用户名: 密码: 验证码:
冻融循环与列车动载耦合作用下高速铁路地基沉降规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国铁路网建设的高速发展,穿越季节性冻土区的铁路数量及行车速度都在不断提高,高铁地基沉降所引发的危害也愈加严重,虽已引起人们的重视,但相关研究尚未深入,尤其从量化季节性冻土结构性角度研究高铁地基沉降问题目前国内外未见相关报道。
     论文以哈大线高速铁路沈阳段为研究实例,结合现场监测、室内试验、冻融循环试验、季节性冻土动三轴试验,利用应变能、J积分、土体动力学、热力学、能量转化等相关理论知识和MIDAS数值模拟软件,从量化季节性冻土结构性角度完成了季节性冻土区冻融循环与列车动载耦合作用下高铁地基沉降规律研究。建立了综合考虑季节性冻土变温冻结、恒温冻结、变温融化、恒温融化等过程的结构性量化指标,实现了考虑土体结构性的三场耦合;利用施工期的实际沉降监测值验证了量化指标计算地基土体沉降量的合理性;指明了土体结构演化过程中,结构可稳性与结构可变性同时存在于同一状态下的土体中,只是不同状态变量(荷载、含水量、孔隙比等)下,结构可稳性与结构可变性的强弱不同;在半对数坐标下,得出结构性量化指标与土体应变满足线性相关的结论,并确定了相关系数;通过冻融过程土体微结构观察得出在没有补给水源的情况下,土中水分在冻结过程中也会出现局部的分凝现象以及土中盐类经一个冻融循环后发生重新分布的结论;将冻融循环次数引入量化指标方程,利用其计算出不同冻融循环次数对应的冻融循环与列车动载耦合作用下高速铁路地基的累积沉降量,并与MIDAS数值计算结果相对比,证明了量化指标计算冻融循环与列车动载耦合作用下高速铁路地基沉降的可行性;通过均匀设计试验,得出季节性冻土区换填法防冻害措施的最佳值为:置换层深度在冻融影响范围内50%~60%;置换层厚度为冻融影响范围的20%~25%;地下水位应在冻融影响范围之外。
With the high speed development which our country railway network constructs, the railroad traversing seasonal frozen soil area quantity and the running speed are enhancing increasingly. The high-valence railroad roadbed subsidence initiates the harm even more seriously, although it has brought attention to people, the related studies has not yet penetrates. Especially,to studies the high-valence railroad roadbed subsidence question from the quantification seasonal frozen soil constitutive has not been reported in domestic and foreign at present.
     In the paper,taking the high-speed railroad in Shenyang as the study example , on the base of the scene examination, the indoor large-scale thaw-freeze cycle experiment and the seasonal frozen soil vibration triaxial test, using theoretical knowledges which include strain energy, J integral, soil body dynamics, thermodynamics, conversion of energy principle and the MIDAS numerical simulation software, it has completed the study on settlement law of high-speed railroad foundation under freeze-thaw cycles coupled with train dynamic load. The structural quantitative indicator including variable-temperature freezing, temperature freezing, variable-temperature melting, temperature melting is established,achieved coupling with three field Taking into account to the soil structural and verified the reasonable which calculate the amount of foundation soil settlement by structural quantitative indicator using the actual monitoring in the period of construction .It was pointed that stability and variability exist in the same state of the soil in, quantitative indicators and soil structural strain to meet the linear correlation. By observation of soil micro-structure in freezing and thawing process ,it can be achieved that Soil will also be a partial segregation phenomena during the freezing process without water supply and soil salts will be redistributed by a freeze-thaw cycle. Freeze-thaw cycles were included the quantitative indicators of equations, which is used to calculated the settlement of foundation under different freeze-thaw cycles and compared the numerical results with it .The result prove it feasibility . Through the uniform design experiment, the anti frost damage measures is obtained that fill the best values in the seasonal frozen soil area are: replacement of frozen-thawed layer depth is 50% ~ 60%in the sphere of influence,the thickness is 20%~25% of the affected areas ,the water table should be outside the scope of freeze-thaw effects.
引文
[1]俞展献.日本新干线高速列车的发展历程[J].机车电传动,2003(2):1~7.
