用户名: 密码: 验证码:
高精度光纤陀螺建模及信号处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近30年来,光纤陀螺作为一种新型惯性敏感器件在国防领域得到了广泛的应用。在国外,随着光学器件的加工工艺和关键技术的突破,高精度光纤陀螺也进入了使用阶段。在国内,由于光学器件的加工工艺和某些关键技术尚未突破,高精度光纤陀螺还停留在实验室阶段。尤其是高精度光纤陀螺的建模技术和信号处理技术,仍处于初步探索阶段。经研究发现,光路参数、电路参数以及调制解调的方法都会约束光纤陀螺精度的进一步提高,所以建立高精度光纤陀螺的光学模型与电路控制模型非常有意义。本文在前人的工作基础上,提出了基于四状态的双闭环调制解调技术,对光纤陀螺光路模型和闭环控制电路的数学建模进行了深入的研究,并对光纤陀螺信号处理技术做了深入研究。
     首先,设计了三轴一体化的高精度光纤陀螺的光路结构,对光路中各个分立的光学器件建立基于琼斯矩阵的数学模型,根据光干涉理论和偏振态理论,建立了光纤陀螺整体光路的数学模型。在光路模型的基础上,分别仿真研究了集成光学相位调制器的消光比、光纤焊接熔接角、相位噪声以及光纤内部存在的偏振耦合点对干涉结果的影响。
     其次,详细分析了方波偏置下的数字闭环调制解调原理和反馈回路增益误差产生的原因及其解调方法,并对方波偏置下的数字双闭环调制解调方法的优缺点进行了深入的研究。在此基础上提出了基于四状态偏置的数字双闭环调制解调方案,分别研究了几种不同条件下的调制解调过程,并给出了调制解调方程。最后给出了四状态偏置的数字双闭环调制解调方案详细实现。
     再次,为了能够满足不同应用环境对光纤陀螺性能的要求、实现光纤陀螺系统参数的优化设计以及深入掌握光纤陀螺系统参数与光纤陀螺性能参数之间的关系,建立了光纤陀螺的数字双闭环控制回路模型,并进行仿真研究。对采用两种不同调制解调方案的光纤陀螺系统进行了实际比较,从而有效地证明了四状态偏置的数字双闭环调制解调方案的优越性,为提高光纤陀螺的精度提供了一个有效的途径。
     最后,为了减轻调制解调电路的压力,提高光纤陀螺的精度,提出了基于归一化最小均方算法(NLMS)的前向线性预测滤波器(FLP)的降噪方法。首先分析了光纤陀螺系统各种噪声的来源,并用Allan方差来描述,然后对FLP和NLMS理论进行了深入研究。最后对实时采集的光纤陀螺数据进行降噪处理,证明了基于NLMS的FLP降噪的有效性,为光纤陀螺精度的提高提供了又一个有效地途径。
Over the past 30 years, as a new type of inertial-sensitive sensor, fiber-optic gyro (FOG)is widely used in the field of national defense. Abroad, with the arts of optical components and key technology of FOG were broken through, high-precision FOG has entered a stage of use. In China, as a result of the processing technology of optical components and some of the key technology is not yet broken through, high-precision FOG remains in the laboratory stage. Especially modeling techniques and signal processing technology of high-precision FOG, are still in the initial stages of exploration. In this article, based on the work of our predecessors, double closed-loop modem technology based on four-state is brought forward, the optical models and mathematical modeling on the closed-loop control circuit are in-depth research, and the signal processing technology of fiber-optic gyro is deeply studied.
     First of all, optical structure of three-axis integration fiber optic gyroscope is designed, and mathematical models of optical components in the optical circuit are modeled based on the Jones matrix, according to the theory of optical interference and polarization, the whole mathematical optical Model of FOG is established. On the basis of optical model, the effect of the integrated optical modulator extinction ratio,split ratio and the length of pigtail on the interferometer.
     Secondly, the modulation demodulation principle of digital closed-loop with the square-wave bias and the causation of gain error of feedback loop are detailed analysis, the advantage and disadvantage of digital double closed-loop modulation demodulation method are studied deeply. On this basis, the scheme of digital double closed-loop modulation demodulation with four-state-bias was brought forward, and the process of modulation demodulation under some different conditions were studied, and gave the modulate-demodulate equations. Finally, the realization of digital double-closed-loop with four-state bias was brought forward detailedly.
