用户名: 密码: 验证码:
采用串联网侧变换器的双馈异步风力发电系统运行和控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双馈异步发电机(DFIG)以其优越的运行性能,在大型变速恒频风力发电系统中得到了广泛应用。然而双馈异步风力发电机组定子侧与电网直接相连的结构决定了其对电网扰动尤其是电网故障异常敏感,使得其在应对不平衡电网条件下的运行及实现低电压穿越方面存在较大缺陷。如何进一步提高DFIG系统在电网电压不平衡及电网故障情况下的安全运行能力已成为当前研究的热点问题。目前,已有学者着手新的拓扑结构的研究,以期改善双馈异步风力发电机组在电网不平衡及电网故障条件下的运行性能。受动态电压恢复器的启发而提出的采用串联网侧变换器的新型双馈异步风力发电系统能够实现零电压穿越,具有优良的低电压穿越(LVRT)能力,是一种先进的LVRT技术。但此类研究还处于起步阶段,国内外研究均较少。本文针对采用串联网侧变换器的新型DFIG系统,结合国内外研究的热点问题,对其在电网电压不平衡及电网故障等异常工况下的运行与控制展开了深入研究,论文的主要研究工作包括:
     1)利用空间矢量法建立了采用串联网侧变换器的DFIG系统的统一数学模型,进而在此模型基础上提出了电网电压正常时适用于该系统的一种稳态控制策略并通过仿真验证了该策略的正确性和有效性。为进一步研究采用串联网侧变换器的DFIG系统在电网异常条件下的运行与控制奠定了基础。
     2)分析了电网电压不平衡对DFIG机组的影响及采用串联网侧变换器的DFIG系统在电网电压不平衡条件下的运行情况。在此基础上,从抑制电网电压不平衡对DFIG机组影响及有效增强整个DFIG系统运行性能的角度出发,研究和提出了采用串联网侧变换器的DFIG系统在小值不平衡电网电压条件下的3种增强运行能力控制方案。研究结果表明:与现有文献相比,本文所提方案在确保DFIG机组电磁转矩无2倍频脉动及实现电网电压不平衡条件下整个系统或输出有功功率无2倍频波动或输出无功功率无2倍频波动或整个系统无负序电流注入电网等3种不同运行功能的同时,保证了DFIG三相定、转子电流平衡,避免了定、转子绕组产生不均衡发热危及绕组绝缘,极大地改善了DFIG系统在不平衡电网电压条件下的整体运行性能及其所并电网的运行稳定性。
     3)在分析电网故障下DFIG的定、转子瞬变分量及采用串联网侧变换器的DFIG系统抑制转子过电流机理的基础上,从限制定子磁场暂态直流分量和负序工频分量及减小从风机吸收能量的角度出发,提出了一种适合于该系统的低电压穿越运行控制策略。研究结果表明本文所提低电压穿越控制策略成功实现了DFIG系统的零电压穿越,有利于提高大型并网双馈风力发电系统的电网故障适应能力,增强其低电压穿越运行性能及提高其所并电网的运行稳定性。
     4)从电路的角度,解释了电网故障下DFIG转子过电流的原因。针对active Crowbar结构,给出了其Crowbar电阻的确定原则,然后结合仿真,对比分析了几种常用的适用于DFIG系统的低电压穿越方案在电网发生严重对称及非对称短路故障时的技术性能,并进一步探讨了各种低电压穿越方案的经济性。上述工作为工程实现各种低电压穿越方案奠定了一定基础。
     5)以高性能数字信号处理器(DSP)-TMS320F2812和集成智能功率模块(IPM)为核心,建立了采用串联网侧变换器的DFIG实验系统。分别在电网电压正常及不平衡条件下,对并网运行的采用串联网侧变换器的DFIG系统进行了全面深入的实验研究,以实验结果进一步验证了前述相关分析和研究的正确性和有效性。
Doubly fed induction generators (DFIGs) have been widely used for large-scale variable-speed constant-frequency wind power generation systems due to their excellent operational performance. However, as the DFIG’s stator is directly connected to the grid, wind turbines based on the DFIG are very sensitive to grid disturbances, especially to grid faults, and have aggravated operational performance under unbalanced grid voltage condition as well as poor low voltage ride-through (LVRT) capability during grid faults. How to improve the capabilities of the DFIG systems under such abnormal operating conditions has attracted special attention during the last few years. Recently, some research efforts have been devoted to overcome these issues with modified DFIG system topologies. A new DFIG system configuration with an additional grid-side converter, referred to as the series grid-side converter (SGSC), in series with the stator windings of the DFIG and grid connection is proposed where the inspiration for the SGSC is derived from the dynamic voltage restorer (DVR). This topology has been demonstrated to be an advanced low voltage ride-through technology because the DFIG system with this configuration can achieve zero voltage ride-through and has excellent LVRT potential. However, the research on this new topology is still in its early days and there has been little published literature worldwide. This dissertation intends to study the operation and control strategy of the new DFIG system with SGSC under abnormal operating conditions, such as grid voltage unbalance and grid faults. Concrete research work is as follows:
     1) The unified mathematical model of the DFIG system with SGSC is built by means of space-vector method. Based on this model, a steady-state control strategy suitable for this new topology during normal grid condition is further proposed and verified by simulation results. These works lay the foundation for the operation and control of the DFIG system with SGSC under abnormal operating conditions.
     2) The impact of grid voltage unbalance on the DFIG and the behaviors of the DFIG system with SGSC under unbalanced grid voltage conditions are analyzed. On this basis, three selective enhanced control strategies are proposed during network unbalance to restrain the adverse effects of voltage unbalance on the DFIG and improve the operational performance of the whole system. Research results show that compared with the existing unbalanced control methods, the main advantage of the proposed method is that while achieving the goals of zero oscillations in electromagnetic torque and total active or reactive power, or total current unbalance, the stator and rotor currents in the three phase windings are also balanced. Thus, the sustained localized heating on the stator and rotor windings caused by the unbalanced stator and rotor currents can be avoided and the life spans of the windings insulation materials would be extended effectively. The operational performance of the whole DFIG system and the stability of the connected grid can also be dramatically improved.
     3) Based on the analysis of the transient components in the stator and rotor during grid faults and the mechanism for the DFIG system with SGSC suppressing the rotor over current, a LVRT control strategy allowing DFIG to ride through the grid faults is proposed. By controlling the output voltage of SGSC to suppress the transient DC flux and negative sequence flux components in the stator flux and also by controlling the rotor-side converter (RSC) to further restrain the stator and rotor currents, a successful ride-through during grid faults is achieved. Research results show that the proposed control strategy can make the DFIG system with SGSC achieve zero voltage ride-through and improve the LVRT performance of the whole DFIG system and the stability of the connected grid.
     4) The reason for rotor over current during grid faults is explained from the perspective of electrical circuit. The criterion for determining the value of active Crowbar resistor is given. Then the characteristics of some common LVRT techniques are further researched and analyzed based on the simulation results under severe symmetrical and asymmetrical grid faults. Finally, the economies of these LVRT techniques are discussed. These works lay a certain foundation for engineering development of these LVRT techniques.
     5) An experimental platform of the DFIG system with SGSC is developed based on the TMS320F2812 digital signal processings (DSPs) and the intelligent power modules (IPMs). On the experimental platform, detailed experiments are carried out during normal and unbalanced grid voltage conditions, respectively. These experimental results further verify the validity and efficiency of the aforementioned analysis and research.
引文
[1]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,42(3):345-359.
    [2]迟远英.基于低碳经济视角的中国风电产业发展研究[D].吉林大学博士学位论文,2008.
    [3] BP公司.BP世界能源统计2009[R].2009.