    [2]Francois Bress.法国TGV高速列车的社会经济效益[J].中国铁路, 1998(10):7~13.
    [3]Martin Muller,Wofgang D. Hean,Eberhard K.Jansch.郑雅文译,对德国高速铁路各发展阶段的评价[J].中国铁路,1998(10):19~27.
    [4]陈海.世界各国高速列车的比较[J].国外铁道车辆,1998(6):42~45.
    [5]伊藤淳一,张健译.以285Km/h运行的新干线列车[J].国外铁道车辆,2000,37(1):22~23.
    [6]倪逢春编译.欧洲高速列车的发展趋势[J].电气化铁道,2001(4):49~52.
    [7]吴玉树,谢贤良.国外高速铁路发展状况及社会经济效益综述[J].中国铁路,1999(6):18~23.
    [8]何华武.快速发展的中国高速铁路[J].中国铁路,2006(7):23~31.
    [9] MILLER G A, TEH S Y, LI D Q, et al. Cyclic shear strength of soft railroad subgrade[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(7): 139~147.
    [10] LI D Q. Railway track granular layer thickNess design based on subgrade performance under repeated loading[D]. Boston: University of Massachusetts, 1994.
    [11] SEED H B, CHAN C K, MONISMITH C L. Effects of repeated loading on the strength and deformation of compacted clay[J]. Highway Research Record, 1955, 34:541~558.
    [12] MUHANNA A S, RAHMAN M S, LAMBE P C. Model for resilient modules and permanent strain of subgrade soils[R]. [S. l.]: Transportation Research Record No 1619, Transportation Research Board, National Research Council, 1998: 85~93.
    [13] HEATH D L, SHENTON M J, SPARROW R W, et al. Design of conventional rail track foundation[J]. Proc.Inst. Civil Engineering, 1972, 51: 251~267.
    [14] FORTIN. Dynamic track deformation[J]. France Railway Review, 1984, 2(1): 23~26.
    [15] CHEUNG L W. Laboratory assessment of pavement foundation materials[D]. Nottingham: University of Nottingham, 1994.
    [16]陈云敏,陈仁朋,芦森.软土地基地铁施工及运营过程中的几个土力学问题[A].城市地铁建设与环境岩土工程高级技术论坛论文集[C].杭州,2002.165~167.
    [17]崔玉军,卢应发,柴华友.循环荷载下黄土特性模拟[J].岩石力学与工程学报,2005,23(24):4272~4281.
    [18]王如路,刘建航.上海地铁长期运营中纵向变形的监测与研究[J].地下工程与隧道.2001,(4):6~11.
    [19]王秋枝.季节性冻土地区铁路路基冻害及其防治措施[J].铁道勘察.2009,(03):22~25.
    [20]徐学祖,王家澄.中国冻土分布及地带性规律的初步探讨.第二届全国冻土学术会议论文选集.甘肃人民出版社,1983.3~12.
    [21] Andersland O. B.Ilham AI Noun. Time-dependent strength behaviour of frozen soil.J Soil Mech Found, Div Am Soc Civ Eng 1970,96(SM4):1249~1265.
    [22] Sheng D C. Thermodynamics of freezing soils[D].Sweden: Lulea University Press, 1994.
    [23] The 6th International Symposium on Ground Freezing,1991,Vol.1:211~216.
    [24] Fremond M. Mikkola M. Thermomechanical modeling of freezing soil[A],6th Int. Symp. On Ground Freezing[C]. Beijing.
    [25] O’Neill K. Miller R D. Exploration of a rigid-ice of frost heave[J] .Wat. Resour. Res. 1985(21):281~296.
    [26] Harlan R L. Analysis of couple heat-fluid transport in partially frozen soil[J]. Wat. Resour. Res. 1973,9(5):1314~1323.
    [27] Guymon G, Berg R, Hromadka T. A one-dimensional frost heave model based upon simulation of simultaneous heat and water flux[J]. Cold Reg. Sci. and Technol, 1980(3):253~263.
    [28] CHAMBERLAIN E J.Physical changes in clays due to frost action and their effect on engineering structures[C].Proceedings of International Symposium on Frost in Geotechnical Engineering. Finland : Technical Research of Finland(VTT),1989:863~893.
