用户名: 密码: 验证码:
新型FRP空心桥面板的设计开发与受力性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维增强复合材料(fiber reinforced polymer,简称FRP)是近年来在土木工程中开始应用的新型结构材料。FRP空心板是一种常用的FRP构件,可用于桥面、墙板和楼面,其中FRP空心桥面板是最具有前景的应用形式之一。本文提出一种新的构造方法,并以此设计制作出一种新型FRP空心桥面板,研究了其静力性能和疲劳性能,研究了其构造增强的机理。论文还对FRP受弯构件的设计理论进行了研究,建议了FRP空心板的设计步骤和方法。
     由于FRP具有各向异性、非均匀性等材料特性,在FRP空心桥面板中,各组件间连接和截面的构造形式成为影响其力学性能的主要因素。本文首先通过试验,研究了两种FRP空心板的变形性能和破坏特征,总结了文献中各种FRP空心板的破坏特征。在此基础上,提出了一种新的构造方法——外部纤维缠绕增强(outside filament-wound reinforcement,简称OFR),用以增强FRP空心桥面板中各组件间连接的受力性能。试验研究表明,OFR可明显改善其变形能力和承载力,并使破坏过程变缓。随后,通过对已有FRP桥面板构造的研究和对不同截面构造形式的FRP空心板的有限元分析,设计了一种新型FRP空心桥面板——HD板:由2块拉挤面板、4个缠绕芯管以及OFR构成,并经优化设计,最终研制成定型产品。论文进一步对带有不同厚度和不同角度OFR的HD板进行了静载和疲劳试验,试验研究表明:HD板在汽-超20级荷载下满足变形要求,承载力为设计荷载的4倍以上;经过200万次的疲劳加载,构件刚度的变化小于10%。论文还通过有限元分析,研究了OFR在FRP空心板中的作用,揭示了其局部增强和抑止组件间界面裂纹开展的机理。
     根据FRP与传统结构材料受力性能的差异,论文对受弯构件的性能指标和安全储备问题进行了研究。指出结构安全储备包括:变形储备和承载力储备,并提出4个适用于各类材料的受弯构件的性能指标,以统一考虑变形储备和承载力储备,使FRP构件与传统材料构件具有一致的安全储备。最后,基于本文的试验研究和理论分析,构建了FRP空心板设计分析体系,并为其中各步骤建议了相应的分析计算方法。
FRP (Fiber reinforced polymer) is a new structural material in civil engineering in recent years. FRP hollow decks are the typical FRP structure elements, which can act as bridge superstructures, building floor slabs and walls. FRP bridge deck is one of the most promising applications among them. In this research, a new configuration is devised and an innovative FRP bridge deck with this configuration is developed and fabricated. The mechanism of the configuration is analyzed and explained. Furthermore, the design theory of the flexural members is studied. The design procedure for FRP deck is proposed, and the approaches for every step are also suggested.
     The behavior of FRP deck mainly depends on the connections between the components and the section configuration due to FRP material properties such as orthotropic and heterogeneous. Two types of FRP decks are tested firstly. Their deformation behaviors and failure characteristics are investigated. The failure characteristics of various FRP decks in literatures are also summarized. Based on the researches, the outside filament-wound reinforcement (OFR), a new configuration is put forward, which is expected to strengthen the connections between the components. It is shown in the comparison experiments that the OFR increases the deformation capacity and the strength of the FRP decks and also slow down the failure progress. The existing FRP decks in literatures are investigated, and the different section configurations are analyzed and compared with finite element program. Based on these, an innovative FRP deck with OFR, named HD deck, is developed. HD deck is composed of two pultruded surface plates, four filament-wound core tubes and OFR. The products are fabricated after optimization design. Then, three HD decks with different thicknesses or winding angles of OFR are tested under static load, and one under fatigue load. The tests show that the developed HD decks are satisfied the deformation limitation under the Truck-Load over 20 Degree and their strengths are more than 4 times higher than that of the design load; and further the stiffness of a HD deck after 2 millions of fatigue loading decreases no more than 10% of the original. Furthermore, the acting mechanism of OFR is analyzed with finite element program. It is shown that OFR can provide the restriction to the fracture in the interface of the bonded components and can stiffen the attached plates in local.
     Due to the differences between FRP and the conventional structural materials, the performance indices and the safety storage of the flexural members are studied. It is indicated that the safety margin are composed of the loading capacity and the deformability safety margin. Four performance indices are presented to describe the loading capacity and the deformability safety margin of various flexural members generally. Moreover by their use, the same safety margin for FRP members and the conventional materials members is obtained. Finally, the design procedure of FRP deck is proposed, and the approach for each step is suggested.
