafy L, Mackova B, Delcros J, et al. Effect of adding exogenous oxidative enzymes on the activity of three endogenous oxidoreductases during mixing of wheat flour dough [J]. Cereal Chemistry, 1999, 76: 213-218.
    [44] Pescador-Piedra J C, Farrera-Rebollo R R, Calderón-Domínguez G. Effect of Glucose Oxidase and Mixing Time on Soluble and Insoluble Wheat Flour Protein Fractions: Changes on SH Groups and H2O2 Consumption [J]. Food Science and Biotechnology, 2010, 19(6): 1485-1491.
    [45] Weegels P L, Graveland A, Hamer R J, et al. Depolymerisation and re-polymerisation of wheat glutenin during dough processing. I. Relationships between glutenin macropolymer content and quality parameter [J]. Journal of Cereal Science, 1996, 23:103-111.
    [46] Arendt S R E K. Effects of oxidase and protease treatments on the bread making functionality of a range of gluten-free flours [J]. European Food Research and Technology, 2009, 229: 307-317.
    [47] Yeh An-I, Shiau Sy-Yu. Effects of oxido-reductants on rheological properties of wheat flour dough and comparison with some characteristics of extruded noodles [J]. Cereal Chem, 1999, 76(5): 614-620.
    [48] Beveridge T, Toga S J, Nakai S. Determination of -SH and -S-S- groups in some food proteins using Ellman′s reagent [J]. Food Science, 1974, 39: 49-51.
    [49] ?ramkováZ, GregováE, ?turdík E. Chemical composition and nutritional quality of wheat grain [J]. Acta Chimica Slovaca, 2009, 2(1): 115-138.
    [50] Khatkar B S, Fido R J, Tatham A S, et al. Functional properties of wheat gliadins. II. Effects on dynamic rheological properties of wheat gluten [J]. Journal of Cereal Science, 2002, 35: 307-313.
    [51]李力.葡萄糖氧化酶:颇具发展前途绿色面粉改良剂[J].粮食与油脂, 2000, (5): 42-43.
    [52] Smith J R, Smith T L, Tschoegl N W. Rheological properties of wheat doughs. III. Dynamic sheer modulus and its dependence on amplitude, frequency and dough composition. Rheol. Acta, 1970, 9: 239-242.
    [53] Gupta R B, Khan K, Macritchie F. Biochemical basis of flour properties in bread wheats. I. Effects of variation in the quantity and size distribution of polymeric protein [J]. Journal of Cereal Science, 1993, 18: 23-41.
    [54]张守文,高红岩.葡萄糖氧化酶复合改良剂对小麦粉烘焙品质特性的影响[J].中国粮油学报, 2000, (4): 9-13.
    [55]夏萍,梁新宇.新型酶制剂在面包中的应用研究[J].科研与生产, 1998, (4): 22-25.
    [56]王学东.新型酶制剂改良小麦粉烘焙品质的机理及其应用研究[D]: [博士学位论文].武汉:华中农业大学, 2003.
    [57]周素梅,王璋,许时婴.戊聚糖酶与葡萄糖氧化酶对面团流变性质的影响[J].食品工业科技, 2002, 23(8): 15-18.
    [58]夏萍,金茂国.葡萄糖氧化酶在面包中应用研究[J].食品工业, 1999, 6: 23-24.
    [59]李力.葡萄糖氧化酶,颇具前途的溴酸钾替代品[J].食品科学, 2000, 21(4): 55-56.
    [60]夏萍.复配型高效面包添加剂的研究[D]: [硕士学位论文].无锡:无锡轻工大学, 1999.
    [61]高红岩,张守文.葡萄糖氧化酶复合改良剂对面粉烘焙品质改良效果的验证试验
    [62] Eslami A, Hosseini S G, Asadi V. The effect of microencapsulation with nitrocellulose on thermal properties of sodium azide particles [J]. Progress in Organic Coatings Coat, 2009, 65: 269-274.
    [63]李晓岩.基于海藻酸钠的微胶囊构建技术及其在干态乳酸菌中的应用[D]: [博士学位论文].青岛:中国海洋大学, 2009.
    [64] Kumar S, Dwevedi A, Kayastha A M. Immobilization of soybean (Glycine max) urease on alginate and chitosan beads showing improved stability:Analytical applications [J]. Journal of Molecular Catalysis B: Enzymatic, 2009, 58 (1-4): 138-145.