    [29] Chamberlain E J, Gow A J. Effect of freezing and thawing on the permeability and structure of soils[J]. Engineering Geology, 1979(13):73~92.
    [30] ll1 0THMANM A,BENSON CH.Effect of freeze thaw on the hydraulic conductivity and morphology of compacted clay[J].Canadian Geotechnical Journal,1983,30(2):236~246.
    [31]赵云龙.铁路路基冻害及防治[M].中国铁道出版社,1983.
    [32]张志刚,林民武,王成.冻土地区路基破坏及防治方法探讨[J].公路交通科技,2008,06:90~91.
    [33]冻土的温度水分应力及其相互作用[M].中国科学院兰州冰川冻土研究所.兰州大学出版社,1989.
    [34]徐学祖,邓友生.冻土中水分迁移的实验研究[M].科学出版社,1991.
    [35]中华人民共和国水利水电行业标准.渠系工程抗冻胀设计规范SL-91.水利电力出版社,1991.
    [36]徐学祖.中国冻胀研究进展[J].地球科学进展,1994(9):13~19.
    [37]米海珍,吴青柏.沥青路面下多年冻土上限变化计算的探讨[J].冰川冻土,1998(2):70~73.
    [38]宋玲,尤立正.季节冻土区寒土土体温度场计算模型[J].石河子大学学报,2000(6):147~150.
    [39]吴青柏,朱元林.工程活动下的冻土环境研究[J].冰川冻土,2001(2):200~207.
    [40]赵建军,徐学祖.正冻土中的水热藕合模型[J].天津城市建设学院学报,2001,7(1):47~52.
    [41]马巍,吴紫汪,常小晓等.围压作用下冻结砂土微观变化的电镜分析[J].冰川冻土,1995,17(2):152~158.
    [42]吴紫汪,浦毅彬,马巍等.冻土蠕变过程体积变化的CT分析[J].冰川冻土,1995,17(增刊):41~46.
    [43]吴紫汪,马巍,浦毅彬等.冻土蠕变过程中结构的CT分析[J].CT理论与应用研究,1995,4(3):31~34
    [44]马巍,吴紫汪,浦毅彬等.冻土单轴蠕变过程中结构变化的CT动态监测[J].冰川冻土,1997,19(1):52~57.
    [45]吴紫汪,马巍,浦毅彬等.冻土蠕变变形特征的细观分析[J].岩土工程学报,1997,19(3):1~6.
    [46]张长庆,魏雪霞,苗天德.冻土蠕变过程的微结构损伤行为与变化特征[J].冰川冻土,1995,17(增刊):60~65
    [47]苗天德,魏雪霞.冻土蠕变过程的微结构损伤理论[J].中国科学( B辑),1995,25(3):309~317.
    [48]张长庆,苗天德,王家澄,苗丽娜,李亚峰.冻结黄土蠕变损伤的电镜分析[J].冰川冻土,1995,17(增刊):54~59.
    [49]李洪升,王悦东,刘增利.冻土中微裂纹尺寸的识别与确认[J].岩土力学,2004,25(4):534~537.
    [50]李洪升,刘晓洲,刘增利.冻土断裂力学破坏准则及其在工程中的应用[J].2006,39(1):65~78.
    [51]刘增利,张小鹏,李洪升.基于动态CT识别的冻土单轴压缩损伤本构模型[J].岩土力学,2005,26(4):542~546.
    [52]C.C.维压洛夫,冻土流变学[M].刘建坤,刘尧军,徐艳译.北京:中国铁道出版社,2005.
    [53]VIALOV S S,GMOSHINSK II V G,GORODETSK II S E,etal. The strength and creep of frozen soils and calculations for ice-soil retaining structures[M].New Hamp shire: Cold Regions Research and Engineering Laboratory,1965,76.
    [54]LADANYI B. An engineering theory of creep of frozen soils[J].Canadian Geotechnical Journal,1972,9(1):63~88.
    [55]TING J M. Tertiary creep model for frozen sand[J].ASCE Journal of Geotechnical Engineering,1983,109(7):932~945.