引文
[1]邸小坛,高小旺,徐有邻.我国混凝土建筑结构的耐久性与安全性问题.见:陈肇元,编.土建结构工程的安全性与耐久性.北京:中国建筑工业出版社, 2003. 1-6
    [2]张恺,包琦玮,罗玲,等.北京地区立交桥梁耐久性调查分析及耐久性设计措施.见:陈肇元,编.土建结构工程的安全性与耐久性.北京:中国建筑工业出版社, 2003. 53-58
    [3]洪乃丰.钢筋混凝土基础设施腐蚀与耐久性.见:陈肇元,编.土建结构工程的安全性与耐久性.北京:中国建筑工业出版社, 2003. 76-83
    [4]徐学东,钟志锦.铁路混凝土桥梁耐久性设计及相关标准改进建议.见:陈肇元,编.土建结构工程的安全性与耐久性.北京:中国建筑工业出版社, 2003. 59-63
    [5]张弥.我国铁路隧道结构安全性和耐久性分析.见:陈肇元,编.土建结构工程的安全性与耐久性.北京:中国建筑工业出版社, 2003. 23-30
    [6]陈蔚凡.盐渍地区混凝土建筑物的耐久性问题.见:陈肇元,编.土建结构工程的安全性与耐久性.北京:中国建筑工业出版社, 2003. 108-113
    [7]冯鹏,叶列平. FRP结构和FRP组合结构在结构工程中的应用与发展.见:岳清瑞,编.第二届全国土木工程用纤维增强复合材料(FRP)应用技术学术交流会论文集.北京:清华大学出版社, 2002. 51-63
    [8] Meier U.关于在直布罗陀海峡最窄处建造碳纤维增强复合材料桥的建议.李正仁,编译.国外桥梁, 1990, (4):45-50
    [9] Gimsing N J.特大跨度的斜拉桥.严国敏,编译.国外桥梁, 1990, (3):10-20
    [10]张锡祥,顾安邦.复合材料用于大跨斜拉桥发展展望.重庆交通学院学报, 1995, 14(1):14-19
    [11]梅葵花,吕志涛. CFRP在超大跨悬索桥和斜拉桥中的应用前景.桥梁建设, 2002, (2):75-78
    [12]杨允表,石洞.复合材料在桥梁工程中的应用.桥梁建筑, 1997, (4):1-4
    [13] Maeda K, Ikeda T, Nakamura H, et al. Feasibility of ultra long-span suspension bridges made of all plastics. In: Proc. IABSE Symposium. Melbourne, Australia: IABSE, 2002 (CD-ROM)
    [14] Hollaway L C. The evolution of the way forward for advanced polymer composites in the civil infrastructure. In: Teng J G, eds. Proc. the International Conference on FRPComposites in Civil Engineering (CICE 2001). Hong Kong, China: Elsevier Science Ltd, 2001. 27-40
    [15]钱鹏,叶列平,翁冠群. CFRP管轴心受力性能的试验研究.工业建筑, 2004, 34(4):11-14
    [16]冯鹏,叶列平,包睿,等. FRP编织网大跨结构体系:概念、形式及基本受力特点.建筑结构学报,(已录用)
    [17] Feng P, Ye L P, Bao R, et al. A large-span woven web suspension roof system made of high-strength FRP. In: Proc. IABSE Symposium 2004: Metropolitan Habitats and Infrastructure, Shanghai, China, 2004. (CD-ROM)
    [18] Talreja R.纤维复合材料的疲劳,陈荣,译.见:邹祖讳,主编.材料科学与技术丛书(第13卷):复合材料的结构与性能.北京:科学出版社, 1999. 505-526
    [19]周祝林.纤维复合材料设计简论.纤维复合材料, 1995, (4):41-55
    [20]蔡国宏.先进复合材料在桥梁中的应用现状和发展前景.高新技术专题报道:中国交通. http://www.iicc.ac.cn/jiaotongkj/gaoxinjs/t20040210_8793.htm , 2000
    [21]中国工程建设标准化协会. CECS 146:2003.碳纤维片材加固混凝土结构技术规程.北京:中国计划出版社, 2003
    [22] Parvizi-Majidi A.纤维和晶须,张小农译.见:邹祖讳,主编.材料科学与技术丛书(第13卷):复合材料的结构与性能.北京:科学出版社, 1999. 22-74
    [23]沃丁柱,李顺林,王兴业,等,编.复合材料大全.北京:化学工业出版社, 2000. 77-105
    [24]吴人洁,主编.复合材料.天津:天津大学出版社, 2000. 48-63
    [25]鲁云,朱世杰,马鸣图,潘复生,主编.材料科学和工程研究进展(第2集):先进复合材料.北京:机械工业出版社, 2004. 4-16
    [26]张玉龙,主编.先进复合材料制造技术手册.北京:机械工业出版社, 2003. 20-30
    [27] Berthelot J-M. Composite Materials: Mechanical Behavior and Structural Analysis, Translated by Cole J M. New York: Springer-Verlag, 1999.15-53
    [28]黄丽,主编.聚合物复合材料.北京:中国轻工业出版社, 2001. 69-90
    [29]沈观林.复合材料力学.北京:清华大学出版社, 1996. 1-27
    [30]沃丁柱,李顺林,王兴业,等,编.复合材料大全.北京:化学工业出版社, 2000. 26-55
    [31]黄丽,主编.聚合物复合材料.北京:中国轻工业出版社, 2001. 13-47
    [32]张玉龙,主编.先进复合材料制造技术手册.北京:机械工业出版社, 2003. 42-43
    [33]王耀先,编.复合材料结构设计.北京:化学工业出版社材料科学与工程出版中心, 2001. 15-16
    [34] Berthelot J-M. Composite Materials: Mechanical Behavior and Structural Analysis, Translated by Cole J M. New York: Springer-Verlag, 1999.179-180
    [35] Berthelot J-M. Composite Materials: Mechanical Behavior and Structural Analysis, Translated by Cole J M. New York: Springer-Verlag, 1999.85-120
    [36]沃丁柱,李顺林,王兴业,等,编.复合材料大全.北京:化学工业出版社, 2000. 474-526
    [37] Eduljee R F, McCullough R L.复合材料的弹性性能,张帆,译.邹祖讳,主编.材料科学与技术丛书(第13卷):复合材料的结构与性能.北京:科学出版社, 1999. 320-401
    [38]沈观林.复合材料力学.北京:清华大学出版社, 1996. 77-126
    [39]王震鸣.复合材料力学和复合材料结构力学.北京:机械工业出版社,.1991
    [40]刘锡权,王秉权.复合材料力学基础.北京:中国建筑工业出版社, 1984
    [41] Berthelot J-M. Composite Materials: Mechanical Behavior and Structural Analysis, Translated by Cole J M. New York: Springer-Verlag, 1999.149-185
    [42] Luciano R, Barbero E J. Formulas for the stiffness of composites with periodic microstructure. International J. Solids and Structures, 1994, 31(21):2933-2944
    [43] Johns R M.复合材料力学,朱颐龄,译.上海:上海科学技术出版社, 1981
    [44]王耀先.单向复合材料弹性模量预测新式.玻璃钢/复合材料,1995, 4:26-31
    [45]植村益次.纤维增强塑料设计手册,北京玻璃钢研究所,译.北京:中国建筑工业出版社, 1986
    [46]牛国良.单向纤维复合材料横向弹性常数的统一型经验公式.玻璃钢/复合材料,1998, (1):5-8
    [47] Tsai S W. Structural behavior of composite materials. NASA CR-71,1964
    [48]王秉权,杨荫萍.单向纤维增强复合材料弹性常数的实验研究.复合材料学报. 1986, 3(2).