     Thirdly, in order to be able to meet the needs of different applications of fiber-optic gyro,and realize optimal design of parameters of fiber-optic gyro system,as well as master the relationship between the system parameters of FOG and performance parameters, established and simulated the digital double-closed-loop model of FOG. Comparison of two different modulate-demodulate scheme was made, and advantage of digital double closed-loop with four-state bias was proved effectively, and an effective route was brought forward to improve the accuracy of the FOG.
     Finally, in order to alleviate the pressure on the modulate-demodulate circuit, and improve the accuracy of FOG, noise reduction method of forward linear prediction filter (FLP) based on normalized least mean algorithm (NLMS). Firstly,all noise sources of FOG system was analysed, and their characteristics were described using the Allan variance, then made research deeply on the FLP and NLMS theories. At last, noise reduction was dealt with the real-time data of FOG, and the effectiveness of the FLP noise reduction based on FLP was proved, this provides another effective way to improve the accuracy of fiber optic gyroscope.
引文
[1]MARINS,第一个潜艇用FOG导航系统.舰船导航.2007,4:20-24页
    [2]Herve C. Lefevre.光纤陀螺仪.张桂才,王巍.第二版.北京:国防工业出版社,2004:18-20页
    [3]Herve C. Lefevre. Fundamentals of the Interferometric Fiber-Optic Gyroscope.1996, SPIE 2837:2-17P
    [4]李绪友.高精度数字闭环光纤陀螺的研究.哈尔滨工程大学博士学位论文.2002:6-8页
    [5]Ulrich, R. Fiber-Optic Rotation Sensing With Low Grift. Optics Letters .1980,5:170-172P
    [6]Martin, J. M., J. T. Winkler. Fiber-Optic Laser Gyro Signal Detection and Processing Technique. SPIE Proceedings.1978,139:98-102P
    [7]Davis, J.L., S.Ezekiel.Techniques for Shot-Noise-Limited Inertial Rotation Measurement Using a Muti-turn Fiber Sagnac Interferometer.SPIE Proceedings.1978,157:131-136P
    [8]Cahill, R.F., E.Udd.Phase-Null Fiber-optic Laser gyro.Optics Letters .1979,4:93-95P
    [9]Kay, C.J. Serrodyne Modulator in a Fiber-Optic Gyroscope. IEEE Proceedings,Part J-Optoelectronics.1985,132:259-264P
    [10]Elberg, A., G.Schiffner. Closed-Loop Fiber-Optic Gyroscope With a Sawtooth Phase-Modulated Feedback.Optics Letters.1985,10:300-302P
    [11]Lefevre, H.C, S.Vatoux, M.Papuchon. Integrated Optics:A Practical Solution for the Fiber-Optic Gyroscope.SPIE Proceedings.1986,719: 101-112P
    [12]Arditty, H.J, P.Graindorge, H.C.Lefevre. Fbier-Optic Gyroscope With All-Digital Processing. Proceedings of OFS 6/'89, Paris, Springer-Verlag Proceedings in Physics.1989,44:131-136P
