用户名: 密码: 验证码:
内外膜独立供油径推联合浮环轴承性能分析与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动静压滑动轴承具有摩擦功耗低、精度高、寿命长、稳定性好等突出优点,在航空航天、发电设备及精密加工机床等高速、超高速旋转机械上具有良好的应用前景。汽车发动机、底盘以及零部件制造的高速、高精度机床主轴系统也广泛地采用各类滑动轴承。而动静压浮环轴承是提高轴承-转子系统转速的有效手段,受到国内外学术界和企业界的高度重视。目前的动静压浮环轴承大多采用内外膜统一供油方式和外部节流器,内外膜供油压力不能单独调节,难以充分发挥其优越性。如果采用内外膜独立供油,将有助于调节轴承-转子系统的特性,但内外膜独立供油动静压浮环轴承的性能和系统稳定性受到轴承结构、供油压力变化及深腔中气穴的影响。如何设计这种新型轴承结构,如何实现轴承系统的合理建模及分析各参数对轴承性能的影响规律是改善轴承性能的基础。
     本文以径向-推力联合浮环动静压轴承为研究对象,采用圆台柱销内反馈节流方式,提出新型的内外膜独立供油径推浮环轴承结构形式;采用流体动力学和有限元方法,建立径推浮环轴承静动特性仿真模型;以此为基础,分析供油压力、气穴等参数对轴承性能的影响规律;为了验证新型结构和建模方法的合理性,开发了可实现内外膜独立供油的径推浮环轴承-转子实验台并进行了实验。研究工作主要包括以下三个方面:
     (1)新型内外膜独立供油径向-推力联合浮环轴承结构设计
     针对圆柱轴承不能承受轴向载荷而圆锥轴承受锥角限制轴向载荷不宜过大的问题,本文采用径推联合浮环轴承,提高了结构紧凑性,可同时承受径向和轴向载荷,避免了额外的轴向限位;针对统一供油浮环轴承内外膜相互制约的问题,提出了内外膜独立供油的新结构,为实现内外膜压力的单独调节进而提高油膜动态性能打下了基础;针对传统内部节流器节流腔面积大、功耗高的问题,提出了新型圆台柱销内部节流方式,有效地减少了节流腔的面积,在不增加轴承尺寸的情况下降低内部节流的功耗,且避免了小孔、毛细管等外部节流器易于引起的油路堵塞。
     (2)内外膜独立供油径推浮环轴承静动态特性仿真建模及稳定性分析
     本文从层流理论的Navier-Stokes方程出发,推导出独立供油时径推浮环轴承内外膜的控制方程,建立了基于有限元法的轴承静动态特性分析方法。在此基础上,分析了轴承静动特性随供油压力、偏心率、转速等设计参数的变化规律。结果表明:该轴承的摩擦功耗等静特性参数对供油压力的变化不敏感,但动特性参数对供油压力的变化敏感度较高。
     针对高速运转时径推联合浮环轴承稳定性问题,建立了计入轴颈质量和浮环质量的内外膜动力学模型,采用Routh-Hurwitz稳定性判别准则,推导了计入浮环质量的径推联合浮环轴承三维稳定性判别准则,确定了浮环轴承的稳定工作区域,研究了内外膜供油压力对轴承稳定性的影响。在此基础上,设计了一种供油压力反馈控制装置,为通过调整内外膜供油压力来控制轴承-转子系统的稳定性提供了参考。
     针对内外膜供油压力的改变导致浮环轴承油腔(尤其是深腔)出现气穴的问题,根据气液两相流理论,导出了考虑气穴的径推联合浮环轴承内外膜的变密度变粘度无量纲动态Reynolds方程和深腔流量平衡方程,分析了不同转速和不同偏心率下含气率分别为0和0.1时轴承的静动态性能。结果表明:小偏心率时深腔气穴对轴承性能影响较为明显,而随着偏心率的增大及转速的提高,气穴的影响程度降低。
     (3)内外膜独立供油径推联合动静压浮环轴承-转子实验
     在上述理论分析的基础上,确定了径推联合浮环实验轴承设计参数,建立了能实现内外膜独立供油的径推联合浮环轴承-转子系统的实验台,提出了独立供油工况下内外膜参数的测量方法,通过实验测试了该轴承的压力分布、承载力、摩擦力矩、流量、温升等静特性参数,采用三次激振法测定了实验轴承的刚度、阻尼等动特性参数,通过理论结果与实验结果的比较,验证了本文建模方法的有效性。所开发的径推浮环动静压轴承完成了38000 rpm的现场试车实验。
     理论分析和实验结果表明,独立供油径推浮环动静压轴承具有结构紧凑、易于调整、启动停车方便、摩擦功耗低、稳定性好等优点,和圆锥轴承相比可承受更大的轴向力。独立供油的结构使得高速、超高速在线控制轴承的稳定性成为可能,对浮环动静压轴承的设计具有较好的指导作用。
Externally pressurized hydrostatic/hydrodynamic bearings have become increasingly popular in many super high speed machines such as astronavigation, generators and high speed processing machine tool due to their remarkable characteristics in respect of low friction, high accuracy, long life, smooth operation, high fluid film stiffness, damping capacity etc. Hybrid bearings are also widely used in many vehicle components such as engine crankshaft, drive system, steering system and chassis. Adopting floating ring hybrid bearing is the effective method to increase the rotational speed of rotor-bearing system. Among most hybrid bearings in common use, the external restrictors are used and the oil is supplied both to the inner fluid film and the outer fluid film. Therefore the external restrictors are easy to be plugged and the inner and outer oil supply pressure can not be adjusted independently. The performance of rotor-bearing system can be controlled if the oil is supplied respectively to the inner fluid film and the outer fluid film independently. How to design the new structure bearing and how to build the model and analyze the influence of parameters on bearing characteristics is the base to improve the bearing performance.