    [49]周祝林,杨云娣.单向纤维复合材料的弹性常数研究.玻璃钢,1995,(3):l-12
    [50] Berthelot J-M. Composite Materials: Mechanical Behavior and Structural Analysis, Translated by Cole J M. New York: Springer-Verlag, 1999.267-391
    [51] Sotiropoulos S N. Performance of FRP components and connections for bridge deck systems: [PhD Dissertation]. Morgantown, USA: West Virginia University, 1995.
    [52]曾庆敦.复合材料的细观破坏机制与强度.北京:科学出版社, 2002:1-10
    [53]中国国家标准局. GB 1447-83.玻璃纤维增强塑料拉伸性能试验方法.北京:中国标准出版社, 1983年10月10日
    [54]中国国家标准局. GB 1448-83.玻璃纤维增强塑料压缩性能试验方法.北京:中国标准出版社, 1983年10月10日
    [55]中国国家标准局. GB 3355-82.纤维增强塑料纵横剪切试验方法.北京:中国标准出版社, 1982年12月25日
    [56] Hill R. The mathematical theory of plasticity. New York: Oxford University Press, 1983
    [57] Hoffman O. The brittle strength of orthotropic materials. J. Composite Material, 1967, 1:200-206
    [58] Tsai S W, Wu E M. A general theory of strength of anisotropic materials. J. Composite Material, 1971, 5:58-80
    [59] Halliwell S. In-service performance of glass reinforced plastic composites in building. Proc. the Institution of Civil Engineers: Structures and Buildings, 2004, 157 (1):99-104
    [60]沃丁柱,李顺林,王兴业,等,编.复合材料大全.北京:化学工业出版社, 2000. 819-872
    [61]汤国栋,汤羽,冯广占.中国GRP/COM桥梁的研究与实践.成都科技大学学报, 1995, (6):69-80
    [62]曾宪桃,车惠民.复合材料FRP在桥梁工程中的应用及其前景.桥梁建设, 2000, (2):66-70
    [63] Meier U, St?cklin I, Terrasi G P. Making better use of the strength of advanced material in structural engineering. In: Teng J G, eds. Proc. the International Conference on FRP Composites in Civil Engineering (CICE 2001). Hong Kong, China: Elsevier Science Ltd, 2001. 41-48
    [64]沙吾列提.拜开依,叶列平,杨勇新,等.预应力CFRP加固钢筋混凝土梁的施工技术.施工技术,2004,33(6):23-24
    [65]叶列平,庄江波,沙吾列提.拜开依,等.预应力碳纤维布加固混凝土受弯构件试验研究.见:第7届全国建筑物鉴定与加固学术会议论文集, 2004,(已录用)
    [66]曹锐. NEFMAC加固钢筋混凝土板的试验性能研究与理论计算:[硕士学位论文].北京:冶金部建筑研究总院, 2002
    [67]岳清瑞,李庆伟,杨勇新.纤维增强复合材料嵌入式加固技术.工业建筑, 2004, 34(4):3-6
    [68]李荣,滕锦光,岳清瑞. FRP材料加固混凝土结构应用的新领域——嵌入式(NSM)加固法.工业建筑, 2004, 34(4):7-12
    [69]林磊. FRP布加固砌体墙受剪性能的试验研究:[硕士学位论文].北京:清华大学土木工程系, 2003
    [70]王溥,姜浩,夏春红.纤维增强复合材料加固砌体抗震性能试验研究.施工技术, 2004, 33(6):18-19
    [71]王增春,何艳丽,王溥. FRP加固木结构的应用和研究.建筑技术开发, 2004, 31(3):15-16+25
    [72]张宁,岳清瑞,佟晓利,等.碳纤维布加固修复钢结构粘结界面受力性能试验研究.工业建筑, 2003, 33(5):73-75+82
    [73]彭福明,郝际平,岳清瑞,等.碳纤维增强复合材料(CFRP)加固修复损伤钢结构.工业建筑, 2003, 33(9):7-10+28
    [74]张宁,岳清瑞,杨勇新,等.碳纤维布加固钢结构疲劳试验研究.工业建筑, 2004, (4):21-23+32
    [75] American Concrete Institution. ACI 440.1R-01. Guide for the Design and Construction of Concrete Reinforced with FRP Bars. ACI Committee 440, 2001
    [76] Dolan C W, Hamilton III H R, Bakis C E , el at. Design recommendations for concrete structures prestressed with FRP tendons. FHWA CONTRACT Report. DTFH61-96-C-00019. 2001: http://wwweng.uwyo.edu/civil/research/papers/
    [77] Sonobe Y, Fukuyama H, Okamoto T, et al. Design guidelines of FRP reinforced concrete building structures. J. Composites for Construction, ASCE, 1997, 1(3):90-115
    [78] Gilstrap J M, Burke C R, Dowden D M, et al. Development of FRP reinforcement guidelines for prestressed concrete structures. J. Composites for Construction, ASCE, 1997,1(4):131-139
    [79] Bakht B, Al-Bazi G, Banthia N, et al. Canadian bridge design code provisions for fiber-reinforced structures. J. Composites for Construction, ASCE, 2000, 4(1):3-15
    [80]茅卫兵,章定国.钢筋新型代用材料FRP筋粘结锚固性能试验研究.河海大学学报(自然科学版), 2000, (5):47-51
    [81]李文晓,戴瑛,贺鹏飞,等.混凝土结构用纤维增强塑料筋的力学性能Ⅰ.实验研究.玻璃钢/复合材料, 2002,(2):12-15.
    [82]薛伟辰.新型FRP筋预应力混凝土梁试验研究与有限元分析.铁道学报, 2003,(5):104-110.
    [83]薛伟辰,刘华杰,王小辉.新型FRP筋粘结性能研究.建筑结构学报, 2004, (2): 105-110+124.