    [13]李绪友,郝燕玲.基于FPGA的数字闭环光纤陀螺研究,中国惯性技术学报.2002,10(2):40-43页
    [14]王妍,张春熹.带第二反馈回路的全数字闭环光纤陀螺.压电与声光.2005.8,27(4):348-351页
    [15]WILLIAM K. BURNS, CHIN-LIN CHEN, R. P. MOELLER. Fiber-Optic Gyroscopes with Broad-Band Sources. JOURNAL OF LIGHTWAVE TECHNOLOGY,1983, LT-1(1):98-105P
    [16]C.Seidel, G. F. Trommer. MODELLING OF FIBER-OPTIC GYROSCOPES WITH LOW-COHERENCE LIGHT SOURCES .International Journal of Modelling and Simulation.2005,25(2):71-78P
    [17]秦一帆,胡志雄,葛春风,武星.干涉式光纤陀螺的偏振噪声分析.光电子技术.2006,26(3):181-184页
    [18]米剑,张春熹,李铮,邬占军.偏光干涉对光纤陀螺性能的影响.光学学报.2006,26(8):1140-1144页
    [19]Hong Gu, GongLiu Yang, Ye Yang. Analysis and Simulation of Optical Polarization Fluctuation of Interferometric Fiber Optic Gyroscope. SPIE Proceedings.2007,6595:1-6P
    [20]G.W Erickson. An Overview of Dynamic and Stochastic Modeling of Gyros.Proceedings of the National Technical Meeting of the ION.1993, 339-351P
    [21]Michael S. Bielas. Stochastic and dynamic modeling of fiber gyros. Fiber Optic and Laser Sensors XII.1994,2292:240-254P
    [22]S. J Sanders, L.K.Strandjord, D. Mead.Fier Optic Gyro Technolory Trends-A Honeywell Perspective. IEEE,2002,5-8P
    [23]R.Tanaka, A.Kurokawa, Y.Sato, T.Magome, Y.Hayakawa, I.Nakatani, J.Kawaguchi. Signal Processing for FOG. Fiber Optic and Laser Sensors XII.1994,2292:192-202P
    [24]A. Noureldm, M.Mintchev, D.Irvine-Halliday, H.Tabler.Computer Modelling Of Microelectronic Closed Loop Fiber Optic Gyroscope. IEEE Canadian Conference on Electrical and Computer Engineering, Shaw Conference Center,Edmonton,Alberta,Canada,1999.633-638P
    [25]牟旭东.数字闭环光纤陀螺的PID控制及参数的自动优化.激光与红外.2000.8,30(4):244-246页
    [26]王妍,张春熹,刘镇平.闭环光纤陀螺数字控制器的设计与仿真.2004.12,31(增刊):108-113页
    [27]朱荣,张炎华,莫友声.干涉式光纤陀螺的建模与仿真.2004.12,31(增刊):108-113页
    [28]邬战军,张春熹,王夏霄,张唏.光纤陀螺数字闭环控制系统模型实验研究.光子学报.2007.9,36(9):1582-1586页
    [29]Kevin M. Killian. Pointing Grade Fiber Optic Gyroscope. IEEE AES Systems Magazine.1994.7,6-10P
    [30]R.P.Moeller, W.K.Burns.1.06um All-fiber Gyroscope With Noise Subtraction.82-85P
    [31]Kevin Killian, Mark Burmenko, Walter Hollinger. High performance fiber optic gyroscope with noise reduction. Fiber Optic and Laser Sensors Ⅻ.1994, SPIE Vol.2292:255-263P
    [32]Guenter Spahlinger, Manfred Kemniler, Markus Ruf. Error Compensation via Signal Correlation in High Precision Closed-Loop Fiber Optic Gyros.SPIE.1996,2837:218-227P
    [33]M.C.Algrain, D.E.Ehlers. Novel Kalman filtering method for the suppression of gyroscope noise effects in pointing and tracking Systems. J.Opt.Eng.1995,34(10):3016-3030P