    [4]王勇,董雪.低碳经济——可持续发展的必然选择[J].咸宁学院学报,2010,30(3):19-20.
    [5]崔奕,郝寿义,王银平.低碳经济引发的可再生能源思考[J].生态经济,2010,(5):64-67.
    [6]杨振斌.风能太阳能资源研究论文集[M].北京:气象出版社,2008.
    [7]王仲颖,时璟丽,李俊峰.《可再生能源法》与我国的风电发展战略[J].中国建设动态:阳光能源,2005,(6):46-49.
    [8]李柯,何凡能,席建超.中国陆地风能资源开发潜力区域分析[J].资源科学,2010,32(9):1672- 1678.
    [9] Global wind energy council (GWEC).Global wind 2009 report[R].2010.
    [10] Pena R,Clare J C,Asher G M.A doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation[J] . IEE Proceedings:Electric Power Applications,1996,143(3):231-241.
    [11]廖勇,杨顺昌.交流励磁发电机励磁控制[J].中国电机工程学报,1998,18(2):87-90.
    [12] Muller S,Deicke M,De Doncker R W.Doubly fed induction generator system for wind turbines[J].IEEE Industry Application Magazine,2002,8(3):26-33.
    [13]刘其辉,贺益康.变速恒频风力发电系统最大风能追踪控制[J].电力系统自动化,2003,27(20):62-67.
    [14]贺益康,郑康,潘再平,刘其辉.交流励磁变速恒频风电系统运行研究[J].电力系统自动化,2004,28(13):55-59,68.
    [15] Hansen A D,Hansen L H.Wind turbine concept market penetration over 10 years (1995-2004)[J].Wind Energy,2007,10(1):81-97.
    [16] Li H,Chen Z.Overview of different wind generator systems and their comparisons[J].IET Renewable Power Generation,2008,2(2):123-138.
    [17]李辉,薛玉石,韩力.并网风力发电机系统的发展综述[J].微特电机,2009,(5):55-61.
    [18]叶航冶.风力发电机组的控制技术[M].北京:机械工业出版社,1998.
    [19]杨顺昌,廖勇.交流励磁发电机运行及控制原理[J].电工技术学报,1997,12(10):21-25.
    [20] Morel L,Godfroid H,Mirzaian A,Kauffumann J M.Double-fed induction machine: Converter optimization and field oriented control without position sensor[J] . IEE Proceedings:Electric Power Applications,1998,145(4):360-368.
    [21]李辉,杨顺昌,廖勇.并网双馈发电机电网电压定向励磁控制的研究[J].中国电机工程学报,2003,23(8):159-162.
    [22]林成武,王凤翔,姚兴佳.变速恒频双馈风力发电机励磁控制技术研究[J].中国电机工程学报,2003,23(11):122-125.
    [23]刘其辉,贺益康,卞松江.变速恒频风力发电机空载并网控制[J].中国电机工程学报,2004,24(3):6-11.
    [24]李晶,宋家骅,王伟胜.大型变速恒频风力发电机组建模与仿真[J].中国电机工程学报,2004,24(6):100-105.
    [25]赵仁德,贺益康,黄科元,卞松江.变速恒频风力发电机用交流励磁电源的研究[J].电工技术学报,2004,19(6):1-6.
    [26] Hughes F M,Anaya-Lara O,Jenkins N,Strbac G.Control of DFIG-based wind generation for power network support[J].IEEE Transactions on Power Systems,2005,20(4):1958-1966.
    [27]王峰,姜建国.风力发电机用PWM变换器的功率平衡联合策略研究[J].中国电机工程学报,2006,26(22):134-139.
    [28]周求宽,廖勇,姚骏.双PWM变换器励磁的交流励磁发电机励磁系统设计[J].电力系统自动化,2007,31(6):77-81.
    [29] Lin C,Wang F,Tang Y.Design and implementation of a doubly-fed VSCF wind power control system[C].2002 International Conference on Power System Technology,Kunming,China,2002.