    [56]王丽霞,凌贤长.冻土路基地震破坏判别方法研究[J].岩石力学与工程学报,2005,24(4):638~642.
    [57]HANS Vaziri,YINGCAI Han. Ful-scale filed studies of the dynamic response of piles embedded in partially frozen soil[J]. Canadian Geotechnical Journal, 1991(28):708~718.
    [58]何平.饱和冻结粉土的动力特性[D].兰州:中国科学院兰州冰川冻土研究所,1992.
    [59]朱元林,何平,张家懿等.冻土在振动荷载下的三轴蠕变模型[J].自然科学进展,1998,8(1):60~62.
    [60]朱占元,凌贤长,胡庆立等.动力荷载长期作用下冻土振陷模型试验研究[J].岩土力学,2009,30(04):954~959.
    [61]李双洋,张明义,张淑娟等.列车荷载下青藏铁路冻土路基动力响应分析[J].冰川冻土,2008,30(05):860~868.
    [62]姜忠宇,孙建忠,汤精明.往复荷载作用下冻土应力应变关系的研究[J].冰川冻土,2008,30(02):301~305.
    [63] Andersland O. B.Ilham AI Noun.Time-dependent strength behavior of frozen soil[J].Soil Mech Found, Div Am Soc Civ Eng 1970,96(SM4):1249~1265.
    [64] Sheng D C. Thermodynamics of freezing soils[D]Sweden: Lulea University Press, 1994.
    [65] The 6th International Symposium on Ground Freezing,1991, Vol.1:211~216.
    [66] Cheng G D, Wu Q B, Ma W. Innovative design of the perma-frost roadbed for the Qinghai-Tibet Railway [C].Proceed-ings, NICOP (Vol.Ⅰ), 2008: 239-246.
    [67] O’Neill K. Miller R D. Exploration of a rigid-ice of frost heave[J] .Wat. Resour. Res. 1985(21):281~296.
    [68] Harlan R L. Analysis of couple heatfluid transport in partially frozen soil[J]. Wat. Resour. Res,1973,9(5):1314~1323.
    [69] Wang G S, Yu F X, Cao W D,etal. Tower foundation engineering in a patchy permafrost area along the 110 kV power transmission line from Amdo to Damxung, Tibet, China[C].Proceedings, NICOP (Vol.Ⅱ), 2008: 1921~1926.
    [70] Instanes B, Instanes A. Foundation design using a heat pump cooling system [C]. Proceedings, NICOP (Vol.Ⅰ), 2008:785~788.
    [71] Chamberlain E J, Gow A J. Effect of freezing and thawing on the permeability and structure of soils. Engineering Geology, 1979(13):73~92.
    [72] Harada K, Sawada Y, Narita K,et al. Thermal and water conditions of the active layer after the 2002 tundra fire, Seward Peninsula, Alaska [C]. Proceedings, NICOP (Vol.Ⅱ), 2008: 645~648.
    [73]赵云龙.铁路路基冻害及防治[M].中国铁道出版社,1983.
    [74]童长江,管枫年.土的冻胀与建筑物冻害防治[M].水利电力出版社,1985.
    [75]冻土的温度水分应力及其相互作用[M].中国科学院兰州冰川冻土研究所.兰州大学出版社,1989.
    [76]徐学祖,邓友生.冻土中水分迁移的实验研究[M].科学出版社,1991.
    [77]徐学祖.中国冻胀研究进展[J].地球科学进展,1994(9):13~19.
    [78]米海珍,吴青柏.沥青路面下多年冻土上限变化计算的探讨[J].冰川冻土,1998(2):70~73.
    [79]宋玲,尤立正.季节冻土区寒土土体温度场计算模型[J].石河子大学学报,2000,(6):147~150.
    [80]吴青柏,朱元林.工程活动下的冻土环境研究[J].冰川冻土,2001(2):200~207.
    [81]赵建军,徐学祖.正冻土中的水热藕合模型[J].天津城市建设学院学报,2001,7(1):47~52.
    [82]牛富俊,程国栋,赖远明等.青藏高原多年冻土区热融滑塌型斜坡失稳研究[J].岩土工程学报,2004,26(3):402~406.