    [65] Wittaya-areekul S, Kruenate J, Prahsarn C. Preparation and in vitro evaluation of mucoadhesive properties of alginate/chitosan microparticles containing prednisolone [J]. Int. J. Pharm, 2006, 312(1-2): 113-118.
    [66] Yapar E, Kayahan S K, Bozkurt A, et al. Immobilizing cholesterol oxidase in chitosan–alginic acid network [J]. Carbohydrate Polymers, 2009, 76(3): 430-436.
    [67] Anal A K, Stevens W F. Chitosan-alginate multilayer beads for controlled release of ampicillin [J]. International Journal of Pharmaceutics, 2005, 290: 45-54.
    [68] Kofuji K, Isobe T, Murata Y. Controlled release of alpha-lipoic acid through incorporation into natural polysaccharide-based gel beads [J]. Food Chemistry,2009, 115(2): 483-487.
    [69] Coppi G, Iannuccelli V. Alginate/chitosan microparticles for tamoxifen delivery to the lymphatic system [J]. Int. J. Pharm, 2009, 367(1-2): 127-132.
    [70] Anjani K, Kailasapathy K, Phillips M. Microencapsulation of enzymes for potential application in acceleration of cheese ripening [J]. International Dairy Journal, 2007, 17: 79-86.
    [71] Ainhoa M, Aitziber P, Gorka O, et al. Cell microencapsulation technology: towards clinical application [J]. Journal of controlled release, 2008, 132: 76-83.
    [72] Gharsallaoui A, Roudaut G, Chambin O, et al. Applications of spray-drying in microencapsulation of food ingredients: An overview [J]. Food Research International, 2007, 40 (9): 1107-1121.
    [73] Murga M L F, Cabrera G M, Font de Valdez G, et al. Influence of growth temperature on cryotolerance and lipid composition of Lactobacillus acidophilus [J]. Journal of Applied Microbiology, 2000, 88: 342-348.
    [74]刘群.新型生化药用微胶囊的研究[D]: [硕士学位论文].大连:中国科学院大连化学物理研究所, 2000.
    [75]刘袖洞.膜乳化内部凝胶化过程及海藻酸钙凝胶珠性能研究[D]: [博士学位论文].大连:中国科学院大连化学物理研究所, 2002.
    [76]李红兵.海藻酸钠理化性质研究和特种品种制备[D]: [博士学位论文].天津:天津大学, 2005.
    [77] Pawel Sikorski, Frode Mo, Gudmund Skj?k-Br?k, et a1. Evidence for egg-box-compatible interactions in calcium-Alginate gels from fiber X-ray diffraction [J]. Biomacromolecules, 2007, 8: 2098-2103.
    [78] Wang K, He Z. Alginate-konjac glucomannan-chitosan beads as controlled release matrix [J]. In. J. Pharm, 2002, 244: 117-126.
    [79] Tamara Klotzbach, Michelle Watt, Yasmin Ansari, et a1. Effects of hydrophobic modification of chitosan and Nafion on transport properties, ion-exchange capacities, and enzyme immobilization [J]. Journal of Membrane Science, 2006, 282: 276-283.
    [80] Sugawara S, Imai T, and Otagiri M. The controlled release of prednisolone using alginate gel [J]. Pharm. Res, 1994, 11: 272-277.
    [81] Jen A C, Wake M C, Mikos A G. Hydrogels for cell immobilization [J]. Biotechnol. Bioeng, 1996, 50: 357-364.
    [82] Li R H, Altreuter D H, Gentile F T. Transport characterization of hydrogel matrices for cell encapsulation [J]. Biotechnol. Bioeng, 1996, 50: 365-373.
    [83] Takka S, Acartürk F. Calcium alginate microparticles for oral administration:Ⅰ: effect of sodium alginate type on drug release and drug entrapment efficiency [J]. J. Microencap, 1999, 16(3): 275-290.
    [84] Acartürk F, Takka S. Calcium alginate microparticles for oral administration:Ⅱ: effect of formulation factors on drug release and drug entrapment efficiency [J]. J. Microencap, 1999, 16(3), 291-301.
    [85] Ribeiro A J, Siva C, Ferreira D. Chitosan-reinforced alginate microspheres obtained through the emulsification/internal gelation technique [J]. European Journal of Pharmaceutical Sciences, 2005, 25: 31-40.
    [86] Sankalia M G, Mashru R C, Sankalia J M, et al. Reversed chitosan-alginate polyelectrolyte complex for stability improvement of alpha-amylase: Optimization and physicochemical characterization [J]. European Journal of Pharmaceutics and Biopharmaceutics, 65: 215-232.