    [30]刘其辉.变速恒频风力发电系统运行与控制研究[D].浙江大学博士学位论文,2005.
    [31]姚骏.交流励磁发电机及其励磁电源的控制策略研究[D].重庆大学博士学位论文,2007.
    [32]赵仁德.变速恒频双馈风力发电机交流励磁电源研究[D].浙江大学博士学位论文,2005.
    [33]杨顺昌.电机矩阵分析[M].重庆:重庆大学出版社,1988.
    [34]廖勇.交流励磁发电机励磁控制策略及电磁设计的研究[D].重庆大学博士学位论文,1997.
    [35]张为杰.交流励磁电机发展前景[J].大电机技术,1992,(5):1-6.
    [36] Petersson A , Harnefors L , Thiringer T . Comparison between stator-flux andgrid-flux-oriented rotor current control of doubly-fed induction generators[C].IEEE 35th Annual Power Electronics Specialists Conference,Aachen,Germany,2004:482-486.
    [37] Petersson A.Analysis modeling and control of doubly-fed induction generators for wind turbines [D].Chalmers Univ. Technol.,Goteborg,Sweden,2005.
    [38]姚骏,廖勇.基于全模糊控制器的交流励磁发电机励磁控制系统研究[J].中国电机工程学报,2007,27(33):36-41.
    [39] Fan S,Wang Y.Fuzzy model predictive control for alternating current excitation generators[C].The 4th International Power Electronics and Motion Control Conference,Xi'an,China,2004:676-680.
    [40]唐建平,廖勇,姚骏.变参数PI与神经网络控制的风电系统仿真[J].计算机仿真,2008,25(3):251-254,297.
    [41] Datta R,Ranganathan V T.Direct power control of grid-connected wound rotor induction machine without rotor position sensors[J].IEEE Transactions on Power Electronics,2001,16(3):390-399.
    [42] Xu L,Cartwright P.Direct active and reactive power control of DFIG for wind energy generation[J].IEEE Transactions on Energy Conversion,2006,21(3):750-758.
    [43] Zhi D,Xu L.Direct power control of DFIG with constant switching frequency and improved transient performance[J].IEEE Transactions on Energy Conversion,2007,22(1):110-118.
    [44]张崇巍,张兴.PWM整流器及其控制[M].北京:机械工业出版社,2003.
    [45]张兴,张崇巍.PWM可逆变流器空间电压矢量控制技术的研究[J].中国电机工程学报,2001,21(10):102-109.
    [46]赵仁德,贺益康,刘其辉.提高PWM整流器抗负载扰动性能研究[J].电工技术学报,2004,19(8):67-72.
    [47]赵仁德,贺益康.无电网电压传感器三相PWM整流器虚拟电网磁链定向矢量控制研究[J].中国电机工程学报,2005,25(20):56-61.
    [48]王久和,李华德.一种新的电压型PWM整流器直接功率控制策略[J].中国电机工程学报,2005,25(16):47-52.
    [49] Lee D,Lee G,Lee K.DC-bus voltage control of three-phase AC/DC PWM converters using feedback linearization[J].IEEE Transactions on Industry Applications,2000,36(3):826-833.
    [50] Jung J,Lim S,Nam K.A feedback linearizing control scheme for a PWM converter-inverter having a very small DC-link capacitor[J].IEEE Transactions on Industry Applications,1999,35(5):1124-1131.
    [51]姚骏,廖勇,周求宽,唐建平.双PWM控制交流励磁电源直流母线电压的稳定控制策略[J].电力系统自动化,2007,31(21):63-66,81.
    [52] Von Jouanne A,Banerjee B.Assessment of voltage unbalance[J].IEEE Transactions on Power Delivery,2001,16(4):782-790.
    [53] Piwko R,Miller N,Sanchez-Gasca J,Yuan X,Dai R,Lyons J.Integrating large wind farms into weak power grids with long transmission lines[C].The IEEE 5th International Power Electronics and Motion Control Conference,Shanghai,PR China,2006:1122-1128.