    [84] Keller T. Fibre Reinforced Polymer Materials in Building Construction. In: Proc. IABSE Symposium. Melbourne, Australia: IABSE, 2002 (CD-ROM)
    [85]冯鹏,叶列平. GFRP空心板静载试验研究及分析.工业建筑. 2004, 34(4): 15-18+27
    [86] Sekijima K, Ogisako E, Miyata K, et al. Analytical study on flexural behavior of GFRP-concrete composite beam. In: Teng J G, eds. Proc. the International Conference on FRP Composites in Civil Engineering (CICE 2001). Hong Kong, China: Elsevier Science Ltd, 2001:1363-1370
    [87] Canning L, Hollaway L, Thorne A M. An investigation of the composite action of an FRP/concrete prismatic beam. Construction and Building Materials, 1999, 13:417-426
    [88] Kavlicoglu B M, Saiidi M, Gordaninejad F. Fatigue Response of New Graphite/Epoxy-Concrete Girder. J. Composites for Construction, ASCE, 2003,7(1):50-57
    [89] Hall J E. Mottram J T. Combined FRP reinforcement and permanent formwork for concrete members. J. Composites for Construction, ASCE, 1998,2(2):78-86
    [90] Deskovic N, Triantafillou T C, Meier U. Innovative design of FRP combined with concrete: short-term behavior. J. Structural Engineering, ASCE, 1995, 121(7):1069-1078
    [91] Zhao L. Burgueno R. La Rovere H, et al. Preliminary evaluation of the hybrid tube bridge system. Final Test Report Submitted to California Department of Transportation under Contract No. 59AO032. Report No. TR-2000/4, Department of Structural Engineering University of California, San Diego,2000
    [92]张巨松,曾龙,王振兴. FRP作为混凝土工程永久性模板的试验研究.玻璃钢/复合材料. 2000,(5):32-34
    [93] Nordin H, Taljsten B. Testing of hybrid FRP composite beams in bending. Composites: Part B, 2004, 35(1):27-33
    [94] Burgueno R, Wu J. Development of an FRP membrane bridge system. In: Proc. IABSE Symposium. Melbourne, Australia: IABSE, 2002 (CD-ROM)
    [95] Van Erp G, Heldt T, Mccormick L. Development of an innovative fibre composite deck unit bridge. In: Proc. IABSE Symposium. Melbourne, Australia: IABSE, 2002 (CD-ROM)
    [96] Fam A, Rizkalla S. Large scale testing and analysis of hybrid concrete/composite tubes for circular beam-column applications. Construction and Building Materials, 2003,17:507-516
    [97] Mirmiran A, Samaan M, Cabrera S, et al. Design, manufacture and testing of a new hybrid column. Construction and building materials,1998,12 (1): 39-49
    [98]袁华,薛元德.纤维增强塑料管混凝土性能的研究.混凝土与水泥制品, 2000, (6):34-36
    [99] Mirmiran A, Shao Y, Shahawy M. Analysis and field tests on the performance of composite tubes under pile driving impact. Composite Structures, 2002, 55:127-135
    [100] Burgueno R, Davol A, Zhao L, et al. Flexural behavior of hybrid fiber-reinforced polymer/concrete beam/slab bridge component. ACI Structural J.,2004, 101 (2): 228-236
    [101] Zhao L, Karbhari VM, Seible F. Development and implementation of the carbon shell system for the kings stormwater channel bridge. In: Teng J G, eds. Proc. the International Conference on FRP Composites in Civil Engineering (CICE 2001). Hong Kong, China: Elsevier Science Ltd, 2001: 1299-1316
    [102] Yang Q S, Qin Q H, Zheng D H. Analytical and numerical investigation of interfacial stresses of FRP–concrete hybrid structure. Composite Structures. 2002, 57: 221-226
    [103] Davol A, Burgueno R, Seible F. Flexural behavior of circular concrete filled FRP shells. J. Structural Engineering, ASCE, 2001, 127(7):810-817
    [104] Teng JG, Yao J. Self-weight buckling of FRP tubes filled with wet concrete. Thin-walled Structures, 2000, 38 (4): 337-353
    [105]沃丁柱,李顺林,王兴业,等,编.复合材料大全.北京:化学工业出版社, 2000. 909-971
    [106]冯鹏,叶列平. FRP材料及结构在桥梁工程中的新应用.见:第十五届全国桥梁学术会议论文集.上海:同济大学出版社,2002. 555-560
    [107] Gsell D,Motavalli M. Indoor cable-stayed GFRP bridge at EMPA, Switzerland. In: El-Badry, Dunaszegi L, eds. Proc. 4th International Conference on Advanced Composite Materials in Bridges and Structures. Calgary, Alberta, Canada: CSCE, 2004 (CD-ROM)
    [108] Keller T. Fibre Reinforced Polymer Materials in Bridge Construction. In: Proc. IABSE Symposium. Melbourne, Australia: IABSE, 2002 (CD-ROM)
    [109] Firth I, Cooper D. Glass Fibre Reinforced Plastic Bridges - Three UK Examples. In: Proc. IABSE Symposium. Melbourne, Australia: IABSE, 2002 (CD-ROM)
    [110] Cooper D. Halgavor Bridge - A Case Study. In: El-Badry, Dunaszegi L, eds. Proc. 4th International Conference on Advanced Composite Materials in Bridges and Structures. Calgary, Alberta, Canada: CSCE, 2004 (CD-ROM)
    [111] Sobrino J A, Pulido M D G. A new glass-fibre-reinforced arch bridge in Spain. In: Proc. IABSE Symposium. Melbourne, Australia: IABSE, 2002 (CD-ROM)
    [112] Johansen G E, Wilson R J, Roll F, et al. Design and construction of FRP pedestrian bridges:“reopening the point Bonita lighthouse trail”. In: Proc. International Composites EXPO’97. Nashville, Tennessee, USA, 1997: Session 3-A