    [83]王建平.人工冻土冻胀融沉规律的研究[博士学位论文].中国矿业大学,1999.
    [84]宋高嵩,陈阳东,温福春.季冻区路基边坡的水稳定性影响分析与防治[J].公路交通科技,2005,22(6):65~67.
    [85]刘红军,王丕祥.公路土质边坡冻融失稳稳定性分析[J].哈尔滨工业大学学报,2006,38(5):764~766.
    [86]戴惠民,乐鹏飞.季冻区公路路基土冻胀性的研究[J].中国公路学报,1994,7(2):1~8.
    [87]李治平.多年冻土地区道路病害及其防治对策[J].东北公路,2003(4):69~71.
    [88]张敬东,齐志刚等.浅谈多年冻土地区公路病害与防治措施[J].黑龙江交通科技,2004,6,26~27.
    [89]周幼吾,郭东信.我国多年冻土的主要特征[J].冰川冻土,1982,4(1):1~19.
    [90]陈轮,郭瑞平.用土工加筋防治土冻胀的研究[J].水利学报, 1996(3):84~88.
    [91]徐学祖,王家澄,张立新.冻土物理学[M].2001,科学出版社.
    [92] NIU F J,CHENG G D,XIE Q.Study on instability of slopes in permafrost regions of Qinghai-Tibet High Plateau[C]. Proceedings of the 5th International Symposium on Permafrost Engineering. Yakutsk: Permafrost Inst.SB RAS Press,2002:192~197.
    [93] ZHU C,ZHANG J X,CHENG P.Rock glaciers in the central Tianshan Mountain[J].China J.Permafrost and Periglacial Processes,1996(7):69~78.
    [94]VIALOV S S,GMOSHINSKII V G,GORODETSKII S E, etal. The strength and creep of frozen soils and calculations for ice-soil retainingstructures[M].New Hampshire: Cold Regions Research and Engineering Laboratory,1965:76.
    [95]LADANYI B. An engineering theory of creep of frozen soils[J].Canadian Geotechnical Journal,1972,9(1):63~88.
    [96]TING J M.Tertiary creep model for frozen sand[J].ASCE Journal of Geotechnical Engineering,1983,109(7):932~945.
    [97]王丽霞,凌贤长.冻土路基地震破坏判别方法研究[J].岩石力学与工程学报,2005,24(4):638~642.
    [98] Niu F J, Xu J, Lin Z,et al. Engineering-induced environmental hazards in permafrost regions on the Qinghai-Tibet Plateau [C]. Proceedings, NICOP (Vol.Ⅱ), 2008: 1287~1292.
    [99]何平.饱和冻结粉土的动力特性[D].兰州:中国科学院兰州冰川冻土研究所,1992.
    [100]朱元林,何平,张家懿等.冻土在振动荷载下的三轴蠕变模型[J].自然科学进展,1998,8(1):60-62.
    [101]陈肖柏,刘建坤.土的冻结作用与地基[M].科学出版社.2006:498~500.
    [102]王志涛,王开升.季节性冻土的冻胀因素及其分类[J].黑龙江交通科技.2005(5):1~2.
    [103]李春满.道路的病害与防治[J].东北公路.1997,20(2):49~52.
    [104]沈珠江.土体结构性的数学模型——21世纪土力学的核心问题[J].岩土工程学报,1996,18(1):95~97.
    [105]胡瑞林,李向全,官国琳等.粘性土微结构定量模型及其工程性质特征研究[M].北京:地质出版社,1995.
    [106]陆万明,罗学富.弹性理论基础[M].施普林格出版社,2001.
    [107]赵建生.断裂力学及断裂物理[M].华中科技大学出版社,2003.
    [108]吴恒,代志宏,张信贵等.水土作用中铝对土体结构性的影响[J] .岩土力学,2001,22(4):474~478.
    [109]齐吉琳,马巍.冻融作用对超固结土强度的影响[J] .岩土工程学报,2006,28(12):2082~2087.
    [110]陈存礼,高鹏,胡再强.黄土的增湿变形特性及其与结构性的关系[J] .岩石力学与工程学报,2006,25(7):1352~1361.