    [87] Velten F, Laue C, Schrezenmeir J. The effect of alginate and hyaluronate on the viability and function of immunoisolated neonatal rat islets [J]. Biomaterials, 1999, 20: 2161-2167.
    [88]刘映薇.口服蛋白质药物AC缓释微球的膜性能研究[D]: [硕士学位论文].大连:中国科学院研究生院大连化学物理研究所,2004.
    [89] Ozyilmaz G, Tukel S S, Alptekin O. Activity and storage stability of immobilized glucose oxidase onto magnesium silicate [J]. Journal of Molecular Catalysis B: Enzymatic, 2005, 35:154-160.
    [90] Liu Q, Rauth A M, Wu X Y. Immobilization and bioactivity of glucose oxidase in hydrogel microspheres formulated by an emulsification internal gelation adsorption polyelectrolyte coating method [J]. In. J. Pharm, 2007, 339: 148-156.
    [91]陈益清.海藻酸-壳聚糖-海藻酸离子取代凝胶[D]: [博士学位论文].天津:天津大学, 2003.
    [92] Poncelet D, Lencki R, Beaulieu C, et a1. Production of alginate beads by gelation: emulsification/internal Methodology [J]. Appl. Microbiol. Biot, 1992, 38: 39-45.
    [93] Poncelet D, Poncelet De Smet B, Beaulieu C, et al. Production of alginate beads by emulsification/internal gelation II: Physicochemistry. Applied Microbiology and Biotechnology, 1995, 43: 644-650.
    [1] Eslami A, Hosseini S G, Asadi V. The effect of microencapsulation with nitrocellulose on thermal properties of sodium azide particles [J]. Progress in Organic Coatings Coat, 2009, 65: 269-274.
    [2]李晓岩.基于海藻酸钠的微胶囊构建技术及其在干态乳酸菌中的应用[D]: [博士学位论文].青岛:中国海洋大学, 2009.
    [3] Kumar S, Dwevedi A, Kayastha A M. Immobilization of soybean (Glycine max) urease on alginate and chitosan beads showing improved stability:Analytical applications [J]. Journal of Molecular Catalysis B: Enzymatic, 2009, 58 (1-4): 138-145.
    [4] Wittaya-areekul S, Kruenate J, Prahsarn C. Preparation and in vitro evaluation of mucoadhesive properties of alginate/chitosan microparticles containing prednisolone [J]. Int. J. Pharm, 2006, 312(1-2): 113-118.
    [5] Yapar E, Kayahan S K, Bozkurt A, et al. Immobilizing cholesterol oxidase in chitosan–alginic acid network [J]. Carbohydrate Polymers, 2009, 76(3): 430-436.
    [6] Anal A K, Stevens W F. Chitosan-alginate multilayer beads for controlled release of ampicillin [J]. International Journal of Pharmaceutics, 2005, 290: 45-54.
    [7] Kofuji K, Isobe T, Murata Y. Controlled release of alpha-lipoic acid through incorporation into natural polysaccharide-based gel beads [J]. Food Chemistry,2009, 115(2): 483-487.
    [8] Coppi G, Iannuccelli V. Alginate/chitosan microparticles for tamoxifen delivery to the lymphatic system [J]. Int. J. Pharm, 2009, 367(1-2): 127-132.
    [9] Lamprecht A., Schaèfer U.F., Lehr C.-M. Characterization of microcapsules by confocallaser scanning microscopy: structure, capsule wall composition and encapsulation rate. European Journal of Pharmaceutics and Biopharmaceutics, 2000, 49: 1-9.
    [10] Ribeiro A J, Siva C, Ferreira D, et a1. Chitosan-reinforced alginate microspheres obtained through the emulsification/internal gelation technique [J]. Eur. J. Pharm, 2005, 25: 31-40.
    [11] Miller G L. Use of dinitro salicylic acid reagent for determination of reducing sugar [J]. Anal. Chem, 1959, 31: 426-428.
    [12]薛伟明,于炜婷,刘袖洞,等.载细胞海藻酸钠/壳聚糖微胶囊的化学破囊方法研究[J].高等学校化学学报, 2004, 25(7): 1342-1346.
    [13]沈正荣,朱家蕙,吴兰亭等. 5-氟尿嘧啶聚乳酸微球制备及体内外释药特性的研究[J].中国医药工业杂志, 1995, 26(7): 306-309.