    [113] Sedlacek G, Trumpf H. Innovative developments for bridges using FRP composites. In: Hollaway L C, Chryssanthopoulos M K, Moy S S J, eds. Proc. 2nd International Conference on Advanced Polymer Composites for Structural Applications in Construction (ACIC 2004). Cambridge, England: Woodhead Publishing Limited, 2004. 400-411
    [114]李跃,沈庆,韦忠暄.复合材料网架实心舟载重门桥受撞击动力计算.解放军理工大学学报(自然科学版). 2002, 3(2):55-58
    [115] The Highways Agency, The Scottish Office Development Department, The Welsh Office Y Swyddfa Gymreig, The Department of the Environment for Northern Ireland. BD 67/96. Enclosure of Bridge. London, UK: HMSO, 1996
    [116] Heidengren C R. Regal Crossing. Civil Engineering Magazine, ASCE, 2003. 73 (7): http://www.pubs.asce.org/ceonline/ceonline03/0703feat.html
    [117] Plunkett J D. Fiber-reinforced polymer honeycomb short span bridge for rapid installation. IDEA Project Final Report. Contract NCHRP-96-ID030. 1997: http://www.ksci.com/trb/trb.html
    [118] Stone D, Nanni A, Myers J. Field and Laboratory Performance of FRP Bridge Panels. In Proc. International Conference Composites in Construction (CCC2001). Porto, Portugal: A A BALKEMA Publishers, 2001. 701-706
    [119] Chiewanichakorn M, Aref A J, Alampalli S. An Analytical Study of an FRP Deck on a Truss Bridge. In: Proc. 15th Engineering Mechanics Division Conference (EM2002). Columbia University, NY, USA: ASCE, 1998.2-5
    [120] Lee J, Hollaway L, Thorne A, et al. The structural characteristic of a polymer composite cellular box beam in bending. Construction and Building Materials, 1995, 9(6): 333-340
    [121] Zetterberg T, Astrom B T, Backlund J, et al. On Design of Joints between Composite Profiles for Bridge Deck Applications. Composite Structures, 2001, 51: 83-91
    [122] Sotiropoulos S N. Performance of FRP components and connections for bridge deck systems: [PhD Dissertation]. Morgantown, USA: West Virginia University, 1995.
    [123] Lopez-Anido R, Troutman D L, Busel J P. Fabrication and Installation of Modular FRP Composite Bridge Deck. In: Proc. International Composites EXPO’98. Nashville, Tennessee, USA, 1998. Session 4-A
    [124] Wu Z H. Prestressed FRP tubular deck system: [MS Thesis]. Raleigh, USA: North Carolina State University, 2003
    [125] Brown R T, Zureick A H. Lightweight Composite Truss Section Decking. Marine Structures, 2001, 14(1-2):114-132
    [126] Temeles A B. Field and Laboratory Tests of a Proposed Bridge Deck Panel Fabricated from Pultruded Fiber-Reinforced Polymer Components: [MS Thesis]. Blacksburg, USA: Virginia Polytechnic Inst. and State University, 2001
    [127] Williams B, Shehata E, Rizkalla S H. Filament-Wound Glass Fiber Reinforced Polymer Bridge Deck Modules. J. Composites for Construction, ASCE, 2003, 7(3), 2003: 266-273
    [128] Kumar P. Chandrashekhara K. Nanni A. Structural Performance of a FRP Deck. Construction and Building Materials, 2004, 18(1):35-47
    [129] Kitane Y, Aref A J, Lee G C. Static and fatigue testing of hybrid fiber-reinforced polymer-concrete bridge superstructure. J. Composites for Construction, ASCE, 2004, 8(2): 182-190
    [130] Federal Highway Administration. Current practices in FRP composites technology FRP bridge decks and superstructures: deck and superstructure suppliers. FHWA Website, 2004: http://www.fhwa.dot.gov/bridge/frp/decksupl.htm
    [131]王勃.FRP加筋混凝土梁的力学与自感知性能研究: [博士学位论文].哈尔滨:哈尔滨工业大学, 2004
    [132] Ye L P, Feng P, Zhang K, et al. FRP in civil engineering in China: Research and applications. In: Tan K H, eds. Proc. 6th International Symposium onFibre-Reinforced Polymer Reinforcement for Concrete Structures (FRPRCS 6). Singapore: World Scientific, 2003. 1401-1412
    [133] Jolly C K. Fiber composites in coastal and river defences. In: Hollaway L C, Chryssanthopoulos M K, Moy S S J, eds. Proc. 2nd International Conference on Advanced Polymer Composites for Structural Applications in Construction (ACIC 2004). Cambridge, England: Woodhead Publishing Limited, 2004. 727-737
    [134] Henry J A. Deck-girder systems for highway bridges using fiber reinforced plastics: [MS Thesis]. Raleigh, USA: North Carolina State University, 1985
    [135] Plecnik J, Azar W, Kabbara B. Composite applications in highway bridges. In: Suprenant B A, eds. Proc. the First Materials Engineering Congress: Serviceability and Durability of Construction Material. New York: ASCE, 1990. 986-995
    [136] McGhee K K, Barton F W, McKeel W T. Optimum design of composite bridge deck panels. In: Iyer S L, Sen R, eds. Proc. the Specialty Conference: Advanced Composite Materials in Civil Engineering Structures. Las Vegas, Nevada, USA: ASCE, 1991. 360-370
    [137] Bakeri P A, Sunder S S. Concepts for Hybrid FRP bridge deck system. In: Suprenant B A, eds. Proc. the First Materials Engineering Congress: Serviceability and Durability of Construction Material. New York, USA: ASCE, 1990. 1006-1015