    [34]Z.Rong, Y.Zhang, B.Lian. Novel neural networks for eliminating errors existing in FOG.in Integrated Optics Devices, Proc. SPIE.2000,3936:301-308P
    [35]Aboelmagd Noureldin, Dave Irvine-Halliday. New technique for reducing the angle randomwalk at the output of fiber optic gyroscopesduring alignment processes of inertial navigation systems. Opt.Eng.2001,40(10): 2097-2106P
    [36]冯丽爽,徐小斌,张春熹.光纤陀螺光路小型化技术.中国惯性技术学 报.2006,14(4):49-52页
    [37]邹燕,杭彬,魏新刚.光纤陀螺光路小型化技术研究.军械工程学院学报.2007,19(1):27-30页
    [38]李嵘,白洁雁,卫炎.三轴一体化光纤陀螺设计.自动驾驶仪与红外技术.2007,124(1):10-13页
    [39]潘雄,宋凝芳,金靖等.三轴一体轻小型光纤陀螺仪的时序设计.北京航空航天大学学报.2006,32(11):1377-1379页
    [40]金靖,宋凝芳,李敏等.卫星用光纤陀螺三轴组合的关键技术.北京航空航天大学学报.2006,32(11):1387-1389页
    [41]卓智鹏.光纤陀螺用掺铒光纤光源的关键技术研究.哈尔滨工程大学硕士学位论文.2007:17-23页
    [42]张琛.光纤陀螺光路系统稳定性研究.哈尔滨工程大学硕士学位论文.2007:10-13页
    [43]王秀琳,黄文财,明海.宽带、高稳定掺饵光纤超荧光光源.激光与光电子学进展.2005,42(5):32-36页
    [44]刘少辉.C+L波段宽带ASE光源研究.吉林大学硕士学位论文.2006.5页
    [45]王衍勇.宽带掺铒光纤放大器关键技术研究.天津大学博士学位论文.2004.8页
    [46]顾兴志.稳定光源与光功率计的研制.重庆大学硕士学位论文.2004.6
    [47]肖瑞.掺铒光纤光源研究.国防科学技术大学硕士学位论文.2002.11
    [48]王长伟.光纤陀螺稳定性研究.哈尔滨工程大学硕士学位论文.2006.1
    [49]姚琼,谢元平,宋章启.光纤陀螺光源误差及消除方法分析.激光杂.2005,26(5):74-75页
    [50]方荇,王品红,赵淑平.光纤陀螺用掺铒超荧光光纤光源.半导体光电.2006,27(3):263-265页
    [51]李彦,欧攀,张春熹等.光源光谱对干涉式光纤陀螺零漂的影响.北京航空航天大学学报.2006,32(12):1439-1442页
    [52]D.Marcuse.The coupling of degenerate modes in two parallel dielectric waveguides. Bell System Technical Journal.1971, (50):1791-1816P
    [53]P.D.Mcintyre, A.W.Snyder. Power transfer between optical fibers. JOSA. 1973,(12):1518-1527P
    [54]R.Vanclooster, P.Pharisean. The coupling of two paraller dielectric fibers. Parts Ⅰ and Ⅱ.Physica.1970,47(4):485-514P
    [55]郑煜.熔锥型保偏光纤耦合器制造的关键技术研究.国防科学技术大学硕士学位论文.2006.1
    [56]李嵘,卫炎,白洁雁.保偏光纤耦合器制作研究.自动驾驶仪与红外技术.2006,3(122):36-40页
    [57]柳春郁,余有龙,柳耀文等.熔锥型光纤耦合器的制作.黑龙江大学自然科学学报.2004,21(1):79-81页
    [58]倪道友,赵岳均.保偏光纤耦合器.光纤与电缆及其应用技术.1997(3):30-32页
    [59]吴晰敏.光纤耦合器的主要技术指标.光纤通信.2002,1:41-43页
    [60]廖延彪编著.第一版.光纤光学.清华大学出版社.2000:67-68 75页
    [61]O.M.Laznicka, P.G.Suchoski. Inertial-grade fiber gyro utilizing an advanced integrated optical circuit with beat detection. Fiber Optic Gyros:15th Anniversary Conference.1991, SPIE Vol.1585:182-185P
    [62]M.S.Ner, P.Grollmann, G.Mutter. Lithium niobate based integrated optic chip utilizing digital electrode layout for use in a miniature fibre optic rate sensor.1995, SPIE,2510:68-80P
    [63]Oldrich Laznicka, Andrew Maltenfort, Karl Kissa. Medium Accuracy Fiber-Optic Gyroscope using Integrated Optical Circuit Technology. Fiber Optic Gyros:15th Anniversary Conference.1991, SPIE,1585: 331-334P