     This paper presents a theoretical and experimental study concerning the static and dynamic performance of hybrid journal-thrust floating ring bearing with inner and outer fluid film independent oil supply. A new structure fluid lubricated floating ring hybrid bearing compensated by interior round pin restrictor is designed. The static and dynamic characteristics model of the journal-thrust floating ring hybrid bearing was established with finite element method (FEM) simulation. The influences of oil supply pressure, cavitations on bearing performance are analyzed. In order to verify the rationality of new structure and simulation model, the experimental rig with independently oil supply is established. This dissertation focuses on the following three aspects:
     (1) The structure design of journal-thrust floating ring hybrid bearing with independent oil supply
     The cylindrical hybrid bearings have no axial load carrying capacity and the conical bearing can support limited axial load due to conical angle. While the journal-thrust hybrid bearing combines the advantages of journal bearing and thrust bearing and can support great radial and axial loads at the same time. A new structure fluid lubricated hybrid bearing with independent oil supply is designed in order to adjust and improve the bearing dynamic performance. The new structure interior round pin restrictor which can reduce the restrictor pocket area and decrease friction power loss without increasing the bearing size and can avoid blockage effectively is studied in detail.
     (2) The static and dynamic performance simulation model and stability analysis of journal-thrust floating ring bearing with independent oil supply
     Bases on laminar current theory, the equations governing the flow of inner and outer fluid film in the journal-thrust floating ring bearing are established with FEM simulation. The variation regularity of static and dynamic performance with oil supply pressure, eccentricity and rotational speed are analyzed. It can be seen from the results that the static characteristics coefficients are not sensitive to oil supply pressure, but the dynamic characteristics parameters varies obviously with oil supply pressure.
     The stability is very important for the high speed rotational system. The dynamic simulation model for inner and outer fluid film is established separately considering the shaft mass and floating ring mass. The three dimension stability criterion is deduced using Routh-Hurwitz stability criterion. On the base of theoretically analysis, a set of oil supply feedback device is designed in order to control the stability of rotor-bearing system on line.
     The change of oil supply pressure will bring bubbles to the bearing pockets, especially in deep pockets. The dimensionless Reynolds equations of the variable density and viscosity with inertia term which govern the inner and outer film of this hybrid floating-ring bearing are developed. The static and dynamic characteristics coefficients with air rate 0 and 0.1 of this bearing are obtained under different eccentricity and rotational speed. It can be seen from the results that the performance varied obviously due to cavitations under small eccentricity. With the increase of eccentricity or rotational speed, the influences of cavitations weaken.