    [54] Brekken T,Mohan N.Control of a doubly fed induction wind generator under unbalanced grid voltage conditions[J].IEEE Transactions on Energy Conversion,2007,22(1):129-135.
    [55]中国电力科学研究院,风电场接入电网技术规定[S].修订版.北京:国家电网公司,2009.
    [56] Xu L,Wang Y.Dynamic modeling and control of DFIG based wind turbines under unbalanced network conditions[J].IEEE Transactions on Power System,2007,22(1):314-323.
    [57]胡家兵,贺益康,郭晓明,年珩.不平衡电压下双馈异步风力发电系统的建模与控制[J].电力系统自动化,2007,31(14):47-56.
    [58] Qiao W,Harley R G.Improved control of DFIG wind turbines for operation with unbalanced network voltages[C].IEEE Industry Applications Society Annual Meeting,Edmonton,Canada,2008.
    [59] Abo-Khalil A G,Lee D,Jang J.Control of back-to-back PWM converters for DFIG wind turbine systems under unbalanced grid voltage[C].IEEE International Symposium on Industrial Electronics,Caixanova-Vigo,Spain,2007:2637-2642.
    [60] Brekken T,Mohan N.A novel doubly-fed induction wind generator control scheme for reactive power control and torque pulsation compensation under unbalanced grid voltage conditions[C].IEEE Annual Power Electronics Specialists Conference,Acapulco,Mexico,2003:760-766.
    [61] Xu L.Coordinated control of DFIG’s rotor and grid side converters during network unbalance[J].IEEE Transactions on Power Electronics,2008,23(3):1041-1049.
    [62] Xu L.Enhanced control and operation of DFIG-based wind farms during network unbalance[J].IEEE Transactions on Energy Conversion,2008,23(4):1073-1081.
    [63] Hu J,He Y.Reinforced control and operation of DFIG-based wind-power generation system under unbalanced grid voltage conditions[J].IEEE Transactions on Energy Conversion,2009,24(4):905-915.
    [64] Hu J,He Y.Modeling and enhanced control of DFIG under unbalanced grid voltageconditions[J].Electric Power Systems Research,2009,79(2):273-281.
    [65] Hu J,He Y,Xu L,Williams B W.Improved control of DFIG systems during network unbalance using PI-R current regulators[J].IEEE Transactions on Industrial Electronics,2009,56(2):439-451.
    [66] Nass B I,Undeland T M,Gjengedal T.Methods for reduction of voltage unbalance in weak grids connected to wind plants[C].IEEE Workshop on Wind Power and the Impacts on Power Systems,Oslo,Norway,2002.
    [67] Pena R,Cardenas R,Escobar E,Clare J,Wheeler P.Control strategy for a doubly-fed induction generator feeding an unbalanced grid or stand-alone load[J].Electric Power Systems Research,2009,79(2):355-364.
    [68] Wang Y,Xu L,Williams B W.Compensation of network voltage unbalance using doubly fed induction generator-based wind farms[J].IET Renewable Power Generation,2009,3(1):12-22.
    [69] Muljadi E,Batan T,Yildirim D,Butterfield C P.Understanding the unbalanced-voltage problem in wind turbine generation[C].The 34th IAS Annual Meeting,Phoenix,USA,1999:1359-1365.
    [70] Erlich I,Bachmann.Grid code requirements concerning connection and operation of wind turbines in Germany[C] .Proceedings of IEEE Power Engineering Society General Meeting,San Francisco,CA,USA,2005:1253-1257.
    [71] National grid electricity transmission [EB/OL].[2006-09-01].http:// www. Nationalgrid. com.
    [72] E . ON Netz GmbH . Grid code for high and extra high voltage [EB/ OL].[2003-08-01].http:// www. Eon-netz. com/Resources/downloads/enenarhseng1.pdf.