    [138] Sotiropoulos S N, GangaRao H V S, Mongi A N K. Theoretical and experimental evaluation of FRP components and systems. J. Structural Engineering, ASCE, 1994, 120(2): 464-485
    [139] GangaRao H V S, Lopez-Anido R, Williams D L. Design and construction of a composite material industrial building. In: El-Badry M M, eds. Proc. 2nd International Conference on Advanced Composite Materials in Bridges and Structures (ACMBS-2). Montreal, Quebec, Canada: CSCE, 1996. 983-990
    [140] Feng P, Ye L P, Zhang L W, et al. Experimental study on outside filament winding reinforced FRP decks. In: El-Badry M M, Dunaszegi L, eds. Proc. 4th International Conference on Advanced Composite Materials in Bridges and Structures (ACMBS-4). Calgary, Alberta, Canada: CSCE, 2004.(CD-ROM)
    [141] Karbhari V M, Seible F, Hegemier G A, et al. Fiber reinforced composite decks for infrastructure renewal-results and issue. In: Proc. International Composites EXPO’97. Nashville, Tennessee, USA, 1997: Session 3-C
    [142] Karbhari V M. Fiber reinforced composite decks for infrastructure renewal. In: El-Badry M M, eds. Proc. 2nd International Conference on Advanced CompositeMaterials in Bridges and Structures (ACMBS-2). Montreal, Quebec, Canada: CSCE, 1996. 759-766
    [143] Zhao L. Characterization of deck-to-girder connections in FRP composite superstructures: [PhD Thesis]. University of California, San Diego, 1999
    [144] Burgueno R. System characterization and design of modular fiber-reinforced polymer (FRP) short- and medium-span bridges. [PhD Thesis]. University of California, San Diego, 1999
    [145] Burgueno R, Karbhari VM, Seible F, et al. Experimental dynamic characterization of an FRP composite bridge superstructure assembly. Composite Structures, 2001, 54 (4): 427-444
    [146] Karbhari V M, Seible F, Burgueno R, et al. Structural characterization of fiber-reinforced composite short- and medium-span bridge systems. Applied composite materials, 2000,7 (2-3): 151-182
    [147] Aref A J, Parsons I D. Design and analysis procedures for a novel fiber reinforced plastic bridge deck. In: El-Badry M M, eds. Proc. 2nd International Conference on Advanced Composite Materials in Bridges and Structures (ACMBS-2). Montreal, Quebec, Canada: CSCE, 1996. 743-750
    [148] Aref A J, Parsons I D, Design and Performance of a Modular Fiber Reinforced Plastic Bridge. Composites Part B: engineering, 2000, 31: 619-628
    [149] Salim H A, Davalos J F, Qiao P, et al. Analysis and design of fiber reinforced plastic composite deck-and stringer bridges. Composite Structures, 1997, 38 (1-4): 295-307
    [150] Brown B J. Design analysis of single-span advanced composite deck-and-stringer bridge systems:[MS Thesis]. Morgantown, West Virginia, USA: West Virginia University, 1998
    [151] Qiao P, Davalos J F, Brian Brown. A systematic analysis and design approach for single-span FRP deck/stringer bridges. Composites Part B: Engineering, 2000, 31: 593-609
    [152] Qiao P. Analysis and design optimization of fiber-reinforced plastic (FRP) structural beams: [PhD Thesis]. Morgantown, West Virginia, USA: West Virginia University, 1997
    [153] Wu Z H. Prestressed FRP tubular deck system: [MS Thesis]. Raleigh, NC, USA: North Carolina State University, 2003
    [154] Unser J, Kumar P, Chandrashekhara K, et al. Adaptable all-composite bridge concept. In: Proc. the CFA Composites Conference. Las Vegas, NV, USA: CFA, 2000. No.39
    [155] Kumar P, Chandrashekhara K, Nanni A. Testing and evaluation of components for a composite bridge deck. J. Reinforced Plastics and Composites, 2003, 22 (5): 441-461
    [156] Lopez-Anido R, GangaRao H V S , Vedam V, et al. Design and evaluation of a modular FRP bridge deck. In: Proc. International Composites EXPO’97. Nashville, Tennessee, USA, 1997. Session 3-E
    [157] Lopez-Anido R, GangaRao H V S, Trovillion J, et al. Development and demonstration of a modular FRP deck for bridge construction and replacement. In: Proc. International Composites EXPO’97. Nashville, Tennessee, USA, 1997. Session 16-D
    [158] Lopez-Anido R, Howdyshell P A, Stephenson L D, et al. Fatigue and failure evaluation of modular FRP composite bridge deck. In: Proc. International Composites EXPO’98. Nashville, Tennessee, USA, 1998. Session 4-B
    [159] Howdyshell P A, Trovillion J C, GangaRao H V S, et al. Development and Demonstration of Advanced Design Composite Structural Components: USACERL Technical Report 98/99. US Army Corps of Engineers. Construction Engineering Research Laboratories. 1998
    [160] Estrada H. A fiber reinforced plastic bridge made from pultruded structural sections. In: Proc. International Composites EXPO’98. Nashville, Tennessee, USA, 1998.