     (3) Experiment study of journal-thrust floating ring hybrid bearing
     Based on above theoretical analysis, the appropriate structure parameters of journal-thrust floating ring bearing are determined and a delicate test rig with independent oil supply is constructed. The pressure distribution, load carrying capability, friction moment, and volume flow rate are measured under different operating conditions. The stiffness and damping coefficients of the bearing are measured using impulse excitation method and compared with theoretical calculation results. So the validity of simulation model is verified. The journal-thrust floating ring hybrid bearing is applied to a certain turbine expansion unit and runs steadily over 38000 rpm.
     Numerical results and experimental results show that the journal-thrust floating ring bearing with independent oil supply has the advantages of low friction, high stability and easy being controlled. It can bear great axial load compared with conical bearing. Also it is possible to control the stability of high speed bearing on line with independent oil supply structure. Above all, the research fruits in this dissertation have important value to guide the design of floating ring bearing.
引文
[1]陈燕生等.液体静压支承原理和设计.北京:国防工业出版社. 1980
    [2]丁振乾.流体静压支承设计.上海:上海科学技术出版社. 1989
    [3]张直明.滑动轴承的流体动力润滑理论.北京:高等教育出版社. 1987: 1~97.
    [4]董勋.润滑理论.上海:上海交通大学出版社. 1989
    [5]许尚贤.液体静压和动静压滑动轴承设计.南京:东南大学出版社. 1989.
    [6]李东伟,杨光,刘秀娟.高速加工机床主轴支承系统的研究.机械研究与应用. 2006, 19: 12~13
    [7]王松岭,张建斌.浅谈发动机涡轮泵动静压轴承研究状况.机械制造与自动化. 2006, 35: 7~8, 12
    [8] Aritlles A, Walowit J, Shapiro W. Analysis of hybird fluid film journal bearings with turbulence and inertis effect. Recent Advances in Computer-aided Design. ASME, No. G00220, 1982: 25~52
    [9] Toyohiko Ohta, Akira Kitamura, Hideki Ogata. LH2 turbopump test with hydrostatic bearing. AIAA, 1999, 2195.
    [10] Toyohiko Ohta, Akira Kitamura, Hideki Ogata. Investigation of hydrostatic bearing in LH2 turbopump. AIAA, 2000, 3159.
    [11] Edeline E, Fayolle P, Fonteyn P, Frocot M. Development and testing of a fluid-film bearing LH2 turbopump demonstrator. AIAA, 2004, 3688
    [12]苗旭升,李斌,黄智勇.发动机涡轮泵动静压轴承技术研究.火箭推进. 2004, 6: 1~4
    [13] Lund, J.W., Thomsen, K.K. A Calculation Method and Data for the Dynamic Coefficients of Oil-lubrication Journal Bearing. In Topics in Fluid Film Bearing and Rotor Bearing System Design and Optimization. 1978, ASME, New York.
    [14] Parkins, D.W. Theoretical and Experimental Determination of the Dynamic Characteristics of a Hydrodynamic Journal Bearing. ASME Journal of Lubrication Technology. 1979, 101: 129~139.
    [15]刘永良,李树森.超精密气磁轴承主轴系统的技术发展.机械工程师. 2006, 10: 24~25.
    [16]陈淑江,路长厚.新型螺旋油楔动静压滑动轴承的油腔结构研究.润滑与密封. 2006, 10: 15~17,21.
    [17] Yang, L.H., Qi, S.M., and Yu, L. Numerical Analysis on Dynamic Coefficients of Self-Acting Gas-Lubricated Tilting-Pad Journal Bearings,”ASME J. Tribol., 2008, 130: 011006~011016.
    [18]王云飞.气体润滑理论与气体轴承设计.北京:机械工业出版社. 1999
    [19]丁振乾,蒋福岩.动静压轴承油腔结构对其性能的影响.磨床与磨削. 1984(4)
    [20]郭力,李波.不同油腔形状的高速动静压轴承研究.磨床与磨削. 2000, 2: 39~42.
    [21]郭力,伍毅刚.浅油腔动静压轴承优化设计.磨床与磨削. 1998, 2: 55~57.
    [22]傅少敏.几种典型动静压轴承结构特点与应用.设备管理与维修. 1997, 6: 21~24.
    [23] Sharma, S.C., Jain, S.C., Nagaraju, T. Combined Influence of Journal Misalignment and Surface Roughness on the Performance of an Orifice Compensated Non-Recessed Hybrid Journal Bearing. Tribol. Trans., 2002, 45(4): 457~463.