    [14] Pawel Sikorski, Frode Mo, Gudmund Skj?k-Br?k, et a1. Evidence for egg-box-compatible interactions in calcium-alginate gels from fiber X-ray diffraction [J]. Biomacromolecules, 2007, 8: 2098-2103.
    [15] Wang K, He Z. Alginate-konjac glucomannan-chitosan beads as controlled release matrix [J]. In. J. Pharm, 2002, 244: 117-126.
    [16] Tamara Klotzbach, Michelle Watt, Yasmin Ansari, et a1. Effects of hydrophobic modification of chitosan and Nafion on transport properties, ion-exchange capacities, and enzyme immobilization [J]. Journal of Membrane Science, 2006, 282: 276-283.
    [17] Liu Q, Rauth A M, Wu X Y. Immobilization and bioactivity of glucose oxidase in hydrogel microspheres formulated by an emulsification internal gelation adsorption polyelectrolyte coating method [J]. In. J. Pharm, 2007, 339: 148-156.
    [18] Poncelet D, Lencki R, Beaulieu C, et a1. Production of alginate beads by gelation: emulsification/internal Methodology [J]. Appl. Microbiol. Biot, 1992, 38: 39-45.
    [19]刘袖洞.膜乳化内部凝胶化过程及海藻酸钙凝胶珠性能研究[D]: [博士学位论文].大连:中国科学院研究生院,2002.
    [20]刘映薇.口服蛋白质药物AC缓释微球的膜性能研究[D]: [硕士学位论文].大连:中国科学院研究生院大连化学物理研究所,2004.
    [21]凌关庭.食品添加剂手册[M].北京:北京工业大学出版社, 2003, 724-725.
    [22] Sankalia M G, Mashru R C, Sankalia J M, et a1. Reversed chitosan-alginate polyelectrolyte complex for stability improvement of alpha-amylase: Optimization and physicochemical characterization [J]. Eur. J. Pharm. Biopharm, 2007, 65: 215-232.
    [23]薛伟明.口服蛋白质药物的天然多糖微球载体研究.中国科学院大连化学物理研究所.博士后研究工作报告. 2003
    [24] Lee J S, Cha D S, Park H J. Survival of freeze-dried Lactobacillus bulgaricus KFRI 673 in chitosan-coated calcium alginate microparticles [J]. J. Agric. Food Chem, 2004, 52: 7300-7305.
    [25]刘群,薛伟明,于炜婷,等.海藻酸钠-壳聚糖微囊膜强度的研究[J].高等学校化学学报, 2002, 23(7): 1417-1420.
    [26] Skj?k Br?k. Alginate polycation microcapsules: II. Some functional properties [J]. Biomaterials, 1996, 17(11):1069-1079.
    [27]肖燕.交联壳聚糖—赖氨酸树脂固定化GOD制备、表征及应用[D]: [硕士学位论文].重庆:重庆大学,2008年.
    [28] Miya M, Iwamoto R, Yoshikawa S. Int . J . Biol. Macromol, 1980, 2:323.
    [29] Khalid M N, Agnely F, Yagoui N, et a1. Water sate characterization, swelling behavior, thermal and mechanical properties of chitosan based networks [J]. Eur. J. Pharm. Sci, 2000, 15: 425-432.
    [30] Ren J, Lu S, Shen J. Chinese Science Bulletin, 2001, 46(10): 740-743.
    [1] Pescador-Piedra J C, Farrera-Rebollo R R, Calderón- Domínguez G. Effect of Glucose Oxidase and Mixing Time on Soluble and Insoluble Wheat Flour Protein Fractions: Changes on SH Groups and H2O2 Consumption [J]. Food Science and Biotechnology, 2010, 19(6): 1485-1491.
    [2] Autio K, Flander L. Bread quality relationship with rheological measurements of wheat flour dough [J]. Cereal Chemistry, 2001, 78(6): 654-657.
    [3] Dexter J E, Matsuo R R, Preston, et al. Comparison of gluten strength, mixing properties, baking quality and spaghetti quality of some Canadian durum and common wheat [J]. Cana Institute. Journal of Food Science Technology, 1981, 14: 108-111.
    [4] Miller K A, Hoseney R C. Effect of oxidation on the dynamic rheological properties of wheat flour water-doughs [J]. Cereal Chemistry, 1999, 76 (1): 100-104.
    [5] Dunnewind B, van Vliet T, Orsel R. Effect of oxidative enzymes on bulk rheological properties properties of wheat flour doughs [J]. Journal of Cereal Science, 2002, 36: 357-366.