    [73]王伟,孙明东,朱晓东.双馈式风力发电机低电压穿越技术分析[J].电力系统自动化,2007,31(23):84-89.
    [74]雷亚洲,Gordon L.国外风力发电导则及动态模型简介[J].电网技术,2005,25(12):27-32.
    [75]苑国锋,柴建云,李永东.变速恒频风力发电机组励磁变频器的研究[J].中国电机工程学报,2005,25(8):90-94.
    [76]伍小杰,柴建云,王祥珩.变速恒频双馈风力发电系统交流励磁综述[J].电力系统自动化,2004,28(23):92-96.
    [77] Thiringer T,Luomi J.Comparison of reduced-order dynamic models of induction machines[J].IEEE Transactions on Power Systems,2001,16(1):119-126.
    [78] Derbel D N,Kamoun M B A,Ploloujadoff M.On the order reduction of induction machineduring start-up[J].IEEE Transactions on Energy Conversion,1995,10(4):655-660.
    [79] Ledesma P,Usaola J.Doubly fed induction generator model for transient stability analysis[J].IEEE Transactions on Energy Conversion,2005,20(2):388-397.
    [80] Slootweg J G,Polinder H,Kling W L.Dynamic modelling of a wind turbine with doubly fed induction generator[C].IEEE Power Engineering Society Transmission and Distribution Conference,Vancouver,BC,Canada,2001:644-649.
    [81] Petersson A,Thiringer T,Harnefors L,Petru T.Modeling and experimental verification of grid interaction of a DFIG wind turbine[J].IEEE Transactions on Energy Conversion,2005,20(4):878-886.
    [82] Holdsworth L,Wu X,Ekanayake J,Jenkins N.Comparison of fixed speed and doubly fed induction wind turbines during power system disturbances[J].IEE Proceedings:Generation,Transmission and Distribution,2003,150(3):343-352.
    [83] Nunes M V,Lopes J A P,Bezerra U H,Zurn H H,Almeida R.Influence of the variable speed wind generators in transient stability margin of the conventional generators integrated in electrical grids[J].IEEE Transactions on Energy Conversion,2004,19(4):692-701.
    [84] Vicatos M S,Tegopoulos J A.Transient state analysis of a doubly-fed induction generator under three phase short circuit[J].IEEE Transactions on Energy Conversion,1991,6(1):62-68.
    [85]向大为.双馈感应风力发电机特殊工况下励磁控制策略的研究[D].重庆大学博士学位论文,2006.
    [86] Lopez J,Sanchis P,Roboam X,Marroyo L.Dynamic behavior of the doubly fed induction generator during three-phase voltage dips[J].IEEE Transactions on Energy Conversion,2007,22(3):709-717.
    [87] Lopez J,Gub?a E,Sanchis P,Roboam X,Marroyo L.Wind turbines based on doubly fed induction generator under asymmetrical voltage dips[J].IEEE Transactions on Energy Conversion,2008,23(1):321-330.
    [88] Mortezapour V,Lesani H,Abbaszadeh A.Stator transient current of DFIG-influence of two-mass model and leakage flux saturation[C].International Conference on Electric Power and Energy Conversion Systems,Sharjah,United Arab Emirates,2009.
    [89] Jabr H M,Kar N C.Effects of main and leakage flux saturation on the transient performances of doubly-fed wind driven induction generator[J].Electric Power Systems Research,2007,77(8):1019-1027.
    [90] Song Z,Xia C,Shi T.Assessing transient response of DFIG based wind turbines during voltage dips regarding main flux saturation and rotor deep-bar effect[J].Applied Energy,2010,87(10):3283-3293.
    [91] Janaka B E,Lee H,Wu X,Jenkins N.Dynamic modeling of doubly fed induction generator wind turbines[J].IEEE Transactions on Power Systems,2003,18(2):803-809.