    [111]陈存礼,高鹏,唐杰.三轴应力状态下不同湿度原状黄土的结构性定量化参数[J].岩石力学与工程学报,2006,25(11):2313~2320.
    [112]骆亚生,谢定义,邵生俊,张爱军等.复杂应力状态下的土结构性参数[J] .岩石力学与工程学报,2004,23(24):4248~4251.
    [113]邓津,王兰民,张振中.黄土显微结构特征与震陷性[J] .岩土工程学报,2007,29(4):542~549.
    [114]罗晓辉,卫军,白世伟等.脆性统计损伤模型在岩土工程中的应用研究[J] .华中科技大学学报(自然科学版),2004,32(9):82~85.
    [115]邵生俊,周飞飞,龙吉勇.原状黄土结构性及其定量化参数研究[J] .岩土工程学报,2004,26(4):531~537.
    [116]王秋生.挠动土的结构性参数[J] .岩土工程学报,2006,28(7):914~918.
    [117]侥为国,赵成刚,王哲.一个可考虑结构性影响的土体本构模型[J] .固体力学学报,2002,23(1):34~40.
    [118] C.C.维压洛夫.冻土流变学[M].刘建坤,刘尧军,徐艳,译.北京:中国铁道出版社,2005.
    [119] Adrian S Sabau, Y -X Tao, G Liu et al. Effective Thermal Conductivity for Anisotropic Granular Porous Media Using Fractal Concepts. Proc. of National Heat Transfer Conference, 1997, 11: 121~128.
    [120] Pitchumani R, Yao S C. Correlation of Thermal Conductivities of Unidirectioral Fibrous Composites Using Local Fractal Techniques. Journal of Heat Transfer, 1991, 113: 788~796.
    [121] TING J M. Tertiary creep model for frozen sand[J].ASCE Journal of Geotechnical Engineering,1983,109(7):932~945.
    [123]王丽霞,凌贤长.冻土路基地震破坏判别方法研究[J].岩石力学与工程学报,2005,24(4):638~642.
    [124] HANS Vaziri,YINGCAI Han. Ful-scale filed studies of the dynamic response of piles embedded in partially frozen soil[J].Canadian Geotechnical Journal,1991,28:708~718.
    [125]何平.饱和冻结粉土的动力特性[D].兰州:中国科学院兰州冰川冻土研究所,1992.
    [126]朱元林,何平,张家懿等.冻土在振动荷载下的三轴蠕变模型[J].自然科学进展,1998,8(1):60~62.
    [127]铁道部第三勘测设计院.冻土工程[M].北京:中国铁道出版社,1994.
    [128]王其昌.高速铁路土木工程[M].成都:西南交通大学出版社,2000.
    [129]吴恒,代志宏,张信贵等.水土作用中铝对土体结构性的影响[J] .岩土力学,2001,22(4):474~478.
    [130]齐吉琳,马巍.冻融作用对超固结土强度的影响[J] .岩土工程学报,2006,28(12):2082~2087.
    [131]陈存礼,高鹏,胡再强.黄土的增湿变形特性及其与结构性的关系[J] .岩石力学与工程学报,2006,25(7):1352~1361.
    [132]陈存礼,高鹏,唐杰.三轴应力状态下不同湿度原状黄土的结构性定量化参数[J].岩石力学与工程学报,2006,25(11):2313~2320.
    [133]骆亚生,谢定义,邵生俊,张爱军等.复杂应力状态下的土结构性参数[J] .岩石力学与工程学报,2004,23(24):4248~4251.
    [134]邓津,王兰民,张振中.黄土显微结构特征与震陷性[J] .岩土工程学报,2007,29(4):542~549.
    [135]罗晓辉,卫军,白世伟等.脆性统计损伤模型在岩土工程中的应用研究[J] .华中科技大学学报(自然科学版),2004,32(9):82~85.
    [136]邵生俊,周飞飞,龙吉勇.原状黄土结构性及其定量化参数研究[J] .岩土工程学报,2004,26(4):531~537.
    [137]王秋生.挠动土的结构性参数[J] .岩土工程学报,2006,28(7):914~918.
    [138]谷天峰.郑西客运专线地基黄土振(震)陷研究[D].西北大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700