    [6] Vemulapalli V, Miller K A, Hoseney R C. Glucose oxidase in bread making systems [J]. Cereal Chemistry, 998, 75: 439-442.
    [7] Vemulapalli V, Hoseney R C. Glucose oxidase effects on gluten and water solubles [J].Cereal Chemistry, 1998, 75: 859-862.
    [8] Delcour J A, Vanhamer S, Hoseney R C. Physicochemical and functional properties of rye non-starch polysaccharides.Ⅱ. Impact of a fraction containing water-soluble pentosans and proteins on gluten starch loaf volumes [J]. Cereal Chemistry, 1991, 68(1): 72-76.
    [9] Michniewicz J, Biliaderls C G, Bushuk W. Effect of added pentosans on some physical and technological characteristics of dough and gluten [J]. Cereal Chemistry, 1991, 68(3): 252-258.
    [10] Miller K A, Hoseney R C. Dynamic rheological properties of wheat starch-gluten doughs [J]. Cereal Chemistry, 1999, 76(1): 105-109.
    [11] Delour J A, Vanhamel S, Geest C D. Physicochemical and functional properties of rye nonstarch polysaccharides I colormetric analysis of pentosans and their relative monosaccharides composition in fraction (milled ) rye products [J]. Cereal Chemistry, 1989, 66: 107-111.
    [12] Beveridge T, Toga S J, Nakai S. Determination of -SH and -S-S- groups in some food proteins using Ellman′s reagent [J]. Food Science, 1974, 39: 49-51.
    [13] Fessas D, Schiraldi A. Interactions between arabinoxylans and wheat proteins [J]. Food Chemistry, 2003, inpress.
    [14]蛋白组分对面包专用粉品质的影响研究[D]: [硕士学位论文].郑州:河南农业大学,2009.
    [15]唐云峰.小麦胚乳贮藏蛋白对小麦品质的影响研究[D]: [硕士学位论文].雅安:四川农业大学,2005.
    [16] Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227: 680-685.
    [17] Weegels P L, van der Pijpekamp A M, Graveland A, et al. Depolymerisation and re-polymerisation of wheat glutenin during dough processing. I. Relationships between glutenin macropolymer content and quality parameter [J]. Journal of Cereal Science, 1996, 23: 103-111.
    [18] Khatkar B S, Fido R J, Tatham A S, et al. Functional properties of wheat gliadins. II.Effects on dynamic rheological properties of wheat gluten [J]. Journal of Cereal Science, 2002, 35: 307-313.
    [19]李静,王学东,李庆龙.酵母GOD对面包面团内H2O2水平影响的初探.面粉通讯, 2003,3: 31-34.
    [20] Hanft F, Koehler P. Studies on the effect of glucose oxidase in bread making [J]. Journal of the Science of Food and Agriculture, 2006, 86: 1699-1704.
    [21] Ameille V, Castello P, Garcia R, et al. Effects of glucose oxidase or lipase addition on dough consistency and oxygen consumption during mixing of unyeasted flour dough. Sciences des Aliments, 2000, 20: 441-455.
    [22]王学东,李庆龙,夏文水等.葡萄糖氧化酶与溴酸钾对小麦粉蛋白改性的初步研究[J].食品科学, 2006, 27(1): 86-89.
    [23]张守文,李丹.应用混合酶制剂进行面粉品质改良的基础研究[J].中国粮油学报, 2002, 17(1): 16-21.
    [24] Bloksma A H. Relation between thiol and disulfide contents of dough and its rheological properties [J]. Cereal Chemistry, 1972, 49: 104-118.
    [25] Dong W, Hoseney R C. Effects of certain breadmaking oxidants and reducing agents on dough rheological properties [J]. Cereal Chemistry, 1995, 72: 58-64.
    [26] Tkachuk R, Hlynka I. Some improving effects of halogenates and their reduction intermediates in dough [J]. Cereal Chemistry, 1961, 38: 393-398.
    [27] Grosch W, Wieser H. Redox reactions in wheat dough as affected by ascorbic acid [J]. Journal of Cereal Science, 1999, 29: 1-16.
    [28] Gupta R B, Shepherd K W, MacRitchie F. Genetic control and biochemical properties of some high molecular weight albumins in bread wheat [J]. J. Cereal Sci, 1991, 13: 221-235.
    [29]王学东.新型酶制剂改良小麦粉烘焙品质的机理及其应用研究[D]: [博士学位论文].武汉:华中农业大学, 2003.