    [24] Nagaraju, T. Influence of surface roughness effects on the performance of non-recessed hybrid journal bearings. Tribology International. 2002, 35: 467~487.
    [25]季振华.多阶梯腔动静压轴承的稳定性能和优化研究[硕士论文]. 1984
    [26] Rowe, W.B., Xu, S.X., Chong, F.S. and Weston., W. Hybrid journal bearings with particular reference to hole-entry configurations. Tribology International. 1982, 15 (6)
    [27] Koshal, D., Rowe, W.B. Fluid-film journal bearings operating in a hybrid mode: part I—theoretical analysis and design. Transactions of ASME. 1981, 103 (4)
    [28] Koshal, D., Rowe, W.B. Fluid-film journal bearings operating in a hybrid mode: part II—experiment investigation. Transactions of ASME. 1981, 103 (4)
    [29]姜培林,虞烈.流体动压润滑推力轴承动特性研究.西安交通大学学报. 1996, 30(6): 67~73.
    [30]徐建宁,屈文涛.止推滑动轴承的温度场和热变形分析.润滑与密封. 2006, 8: 120~121,148.
    [31]杨军,郭力.动静压推力轴承动特性分析.润滑与密封. 2001, 1: 42~43.
    [32] O.平克斯.流体动力润滑理论.机械工业出版社.北京: 1980
    [33]郭红,崔岩,岑少起,圆锥浮环动静压轴承动态特性理论研究.机械强度. 2004, 3(6): 341~344.
    [34] Pan, Coda H.T., Kim, D. Stability Characteristics of a Rigid Rotor Supported by a Gas-Lubricated Spiral-Groove Conical Bearing. ASME J. Tribol., 2007, 129: 375-383.
    [35] F. M. Stansfield.静压支承在机床上的应用.险峰机床厂译.机械工业出版社
    [36]方晓丽.圆锥动静压轴承的性能分析及优化设计[硕士论文].郑州:郑州工学院. 1988.
    [37]杜建国,周学良.高精度动静压轴承的制造与应用.上海机床. 1991
    [38]孙昂,马文琦.静压气体轴承中的激波与边界层相互影响的研究进展.机械工程学报. 2006, 9: 1~5.
    [39]黄海,孟光.二阶滑移边界对微型气浮轴承稳态性能的影响.力学学报. 2006, 5: 668~673.
    [40]黄海,孟光.滑移边界对微型气浮轴承稳态性能的影响.机械工程学报. 2006, B05: 21~25.
    [41]童宝宏,桂长林.滑动轴承启动与变工况时的轴承温度.合肥工业大学学报:自然科学版. 2006, 10: 1192~1195.
    [42]孙军,桂长林.计入轴变形导致轴颈倾斜的径向滑动轴承流体动力润滑分析.机械科学与技术. 2005, 2: 204~207.
    [43]马艳艳,程先华.内燃机滑动轴承气蚀损伤破坏过程.上海交通大学学报. 2005, 7: 1178~1181.
    [44] Yoshimoto, S. Stability of water-lubricated, hydrostatic, conical bearings with spiral grooves for high-speed spindles. Journal of Tribology, 2002, 4: 398~405.
    [45]华少杰,傅少敏. 3MK133沟道磨床砂轮主轴系统的改造.轴承. 1997, 8: 23~35.
    [46]秦萍,阎兵.滑动轴承故障诊断实用诊断原则的研究.机械传动. 2005, 2: 52~55.
    [47]秦萍,阎兵.基于振动监测的静载荷滑动轴承接触摩擦故障诊断实验研究.摩擦学学报. 2004. 7: 364~368.
    [48] Ene, N.M., Dimofte, F., Keith Jr, T.G.. A stability analysis for a hydrodynamic three-wave journal bearing. Tribology International. 2008, 41: 434~442.
    [49]丁叙生,陈斌武.液体静压轴承液阻可调式节流器的设计与应用.机床与液压. 2003, 2: 151~153
    [50]孟心斋,孟昭焱.节流性能优异的新型液体静压支承节流器.中国工程科学. 2005, 3: 49~52
    [51]周述齐,权威,王健民.薄膜反馈节流静压滑动轴承模糊优化设计.机械设计与制造. 2004, 3: 56~58.