    [161] Temeles A B, Cousins T E, Lesko J J. Composite plate & tube bridge deck design: evaluation in the Troutiville, Virginia weigh station test bed. In: Humar J L, Razaqpur A G, eds. Proc. 3th International Conference on Advanced Composite Materials in Bridges and Structures (ACMBS-3), Ottawa, Ontario, Canada: CSCE, 2000. 801-808
    [162] Coleman J T. Continuation of Field and Laboratory Tests of a Proposed Bridge Deck Panel Fabricated from Pultruded Fiber-Reinforced Polymer Components: [MS Thesis]. Blacksburg, USA: Virginia Polytechnic Inst. and State University, 2002
    [163] Hayes M D, Ohanehi D, Lesko J J, et al. Performance of tube and plate fiberglass composite bridge deck. J. Composites for Construction, ASCE, 2000, 4(1):48-55
    [164] Zhou A. Stiffness and strength of fiber reinforced polymer composite bridge deck systems: [PhD Thesis]. Blacksburg, USA: Virginia Polytechnic Inst. and State University, 2002
    [165] Zhou A, Coleman J T, Lesko J J, et al. Structural analysis of FRP bridge deck systems from adhesively bonded pultrusions. In: Teng J G, eds. Proc. the International Conference on FRP Composites in Civil Engineering (CICE 2001). Hong Kong, China: Elsevier Science Ltd, 2001.1413-1420
    [166] Mosallam A, Haroum M, Abdi F. Service and ultimate behavior of hybrid composite bridge deck. In: Proc. 10th International Conference & Exhibition of Faults + Repair-2003. London, UK: Engineering Technics Press, 2003. (CD-ROM)
    [167] Williams B, Rizkalla S, Shehata E, Stewart D. Development of modular GFRP bridge decks. In: Humar J L, Razaqpur A G, eds. Proc. 3th International Conference on Advanced Composite Materials in Bridges and Structures (ACMBS-3), Ottawa, Ontario, Canada: CSCE, 2000. 95-102
    [168] Shehata E, Wilsone R H, Dawood M. Development of GFRP bridge deck– transverse connection. In: El-Badry M M, Dunaszegi L, eds. Proc. 4th International Conference on Advanced Composite Materials in Bridges and Structures (ACMBS-4). Calgary, Alberta, Canada: CSCE, 2004.(CD-ROM)
    [169] Godonou P, Liljenfeldt L, Olofsson T. Development and conceptual design of a pedestrian bridge using fiber reinforced composites. In: Humar J L, Razaqpur A G, eds. Proc. 3th International Conference on Advanced Composite Materials in Bridges and Structures (ACMBS-3), Ottawa, Ontario, Canada: CSCE, 2000. 339-345
    [170] Alampalli S, Kunin J. Rehabilitation and field testing of an FRP bridge deck on a truss bridge. Composite Structures, 2002, 57: 373-375
    [171] Alampalli S, Kunin J. Load testing of an FRP bridge deck on a truss bridge. Applied Composite Materials, 2003, 10: 85-102
    [172] He Y. Simplified analysis and optimum design of fiber reinforced polymer web core sandwich bridge deck systems: [PhD Thesis]. Buffalo, USA: State University of New York at Buffalo, 2002
    [173] He Y, Aref A J. An optimization design procedure for fiber reinforced polymer web-core sandwich bridge deck systems. Composite Structures, 2003, 60: 183-195
    [174] Chiewanichakorn M, Aref A J, Alampalli S. Failure analysis of fiber-reinforced polymer bridge deck system. J. Composites, Technology & Research, 2003, 25(2): 121-129
    [175] Eckel II D A. An all fiber-reinforced-polymer-composite bridge: design, analysis, fabrication, full-scale experimental structural validation, construction and erection: [PhD Thesis]. Newark, DE, USA: University of Delaware, 2001
    [176] Stone D K. Investigation of FRP materials for bridge construction: [PhD Thesis]. Rolla, Missouri, UAS: University of Missouri-Rolla, 2002
    [177] Davalos J F, Qiao P, Xu X F, et al. Modeling and characterization of fiber-reinforced plastic honeycomb sandwich panels for highway bridge applications. Composite Structures, 2001, 52: 441-452
    [178] Chen A, Davalos J F. Development of facesheet for honeycomb FRP sandwich bridge deck panels. In: El-Badry M M, Dunaszegi L, eds. Proc. 4th International Conference on Advanced Composite Materials in Bridges and Structures (ACMBS-4). Calgary, Alberta, Canada: CSCE, 2004.(CD-ROM)
    [179] Reis E M. Hassan T K. Rizkalla S H. Behavior of FRP sandwich panels for transportation infrastructure. In: El-Badry M M, Dunaszegi L, eds. Proc. 4th International Conference on Advanced Composite Materials in Bridges and Structures (ACMBS-4). Calgary, Alberta, Canada: CSCE, 2004.(CD-ROM)
    [180] Luke S, Canning L, Collins S, et al. Advanced Composite Bridge Decking System– Project ASSET. Structural Engineering International, 2002, (2): 76-79
    [181] Luke S. FRP deck for West Mill Bridge, UK. In: In: Proc. 10th International Conference & Exhibition of Faults + Repair-2003. London, UK: Engineering Technics Press, 2003. (CD-ROM)
    [182] Taljsten B, Olofsson I, Hejll A. Construction of the ASSET polymer composite bridge for heavy traffic loads. In: Proc. 10th International Conference & Exhibition of Faults+Repair-2003. London, UK: Engineering Technics Press,2003. (CD-ROM)
    [183]付翰香,薛元德,李文晓.拉挤成型FRP桥面板的研究.玻璃钢/复合材料, 2003, (6):45-48
    [184] Cassity P, Richards D, Gillespie J. Compositely acting FRP deck and girder system. Structural Engineering International, 2002, 12(2): 71-75
    [185] Moon II F L. Eckel II E A. Gillespie J. Shear stud connections for the development of composite action between steel girders and fiber-reinforced polymer bridge decks. J. Structural Engineering, 2002, 128(6): 762-770
    [186] Keelor D C, Luo A, Ears C J, et al. Service load effective compression flange width in fiber reinforced polymer deck systems acting compositely with steel stringers. J. Composites for Construction, 2004, 8(4):289-297
    [187] Keller T, Schollmayer M. Plate bending behavior of a pultruded GFRP bridge deck system. Composite Structures, 2004, 64: 285-295
    [188] Lee Y H, Hwang Y K, Kim K T, et al. Optimization and experimental behaviour of a GFRP bridge deck. In: El-Badry M M, Dunaszegi L, eds. Proc. 4th International Conference on Advanced Composite Materials in Bridges and Structures (ACMBS-4). Calgary, Alberta, Canada: CSCE, 2004.(CD-ROM)