    [30] Scanlon M G., Zghal M C. Bread properties and crumb structure [J]. Food Research International, 2001, 34: 841-864.
    [31] Caballero P A, Gómez M, Rosell C M. Improvement of dough rheology, bread quality and bread shelf-life by enzymes combination [J]. Journal of Food Engineering, 2007, 81: 42-53.
    [32] Dagdelen A F, Gocmen D. Effects of glucose oxidase, hemicellulase and ascorbic acid on dough and bread quality [J]. Journal of Food Quality, 2007, 30: 1009-1022.
    [33] Cornell H J, Hoveling A W. Wheat: Chemistry and Utilization [M]. USA: TechnomicPublishing Company Inc, 1998.
    [34] Rasiah I A, Sutton K H, Low F L, et al. A Crosslinking of wheat dough proteins by glucose oxidase and the resulting effects on bread and croissants [J]. Food Chemistry, 2005, 89: 325-332.
    [35] Bonet A, Rosell C M, Caballero P A, et al. Glucose oxidase effect on dough rheology and bread quality: A study from macroscopic to molecular level [J]. Food Chemistry, 2006, 99: 408-415.
    [36] Tilley K A, Benjamin R E, Bagorogoza K E, et al. Tyrosine crosslinks: molecular basis of gluten structure and function [J]. Journal of Agricultural and Food Chemistry, 2001, 49: 2627-2632.
    [37] Poulsen C, Hostrup P B. Purification and characterization of a hexose oxidase with excellent strengthening effects in bread [J]. Cereal Chemistry, 1998, 75(1): 51-57.
    [38] Verbruggen I M, Veraverbeke W S, Delcour J A. Significance of LMW-GS and HMW-GS for Dough Extensibility:‘Addition’versus‘Incorporation’Protocols [J]. Journal of Cereal Science, 2001, 33: 253-260.
    [39]周素梅,王璋,许时婴.戊聚糖酶与氧化酶对面团流变性质影响的研究[J].食品工业科技, 2002, 23(8): 15-18.
    [40]刘国琴,李琳,李冰等.小麦湿面筋蛋白的流变学性质[J].华南理工大学学报(自然科学版), 2006, 34(3): 86-89.
    [41] Agyare K K, Xiong Y L, Addo K, et al. Dynamic rheological and thermal properties of soft wheat flour dough containing structured lipid [J]. Food Engineering and Physical Properties, 2004, 69(7): 297-302.
    [42] Stathopoulos C E, Tsiami A A, Schofield J D. Effect of heat on rheology, surface hydrophobicity and molecular weight distribution of glutens extracted from flours with different bread-making quality [J]. Journal of Cereal Science, 2008, 47: 134-143.
    [43] Costas E, Stathopoulos, Amalia A T, Dobraszczyk B J. Effect of heat on rheology of gluten fractions from flours with different bread-making quality [J]. Journal of Cereal Science, 2006, 43: 322-330.
    [44] Addo K, Xiong Y L, Blanchard S P. Thermal and dynamic rheological properties of wheat flour fractions [J]. Food Rrsearch International, 2001, 34: 329-335.
    [45] Skinner C V, Tsiami A A, Budolfsen G, et al. Effects of oxidoreductase enzymes on gluten rheology. In wheat Gluten-Proceedings of the 7th International Workshop on Gluten; Shewry P R, Tatham, A S, Eds. Royal Society of Chemistry. Cambridge, 2000, 231-234.
    [46] Hibberd G E. Dynamic viscoelastic behavior of wheat flour doughs. III. The influence ofstarch granules [J]. Rheol. Acta, 1970, 9: 501-504.
    [47] Smith J R, Smith T L, Tschoegl N W. Rheological properties of wheat doughs. III.Dynamic sheer modulus and its dependence on amplitude, frequency and dough composition [J]. Rheol. Acta, 1970, 9: 239-242.
    [48] Steffolani M E, Ribotta P D, Gabriela T, et al. Effect of glucose oxidase, transglutaminase, and pentosanase on wheat proteins: Relationship with dough properties and bread-making quality. Journal of Cereal Science, 2010, 51: 366-373.
    [49]邓志英.小麦高分子量谷蛋白亚基表达量及其对加工品质的影响[D]: [博士学位论文].泰安:山东农业大学, 2005.
    [50] Pirozi M R, Margiotta B, Lafiandra D, et al. Composition of polymeric proteins and bread-making quality of wheat lines with allelic HMW-GS differing in number of cysteines. Journal of Cereal Science, 2008, 48: 117-122.