    [92] Sun T,Chen Z,Blaabjerg F.Voltage recovery of grid-connected wind turbines with DFIG after a short-circuit fault[C].The 35th Annual IEEE Power Electronics Specialists Conference,Aachen Germany,2004.
    [93] Petersson A,Lundberg S,Thiringer T.A DFIG wind turbine ride-through system. Influence on the energy production[J].Wind Energy,2005,8(3):251-263.
    [94]胡家兵,孙丹,贺益康,赵仁德.电网电压骤降故障下双馈风力发电机建模与控制[J].电力系统自动化,2006,30(8):21-26.
    [95]向大为,杨顺昌,冉立.电网对称故障时双馈感应发电机不脱网运行的励磁控制策略[J].中国电机工程学报,2006,26(3):164-170.
    [96]姚骏,廖勇,唐建平.电网短路故障时交流励磁风力发电机不脱网运行的励磁控制策略[J].中国电机工程学报,2007,27(30):64-71.
    [97] Xiang D,Ran L,Tavner P J,Yang S.Control of a doubly fed induction generator in a wind turbine during grid fault ride-through[J].IEEE Transactions on Energy Conversion,2006,21(3):652-662.
    [98] Gomis-Bellmunt, O,Junyent-Ferre A,Sumper A,Bergas-Jane J.Ride-through control of a doubly fed induction generator under unbalanced voltage sags[J].IEEE Transactions on Energy Conversion,2008,23(4):1036-1045.
    [99] Zhou Y,Bauer P,Ferreira J A,Pierik J.Operation of grid-connected DFIG under unbalanced grid voltage condition[J].IEEE Transactions on Energy Conversion,2009,24(1):240-246.
    [100] Zhou P,He Y,Sun D.Improved direct power control of a DFIG-based wind turbine during network unbalance[J].IEEE Transactions on Power Electronics,2009,24(11):2465-2474.
    [101] Santos-Martin D,Rodriguez-Amenedo J L,Arnaltes S.Providing ride-through capability to a doubly fed induction generator under unbalanced voltage dips[J].IEEE Transactions on Power Electronics,2009,24(7):1747-1757.
    [102] Rahimi M,Parniani M.Grid-fault ride-through analysis and control of wind turbines with doubly fed induction generators[J].Electric Power Systems Research,2010,80(2):184-195.
    [103] Morren J,De Hann S W H.Ridethrough of wind turbines with doubly-fed induction generator during a voltage dip[J].IEEE Transactions on Energy Conversion,2005,20(2):435-441.
    [104]李建林,赵栋利,李亚西,许洪华.适合于变速恒频双馈感应发电机的Crowbar对比分析[J].可再生能源,2006,(5):57-60.
    [105] Lopez J,Gubia E,Olea E,Ruiz J,Marroyo L.Ride through of wind turbines with doubly fed induction generator under symmetrical voltage dips[J].IEEE Transactions on Industrial Electronics,2009,56(10):4246-4254.
    [106]蒋雪冬,赵舫.应对电网电压骤降的双馈感应风力发电机Crowbar控制策略[J].电网技术,2008,32(12):84-89.
    [107]姚骏,廖勇.基于Crowbar保护控制的交流励磁风力发电系统运行分析[J].电力系统自动化,2007,31(23):79-83.
    [108] Morren J,De Hann S W H.Short-circuit current of wind turbines with doubly fed induction generator[J].IEEE Transactions on Energy Conversion,2007,22(1):174-180.
    [109]胡家兵,贺益康.双馈风力发电系统的低电压穿越运行与控制[J].电力系统自动化,2008,32(2):49-52.
    [110]张学广,徐殿国.电网对称故障下基于active crowbar双馈发电机控制[J].电机与控制学报,2009,13(1):99-103.
    [111] Aguglia D,Viarouge P,Wamkeue R,Cros J.Determination of fault operation dynamical constraints for the design of wind turbine DFIG drives[J].Mathematics and Computers in Simulation,2010,81(2):252-262.