    [64]张桂才.集成光学在光纤陀螺仪中的应用.导航.1999,(4):105-112页
    [65]李绪友,赵玉新,郝燕玲.数字闭环光纤陀螺信号处理方法研究.中国惯性技术学报,2001.9(4):74-77页
    [66]叶炜.光纤陀螺闭环检测理论及技术研究.浙江大学博士学位论文.1998:66-74页
    [67]Lon A. Wang, C. D. Su. Modeling of a Double-Pass Backward Er-Doped Superfluorescent Fiber Source for Fiber-Optic Gyroscope Applications. JOURNAL OF LIGHTWAVE TECHNOLOGY,1999, 17(11):2307-2315P
    [68]张桂才,巴晓艳.集成光学器件参数对光纤陀螺性能的影响.导航与控制.2005,4(1):45-49页
    [69]Radomir Vacek. Thermal stability of fibre coils for Sagnac interferometers. 1995, SPIE 2510:92-98P
    [70]Paul B. Ruffin. Stress and temperature effects on the performance Of polarization-maintaining fibers.1990, SPIE 1317:324-332P
    [71]孟照魁,张春熹,杨远洪等.光纤环绕制过程中的张力分析.北京航空航天大学学报.2005,31(3),307-310页
    [72]杨远洪,伊小素,孟照魁.光纤陀螺用光纤环的应力分布实验研究.压电与声光.2005,27(2):98-101页
    [73]毛彩虹,胡慧珠,刘承等.交叉子光纤环的理论与实验研究.光学学报.2003,23(5):552-555页
    [74]Sverre Knudsen, Alan B.Tveten, Anthony D.Dandridge. Sensitivity Limits of a Sagnac Interferometer due to Fundamental Thermal Induced Phase Fluctuations in the Fiber Coil. Fiber Optic and Laser Sensors XII. 1994, SPIE 2292:292-298P
    [75]Cassie M.Lofts, Paul B.Ruffin, Mike Parker. Investigation of the effects of temporal thermal gradients in fiber optic gyroscope sensing coils. Optical Engineering.1995,34(10):2856-2863P
    [76]Janet Sawyer, Paul B.Ruffin, C.C.Sung. Investigation of the effects of temporal thermal gradients in fiber optic gyroscope sensing coils, part 2.Optical Engineering.1997,36(1),29-34P
    [77]Paul B. Ruffin, Ronald H. Smith. Fiber winding approaches for environmentally-robust IFOG sensor coils. Components for Fiber Optic Aoolications Ⅶ.1992, SPIE 1792:179-189P
    [78]Paul B. Ruffin, C.C.Sung, Robert Morgan. Analysis of temperature and stress effects in fiber optic gyroscopes. Fiber Optic Gyros:15th AnniversaryConference.1991, SPIE 1585:293-299P
    [79]戴旭涵,杨国光,刘承.光纤环中的Shupe效应及其补偿方法研究.光子学报.2001,30(12):1470-1473页
    [80]贾鲁宁.光纤陀螺制造中光纤线圈四极绕环自动化的发展问题.导航与控制·译文集.2004,1:62-66页
    [81]高晋占编著.微弱信号检测.北京:清华大学出版社,2004.
    [82]Jagannath Nayak, P.Banerjee, A.Selvarajan. NOISE SOURCES IN FIBER OPTIC ROTATION SENSORS:SYSTEM NALYSIS.1997, SPIE.3211:511-517 P
    [83]W.K.Burns, R.P. Moeller. Noise Effects in High Sensitivity Fiber Optic Gyros.1996, SPIE 2837:381-387P
    [84]胡先志.光纤与光缆技术.第一版.北京:电子工业出版社,2007:150-220页
    [85]范崇澄,彭吉虎.导波光学.第一版.北京:北京理工大学出版社,1988,212-231页
    [86]马科斯.玻恩,艾米尔.沃耳夫.光学原理.杨葭荪.第七版.北京:电子工业出版社,2007
    [87]廖延标.偏振光学.北京:科学出版社,2003.