    [51] Rasiah I A, Sutton K H, Low F L, et al. Crosslinking of wheat dough proteins by glucose oxidase and the resulting effects on bread and croissants [J]. Food Chemistry, 2005, 89: 325-332.
    [52] Gupta R B, Khan K, Macritchie F. Biochemical basis of flour properties in bread wheats. I. Effects of variation in the quantity and size distribution of polymeric protein [J]. Journal of Cereal Science, 1993, 18: 23-41.
    [1] Vemulapalli V, Miller K A, Hoseney R C. Glucose oxidase in bread making systems [J]. Cereal Chemistry, 1998, 75: 439-442.
    [2] Czuchajowska Z, Pomeranz Y. Gas formation and gas retention, the system and methodology [J]. Cereal Food World, 1993, 38: 499-503.
    [3] El-Hady E A, El-Samahy S K, BruKmmer J M. Effect of Oxidants, Sodium-Stearoyl-2-Lactylate and their Mixtures on Rheological and Baking Properties of Nonprefermented Frozen Doughs [J]. Lebensm.-Wiss. u.-Technol., 1999, 32: 446-454.
    [4]王学东.新型酶制剂改良小麦粉烘焙品质的机理及其应用研究[D]: [博士学位论文].武汉:华中农业大学, 2003.
    [5]王学东,李庆龙,夏文水,等.葡萄糖氧化酶与溴酸钾对小麦粉蛋白改性的初步研究[J].食品科学, 2006, 27(1): 86-89.
    [6] Pescador-Piedra J C, Farrera-Rebollo R R, Calderón-Domínguez G. Effect of Glucose Oxidase and Mixing Time on Soluble and Insoluble Wheat Flour Protein Fractions: Changes on SH Groups and H2O2 Consumption [J]. Food Science and Biotechnology, 2010, 19(6): 1485-1491.
    [7] Vemulapalli V, Hoseney R C. Glucose oxidase effects on gluten and water solubles [J]. Cereal Chemistry, 1998, 75: 859-862.
    [8] Caballero P A, Gómez M, Rosell C M. Improvement of dough rheology, bread quality and bread shelf-life by enzymes combination [J]. Journal of Food Engineering, 2007, 81: 42-53.
    [9] Verbruggen I M, Veraverbeke W S, Delcour J A. Significance of LMW-GS and HMW-GS for Dough Extensibility:‘Addition’versus‘Incorporation’Protocols [J]. Journal of Cereal Science, 2001, 33: 253-260.
    [10] Hanft F, Koehler P. Studies on the effect of glucose oxidase in bread making [J]. Journal of the Science of Food and Agriculture, 2006, 86: 1699-1704.
    [11] Rasiah I A, Sutton K H, Low F L, et al. Crosslinking of wheat dough proteins by glucose oxidase and the resulting effects on bread and croissants [J]. Food Chemistry, 2005, 89: 325-332.
    [12] Dobraszczyka B J, Morgenstern M P. Rheology and the breadmaking process. Journal of Cereal Science, 2003, 38: 229-245.
    [13] Liu Guoqin, Li Lin, Li Bing. Rheological properties of wet gluten protein of wheat flour [J]. Journal of South China University of Technology (Natural Science Edition), 2006, 34(3): 86-89.
    [14] Agyare K K, Xiong Y L, Addo K, et al. Dynamic rheological and thermal properties of soft wheat flour dough containing structured lipid [J]. Food Engineering and Physical Properties, 2004, 69(7): 297-302.
    [1] Liu Q, Rauth A M, Wu X Y. Immobilization and bioactivity of glucose oxidase in hydrogel microspheres formulated by an emulsification internal gelation adsorption polyelectrolyte coating method [J]. In. J. Pharm, 2007, 339: 148-156.
    [2] Poncelet D, Lencki R, Beaulieu C, et a1. Production of alginate beads by emulsification/internal gelation: Methodology [J]. Appl. Microbiol. Biot, 1992, 38: 39-45.
    [3] Ribeiro A J, Siva C, Ferreira D, et a1. Chitosan-reinforced alginate microspheres obtained through the emulsification/internal gelation technique [J]. Eur. J. Pharm. Sci, 2005, 25: 31-40.
    [4] Kumar S, Dwevedi A, Kayastha A M. Immobilization of soybean (Glycine max) urease on alginate and chitosan beads showing improved stability:Analytical applications [J]. Journal of Molecular Catalysis B: Enzymatic, 2009, 58(1-4): 138-145.