    [189] Howard I. Development of lightweight FRP bridge deck design and evaluations:[MS Thesis]. Morgantown, USA: West Virginia University. 2002
    [190] Ji H S, Chun K S, Son B J, et al. Design, fabrication, and load testing of an advanced composite materials superstructure. In: El-Badry M M, Dunaszegi L, eds. Proc. 4th International Conference on Advanced Composite Materials in Bridges and Structures (ACMBS-4). Calgary, Alberta, Canada: CSCE, 2004.(CD-ROM)
    [191] Reising M W R. Testing and long-term monitoring of a five-span bridge with multiple FRP deck– performance and design issues: [PhD Dissertation]. University of Cincinnati, 2002
    [192] Reising M W R, Shahrooz B M, Hunt J V, et al. Performance Comparison of Four Fiber-Reinforced Polymer. J. Composites for Construction, ASCE, 2004, 8(3):265-247
    [193] Zhou A, Keller T. Connections of Fiber Reinforced Polymer Bridge Decks. In: Proc. IABSE Symposium. Shanghai, China: IABSE, 2004 (CD-ROM)
    [194] Righman J, Barth K, Davalos J. Devepment of an efficient connector system for fiber reinforced polymer bridge decks to steel girders. J. Composites for Construction, ASCE, 2004, 8(4):279-288
    [195] Keller T, Gurtler H, Zhou A. Performance of adhesively bonded FRP deck and steel bridge girder. In: El-Badry M M, Dunaszegi L, eds. Proc. 4th International Conference on Advanced Composite Materials in Bridges and Structures (ACMBS-4). Calgary, Alberta, Canada: CSCE, 2004.(CD-ROM)
    [196]中华人民共和国交通部. JTJ 021-89.公路桥涵设计通用规范.北京:人民交通出版社, 1989年10月1日
    [197]中华人民共和国建设部. CJJ77-98.城市桥梁设计荷载标准.北京:中国建筑工业出版社,1998年12月1日
    [198] Gan L H, Ye L, Mai Y-W. Design and evaluation of various section profiles for pultruded deck panels. Composite Structures, 1999, 47(1-4):719-725
    [199]中华人民共和国交通部. JTJ 023-85.公路钢筋混凝土及预应力混凝土桥涵设计规范.北京:人民交通出版社, 1985年
    [200] The American Association of State Highway and Transportation Officials (AASHTO). AASHTP LRTD bridge design specifications (second edition). Washington, D. C., USA: AASHTO, 1998
    [201] ANSYS, Inc. ANSYS 6.1 User’s Manual. 2000
    [202] Davalos J F, Salim H A, Qiao P, et al. Analysis and design of pultruded FRP shapes under bending. Composites Part B: Engineering, 1996, 27(3-4): 295-305
    [203]杨允表.复合材料横隔式夹层梁的分析.同济大学学报,1999, 27(2):207-211
    [204] Schniepp T J. Design manual development for a hybrid, FRP double-web beam and characterization of shear stiffness in FRP composite beams: [MS Thesis]. Virginia Polytechnic and State University, 2002
    [205] Naaman A E, Harajli M H, WIGHT J K. Analysis of ductility in partially prestressed concrete flexural members. PCI J., 1986, 31(3):64-87.
    [206] Zou P X W. Flexural behavior and deformability of fiber reinforced polymer prestressed concrete beams. J. Composites for Construction, ASCE, 2003, 7(4): 275-284
    [207]叶列平,方团卿,杨勇新等.碳纤维布在混凝土梁受弯加固中抗剥离性能的试验研究.建筑结构, 2003, 3(2):61-5
    [208] Mufti A A, Newhook J P, Tadros G. Deformability versus ductility in concrete beams with FRP reinforcement. In: Proc. 2nd International Conference on Advanced Composite Materials in Bridges and Structures (ACBSM-2).Montreal, Quebec:CSCE, 1996.189-199
    [209] Abdelrahaman A A, Tadro G, Rozkalla S H. Test model for the first Canadian smart highway bridge. ACI Structural J., 1995, 92(4):451-458
    [210] Thompson K J, and Park R. Ductility of prestressed and partially prestressed concrete sections. PCI J., 1980, 25(2):45-69
    [211] Park R, Falconer T J. Ductility of prestressed concrete piles subjected to simulated seismic loading. PCI J., 1983, 28(5):112-144
    [212]过镇海.钢筋混凝土原理.北京:清华大学出版社,1999.294-295
    [213] Naaman A E,Jeong S M. Structural ductility of concrete beams prestressed with FRP tendons. In: Proc. 2nd International RILEM Symposium (FRPRCS-2). London: E & FN Spon,1995. 379-401
    [214] Jaeger L G, Mufti A A, MacNeill D W. Experimental verification of J-factor for steel and GFRP reinforcement in concrete T-beam. In: Proc. annual conference of the Canadian Society for Civil Engineering. Sherbrooke, Quebec:CSCE,1997. 91-100
    [215] Bakht B, Al-Bazi G, Banthia N, et al. Canadian bridge design code provisions for fiber-reinforced structures. J. Composites for Construction, ASCE, 2000, 4(1):3-15
    [216] Tann D B, Delpak R, Davies P. Ductility and deformability of fiber-reinforced polymer strengthened reinforced concrete beams. Proc. the Institution of Civil Engineers: Structures & Buildings, 2004, 157(1):19-30.
    [217] Van Erp G M. Robustness of fibre composite structures loaded in flexure. In: Proc. international conference on FRP composites in civil engineering, Hong Kong: Elsevier, 2001. 1421-1426.
    [218]中华人民共和国国家标准.GB50011-2001.建筑抗震设计规范.中华人民共和国建设部,国家质量监督检验检疫总局.2002年1月1日
    [219] Orozco A L, Maji A K. Energy release in fiber-reinforced plastic reinforced concrete beams. J. Composites for Construction, ASCE, 2004, 8(1):52-58
    [220] Wang J T, Raju I S. Strain energy release rate formulae for skin-stiffener debond modeled with plate element. Engineering Fracture Mechanics, 1996, 54(2): 211-228
    [221] Yap J W H, Scott M L, Thomson R S, et al. The analysis of skin-to-stiffener debonging in composite aerospace structures. Composite Structures, 2002, 57: 425-435
    [222] Barbero E J, Lopez-Anido R, Davalos JF. On the mechanics of thin-walled laminated composite beams. J. Composite Material, 1993,27(8):806-829
    [223] Davalos J F, Qiao P. A computational approach for analysis and optimal design of FRP beams. Computers and Structures,1999, 70:169-183
    [224] Berthelot J-M. Composite Materials: Mechanical Behavior and Structural Analysis, Translated by Cole J M. New York: Springer-Verlag, 1999.267-391
    [225] Hayes M D. Structural analysis of a pultruded composite beam: shear stiffness determination and strength and fatigue life predictions: [PhD Dissertation]. Virginia Polytechnic Institute and State University, 2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700