    [52]王瑜,王涛,马玉林.无回油槽双列内节流液体静压轴承的研究.哈尔滨工业大学学报. 2000, 6: 71~73
    [53]康俊远.表面节流式动静压轴承的特性分析.润滑与密封. 2006, 6: 135~137.
    [54]夏恒青.内部节流静压、动静压支承中节流腔新结构及其不同布置时的支承性能.郑州工学院学报. 1989, 10(2):97~102.
    [55] Li., C.H. Dynamic of rotor bearing systems supported by floating ring bearings. Journal of lubrication technology. 1982, 104 (4): 469~477.
    [56]郭红,张绍林,夏伯乾.透平膨胀机组动静压浮环轴承性能研究.机械科学与技术. 2000, 19 (3): 414~416.
    [57] Tanaka, M. and Hori, Y. Stability Characteristics of Floating Bush Bearings, Journal of lubrication technology. 1972, 248-259.
    [58] Mokhtar, M. O. A. Floating Ring Journal Bearing: Theory, Design and Optimization, Tribology International. 1981, 14( 2): 113-119.
    [59] Li, C. H. Dynamics of Rotor Bearing Systems Supported by Floating Ring Bearings. J. Lubr. Technol, 1982, 104, pp 469-477.
    [60] Trippett, R. J. and Li, D. F. High-Speed Floating-Ring Bearing Test and Analysis. Tribology Transactions. 1984, 27(1): 73-81.
    [61] Clarke, D. M., Fall, C., Hayden, G. N. and Wilkinson, T. S. Steady-state Model of a Floating Ring Bearing, including Thermal Effects. Trans. ASME J. Tribol., 1992, 114(1): 141-149.
    [62] Naranjo, J., Holt, C., San Andres, L. Dynamic Response of a Rotor Supported on a Floating ring Bearing. Proceedings of the International Symposium on Stability control of rotating machinery. 2001, 1: 2005.
    [63]尉迟铁业.具有深浅腔的圆锥浮环动静压轴承理论和实验研究[硕士论文].郑州:郑州工学院. 1993.
    [64] Zhang, R.Q., Chang, H.S. Stability of a new type of hydrostatic/hydrodynamic floating ring gas bearing. Tribology Transactions. 1999, 42(2): 331~337.
    [65] Zhang, R.Q., Zhang, X.S. Stability of orifice-annular and shallow-pocket restricted floating ring gas bearing. Journal of Beijing Institute of Technology (English Edition). 1997, 6(2): 130~137.
    [66]李春芝,邢彭龄.双浮环轴承与单浮环轴承流体动力特性比较.内蒙古民族大学学报. 2005, 20(5): 484~487.
    [67]杨德全,代玉杰.错位浮环轴承稳定性的边界元分析.润滑与密封. 2006(1): 38~40.
    [68]杨德全,代玉杰.错位浮环轴承和螺线浮环轴承流体动力特性比较[J].轴承. 2007(7): 32~34.
    [69]彭红梅,杨德全.双错位浮环轴承流体动力特性研究.内蒙古民族大学学报. 2008, 23(1): 8~10.
    [70]邢彭龄,宋金平,王伟丽等.五叶浮环轴承的数值分析.中国新技术新产品. 2008, 23(1): 94~96.
    [71]彭红梅,杨德全.四叶错位浮环轴承流体动力特性的边界元分析.机械制造. 2008(4): 15~16.
    [72]苗刚,王伟丽,杨德全.橄榄形浮环轴承流体动力学特性的研究.内蒙古民族大学学报. 2008(5): 498~500.
    [73]杨德全,彭红梅.复杂形状浮环轴承流体动力特性的边界元分析.轴承. 2008(11): 23~24.
    [74] Holt, C., San Andres, L. etc. Test response of a turbocharger supported on floating ring bearings-Part I: Assessment of Subsynchronous Motions. Proceedings of the ASME Design Engineering Technical Conference. 2003: 969~974.
    [75] Holt, C., San Andres, L. etc. Test response of a turbocharger supported on floating ring bearings-Part II: Comparisons to Nonlinear Rotordynamic Predictions. Proceedings of the ASME Design Engineering Technical Conference. 2003: 975~980.