    [5] Wittaya-areekul S, Kruenate J, Prahsarn C. Preparation and in vitro evaluation of mucoadhesive properties of alginate/chitosan microparticles containing prednisolone [J]. Int. J. Pharm, 2006, 312(1-2): 113-118.
    [6] Yapar E, Kayahan S K, Bozkurt A, et al. Immobilizing cholesterol oxidase in chitosan–alginic acid network [J]. Carbohydrate Polymers, 2009, 76(3): 430-436.
    [7] Kofuji K, Isobe T, Murata Y. Controlled release of alpha-lipoic acid through incorporation into natural polysaccharide-based gel beads [J]. Food Chemistry,2009, 115(2): 483-487.
    [8] Coppi G, Iannuccelli V. Alginate/chitosan microparticles for tamoxifen delivery to the lymphatic system [J]. Int. J. Pharm, 2009, 367(1-2):127-132.
    [9]刘映薇.口服蛋白质药物AC缓释微球的膜性能研究[D]: [硕士学位论文].大连:中国科学院研究生院, 2004.
    [10]李朝霞.海藻酸钠-壳聚糖-粉末活性炭生物微胶囊的传递性能研究[J].化学通报, 2007(3): 228-233.
    [11]张惟杰.糖复合物生化研究技术[C].第二版.杭州:浙江大学出版社, 1999.
    [12] Liu X D, Xue W M, Liu Q, et al. Carbohydrate Polymers [J], 2004, 56(4) : 459-464.
    [13]于炜婷,刘袖洞,李晓霞,等.壳聚糖溶液pH对载细胞海藻酸钠-壳聚糖微胶囊性能的影响[J].高等学校化学学报, 2006, 27: 1182-1186.
    [14]薛伟明,于炜婷,刘袖洞,等.载细胞海藻酸钠/壳聚糖微胶囊的化学破囊方法研究[J].高等学校化学学报, 2004, 25(7): 1342-1346.
    [15] Praskash S, Chang T M S. Biotechnology &Bioengineering [J], 1995, 46: 621-626.
    [16]蒋维均.化工原理(第三版).清华大学出版社.
    [17]孙少敏.小麦蛋白质体系的结构与流变行为研究[D]: [博士学位论文].杭州:浙江大学, 2009.
    [18]杨学举.小麦蛋白成分和淀粉特性对面包品质的影响及品质改良应用[D]: [博士学位论文].北京:中国农业大学, 2004.
    [19]常志伟.蛋白组分对面包专用粉品质的影响研究[D]: [硕士学位论文].郑州:河南农业大学, 2009.
    [20]邓志英.小麦高分子量谷蛋白亚基表达量及其对加工品质的影响[D]: [博士学位论文].泰安:山东农业大学, 2005.
    [21]王世农,刘刚伟.可溶性淀粉还原性研究[J].松辽学刊, 1997, 2: 51-54.
    [22] Beveridge T, Toga S J, Nakai S. Determination of -SH and -S-S- groups in some food proteins using Ellman′s reagent [J]. Food Science, 1974, 39: 49-51.
    [23] Dobraszczyka B J, Morgenstern M P. Rheology and the breadmaking process. Journal of Cereal Science, 2003, 38: 229-245.
    [24] Wong C M, Wong K H, Chen X D. Glucose oxidase: natural occurrence, function, properties and industrial applications [J]. Applied Microbiology and Biotechnology, 2008, 78: 927-938.
    [25] Rakotozafy L, Mackova B, Delcros J, et al. Effect of adding exogenous oxidative enzymes on the activity of three endogenous oxidoreductases during mixing of wheat flour dough [J]. Cereal Chemistry, 1999, 76: 213-218.
    [26] Hanft F, Koehler P. Studies on the effect of glucose oxidase in bread making [J]. Journal of the Science of Food and Agriculture, 2006, 86: 1699-1704.
    [27]许时婴.微胶囊技术原理与应用[M].北京:化学工业出版社, 2006.
    [28]梁治齐.微胶囊技术及其应用[M].北京:中国轻工业出版社1999.
    [29] Sankalia M G, Mashru R C, Sankalia J M, et al. Reversed chitosan-alginate polyelectrolyte complex for stability improvement of alpha-amylase: Optimization and physicochemical characterization [J]. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 65: 215-232.
    [30] Khalil Khan and Peter R. Wheat Chemistry and Technology (4th Edition) [J]. AACC, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700