    [88]李彦,张春熹,欧攀等.光源偏振度对光纤陀螺零漂影响的研究.光学技术.2006,32(6):893-899页
    [89]WILLIAM K.BURNS, ROBERT P.MOELLER. Polarizer Requirements for Fiber Gyroscopes with High-Birefringence Fiber and Broad-Band Sources. JOURNAL OF LIGHTWAVE TECHNOLOGY.1983,LT-2(4): 430-435P
    [90]秦一帆,胡志雄,葛春风等.干涉式光纤陀螺的偏振噪声分析.光电子技术.2006,26(3):181-184页
    [91]梁志军,谷云彪,李德才.干涉型光纤陀螺中的偏振光干涉.中国惯性技术学报.2004,12(4):58-62页
    [92]徐小斌,徐宏杰,冯丽爽等.光源光功率和偏振度对闭环光纤陀螺的影响.光电工程.2007,34(5):62-66页
    [93]米剑,张春熹,李铮.偏光干涉对光纤陀螺性能的影响.光学学报. 2006,26(8):1140-1144页
    [94]陈世同,孙枫,吴磊等.光纤陀螺光路建模及偏振耦合误差分析.仪器仪表学报.2007,28(8):179-182页
    [95]张唏.光纤陀螺闭环检测与控制.北京航空航天大学博士学位论文.2001
    [96]张春熹.高精度光纤陀螺及其相关技术研究.北京航空航天大学博士学位论文.1999
    [97]George A. Paviath. Closed-loop fiber optic gyros. SPIE Vol.2837:46-60P
    [98]肖翔,胡宗福.数字光纤陀螺的第二反馈回路实验研究.光学与光电技术.2005,3(6):44-46页
    [99]H.C.Lefevre, P.Martin, J.Morisse. High dynamic range fiber gyro with all-digital signal processing. Fiber Optic and Laser Sensors VIII.1990, SPIE Vol.1367:72-80P
    [100]H. C. Lefevre, Ph. Martin, T. Gaiffe. LATEST ADVANCES IN FIBER-OPTIC GYROSCOPE TECHNOLOGY AT PHOTONETICS. Fiber Optic and Laser Sensors XII.1994, SPIE Vol.2292:156-165P
    [101]陈世同,孙枫,李绪友.集成光学器件相位漂移补偿方法研究.哈尔滨工程大学学报.2008,29(1):45-49页
    [102]郭齐胜,董志明,单家元.系统仿真.第一版.北京:国防工业出版社,2006
    [103]吴旭光,杨惠珍,王新民编著.计算机仿真技术.北京:化学工业出版社,2005
    [104]张晓华编著.系统建模与仿真.北京:清华大学出版社,2006
    [105]黄忠霖.控制系统MATLAB计算及仿真.第二版.北京:国防工业出版社,2006.
    [106]Jen-Dau Lin, Kung-Hung Kuo, Chun-Shin Yeh. Phase Domain Model of a Second Order Fiber-optic Gyroscope Dynamic System. IMTC, Hamamatsu,1994:420-423P
    [107]A.Noureldin, M.Mintchev, D.Irvine-Halliday. Computer Modelling Of Microelectronic Closed Loop Fiber Optic Gyroscope. Conference on Electrical and Computer Engineering, Shaw Conference Center, Edmonton, Alberta, Canada,1999. Proceedings of the 1999 IEEE: 633-638P
    [108]Christian Seidel, Gert F.Trommer.Modeling of Bias Errors in Fiber-Optic Gyroscopes with New Simulation Tool. Integrated Optics and Photonic Integrated Circuits, Bellingham, WA,2004. Proc. of SPIE Vol. 5451:114-123P
    [109]王妍,张春熹,刘镇平.闭环光纤陀螺数字控制器的设计与仿真.光电工程.2004,31(增):108-113页
    [110]王妍,张春熹.带第二反馈回路的全数字闭环光纤陀螺.压电与声光.2005,27(4):348-351页
    [111]西蒙.赫金.自适应滤波器原理(第四版).郑宝玉.第一版.北京:电子工业出版社,2003:18-20页
    [112]龚耀寰.自适应滤波.第二版.北京:电子工业出版社,2003
    [113]朱奎宝,张春熹,宋凝芳.光纤陀螺角度随机游走对惯导系统影响.压电与声光.2007,29(3):292-294页
    [114]IEEE Standard SpecilPcation Format Guide and Test Procedure for Single-Axis Interferometric Fiber Optic Gyros. IEEE Std 952-1997
    [115]宋凝芳,张中刚,李立京等.光纤陀螺随机游走系数的分析研究.中国惯性技术学报.2004,12(4):34-38页
    [116]谷源涛.LMS算法收敛性能研究及应用.清华大学工学博士学位论文.2003:7-20页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700