    [76] San Andres, L., Kerth, J. Thermal effects on the performance of floating ring bearings for turbochargers. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of engineering Tribology. 2004, 10: 437~450.
    [77]岑少起,郭红.透平膨胀机组动静压浮环轴承稳定性研究.机械强度. 2002, 24(1): 32~34.
    [78]岑少起,郭红,张雪萍.油膜稳定性三维判据研究.润滑与密封. 2002, 6: 1~3
    [79]岑少起,崔岩.圆锥浮环动静压轴承动态特性实验研究.润滑与密封. 2004, 7: 22~24.
    [80]岑少起,郭红.多种节流形式的动静压轴承有限元-优化分析.机械科学与技术. 2002, 2: 414~416
    [81]岑少起,张少林,郭红.径向-推力联合浮环动静压轴承动态特性试验研究.润滑与密封. 2006, 5: 53~56.
    [82]岑少起,郭红.同时计入轴颈、轴瓦动变形的超重载圆柱滑动轴承EHL动力特性研究.润滑与密封. 2007, 32(7): 5~7
    [83]熊滨生,郭红.透平膨胀机组动静压向心浮环轴承静动态性能及稳定性研究.润滑与密封. 2007, 32: 1~5
    [84]熊滨生,郭红.透平膨胀机组动静压径向推力联合浮环轴承推力部分静动态性能研究.润滑与密封. 2007, 32(8): 28~31
    [85]熊滨生,郭红.气穴现象对动静压浮环径向轴承压力场的影响研究.润滑与密封. 2007, 32(9): 1~5.
    [86]郭红,李瑞珍.超高速动静压推力轴承特性优化分析.机床与液压. 2008, 36(1): 4~5.
    [87] Rankine W. J.M. On the centrifugal force of rotating shafts, The Engineer, April, 1869.27
    [88] Jeffcott, H.H. The lateral vibration of loaded shafts in the neighbourhood of a whirling speed. Phil Mag, 1919,6(37): 304~314
    [89] Newkirk, B.L. Shaft whipping General Electric. Rev. 1924, 27: 169~178.
    [90]黄文虎,武新华,焦映厚等.非线性转子动力学研究综述.振动工程学报. 2000, 13(4): 497~509.
    [91] Foiles, W.C., Allaire, P.E., Gunter, E.J. Review: Rotor balancing. Shock and Vibration. 1998, 5(6): 325~336.
    [92]姜培林,虞烈.推力轴承对轴承-转子系统的耦合作用研究.应用力学学报. 1996, 13(4): 46~53.
    [93]夏伯乾,虞烈,谢友柏. DH型压缩机齿轮-转子-轴承系统动力学分析.振动工程学报. 2003, 16(2): 32~34.
    [94]吕延军,虞烈.流体动压滑动轴承-转子系统非线性动力特性及稳定性.摩擦学学报. 2005, 1: 61~66.
    [95] Chen, C.H. The Influence of Orifice Restriction and Journal Eccentricity on the Stability of the Rotor-Hybrid Bearing System. Tribology International. 2004, 37(3): 227~234.
    [96] Chen, C.H. The Restriction Effects of Capillary Compensation on the Stability of the Jeffcott Rotor-Hybrid Bearing System. Tribology International. 2002, 35(2): 849~855.
    [97]吴超.具有主动控制功能的油膜轴承研究.上海大学博士论文. 2008
    [98] Flack, R.D., Kostrzewsky, G. J., Taylor, D.V. A Hydrodynamic Journal Bearing Test Rig with Dynamic Measurement Capabilities. Tribology Transactions. 1993, 36: 497~512.
    [99]胡朝阳,常山.大型径向和推力滑动轴承试验台结构设计与应用.齐齐哈尔大学学报. 2005, 6: 79~82.
    [100]张君安,张立新.空气静压推力轴承压力分布实验台研制.西安工业大学学报. 2006, 4: 349~351
    [101] Tieu, A.K., Qiu, Z.L. Identification of sixteen dynamic coefficients of two journal bearings from experimental unbalance responses. Wear, 1994, 177: 63~69.
    [102] Qiu, Z.L., Tieu, A.K. Identification of sixteen dynamic coefficients of two journal bearings from impulse responses. Wear, 1997, 212: 206~212.
    [103] Zhang, Y.Y., Xie, Y.B., Qiu, D.M. Identification of linearized oil-film coefficients in a flexible rotor-bearing system, Part I: Model and simulation. ASME J. Sound and Vibration, 1992, 152: 531~547.
    [104] Zhang, Y.Y., Xie, Y.B., Qiu, D.M. Identification of linearized oil-film coefficients in a flexible rotor-bearing system, Part II: Experiment. ASME J. Sound and Vibration, 1992, 152: 549~559.
    [105] Zhou, H., Zhao, S.X., Xu, H., and Zhu, J. An experimental study on oil-film dynamic coefficients. Tribol. Int., 2004, 37: 245~253.
    [106]吕延军,虞烈.椭圆轴承—转子系统非线性运动及稳定性分析.机械工程学报. 2006, 4: 88~95.
    [107]秦平,沈钺.考虑进油压力的滑动轴承非线性油膜力数据库.摩擦学学报. 2004, 5: 258~262.
    [108]杨金福,杨昆.滑动轴承非线性油膜力研究.振动工程学报. 2005, 3: 118~123.
    [109]刘大全,肖忠会.滑动轴承非线性油膜力的一维直接解法.机械工程学报. 2005, 2: 51~56.
    [110] Laurant, F., Childs, D.W. Measurements of Rotordynamic Coefficients of Hybrid Bearings With (a) a Plugged Orifice, and (b) a Worn Land Surface. ASME J. Eng. Gas Turbines Power, 2002, 124: 363~368.
    [111] Kostrzewsky, G.J., Taylor, D.V., Flack, R.D. Experimental Determination of the Dynamic Characteristics of a Two-Axial Groove Journal Bearing,”Tribol. Trans., 1994, 37: 534~542.
    [112] De Santiago, O., San Andr s, L. Experimental Identification of Bearing Dynamic Force Coefficients in A Flexible Rotor—Further Developments. Tribol. Trans., 2007, 50: 114~126.
    [113] San Andres, L., Rivadeneira, J.C. etc. Rotordynamics of small turbochargers supported on floating ring bearings-Highlights in bearing analysis and experimental validation[J]. Journal of Tribology. 2007(129): 391~397.
    [114] Deshpande M, Feng J, Merkle CL. Numerical Modeling of the Thermodynamic Effects of Cavitations. Fluids Eng. 1997, (119): 40~56
    [115] Wang X-L, Zhu K-Q. A Study of the Lubricating Effectiveness of Micropolar Fluids in a Dynamically Loaded Journal Bearing. Tribol Int. 2004, 37(48): 48~90
    [116] Furness RA, Hutton SP. Experimental and Theoretical Studies on Two-dimensional Fixed-type Cavities. J Fluids Eng. 1975, 97(4): 15~22
    [117]沈心敏,徐万孚.进动挤压油膜轴承中的气穴效应.第四届全国摩擦学学术会议.清华大学出版社. 1987: 018
    [118]安琦,周银生,顾大强.汽油两相流对滑动轴承油膜压力分布的影响.石油学报(石油加工). 1997, (9): 105~110
    [119]安琦.气油两相流对滑动轴承油膜刚度的影响.润滑与密封. 1997, 1: 18~20
    [120]安琦,周银生,全永昕.气油两相流粘度试验的特性研究.机械工程学报. 1998, 32(5): 1~6
    [121]王宜.涡流传感器使用说明书.宝应振动仪器厂. 2003: 1~20
    [122]应怀樵. INV系统使用说明书.东方振动和噪声技术研究所. 2003: 1~25
    [123]应怀樵.多功能抗混滤波放大器.东方振动和噪声技术研究所. 2003: 1~20
    [124]何真,程大黑. PLK-48/7.0-0.54型透平膨胀机组使用报告.开封空分集团有限公司, 1994,43-45.
    [125] Wygant, K. D., Flack, R. D. and Barrett, L. E. Measured Performance of Tilting-pad Journal Bearings over a Range of Preloads - Part I: Static Operating Conditions,”Tribol. Trans.,2004, 47(4): 576-584.
    [126] Wygant, K. D., Flack, R. D. and Barrett, L. E. Measured Performance of Tilting-pad Journal Bearings over a Range of Preloads - Part II: Dynamic Operating Conditions. Tribol. Trans., 2004, 47(4): 585-593.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700