    [112] Abbey C,Joos G.Effect of low voltage ride through (LVRT) characteristic on voltage stability[C].IEEE Power Engineering Society General Meeting,California,USA,2005.
    [113] Abbey C,Joos G.Supercapacitor energy storage for wind energy applications[J].IEEE Transactions on Industry Applications,2007,43(3):769-776.
    [114] Abbey C,Li W,Owatta L,Joos G.Power electronic converter control techniques for improved low voltage ride through performance in WTGs[C].IEEE Power Electronics Specialists Conference,Korea,2006.
    [115] Abbey C,Joos G.Short-term energy storage for wind energy applications[C].Industry Applications Conference,Fourtieth IAS Annual Meeting,Hong Kong,China,2005:2035-2042.
    [116] Li W,Joos G.Comparison of energy storage system technologies and configurations in a wind farm[C].IEEE Power Electronics Specialists Conference,Orlando,Florida,USA,2007:1280-1285.
    [117] Fnaiech M A,Capolino G A,Betin F,Fnaiech F,Nahidmobarakeh B.Synchronous and induction wind power generators as renewable power energy sources[C] . The 1st International Symposium on Environment Identities and Mediterranean Area ,Corte-Ajaccio,France,2006:167-172.
    [118] Baroudi J A,Dinavahi V,Knight A M.A review of power converter topologies for wind generators[C].IEEE International Conference on Electric Machines and Drives,San Antonio, TX, United states,2005:458-465.
    [119] Joshi N,Mohan N.A novel scheme to connect wind turbines to the power grid [J].IEEE Transactions on Energy Conversion,2009,24(2):504-510.
    [120] Ibrahim A O,Nguyen T H,Lee D,Kim S.Ride-through strategy for DFIG wind turbine systems using dynamic voltage restorers[C].IEEE Energy Conversion Congress and Exposition,2009:1611-1618.
    [121] Jayanti N G,Basu M,Gaughan K,Conlon M F.A new configuration and control of doubly fed induction generator (UPQC-WG)[C].The 34th Annual Conference of the IEEE Industrial Electronics Society,2008:2094-2099.
    [122] Abdel-Baqi O , Nasiri A . A dynamic LVRT solution for doubly fed induction generators[J].IEEE Transactions on Power Electronics,2010,25(1):193-196.
    [123]王同勋,薛禹胜,Choi S S.动态电压恢复器研究综述[J].电力系统自动化,2007,31(9):101-107.
    [124]张秀娟,杨潮,唐志,刘炳,韩英铎.串联型电能质量控制器注入电压的研究[J].中国电机工程学报,2003,23 (2):15-20.
    [125] Wang Q,Choi S S.An energy-saving series compensation strategy subject to injected voltage and input-power limits[J].IEEE Transactions on Power Delivery,2008,23(2):1121-1131.
    [126] Sng E K K,Choi S S,Vilathgamuwa D M.Analysis of series compensation and DC-link voltage controls of a transformerless self-charging dynamic voltage restorer[J].IEEE Transactions on Power Delivery,2004,19(3):1511-1518.
    [127] Sanchez L F,Chen Y,Chen G,Smedley K M.A unified voltage quality conditioner for wind power generation[C].IEEE Industry Applications Conference,Fourtieth IAS Annual Meeting,Kowloon,Hong Kong,China,2005:579-584.
    [128] Cao R,Zhao J,Shi W,Jiang P,Tang G.Series power quality compensator for voltage sags,swells,harmonics and unbalance[C].IEEE/PES Transmission and Distribution Conference,Atlanta,GA,USA,2001:543-547.
    [129] Deepak K,Ilango G S,Nagamani C,Swarup K S.Performance of UPFC on system behavior under fault conditions[C].An International Conference of IEEE India Council,Chennai,India,2005:505-509.
    [130] Zhou X,Wang H,Aggarwal R K,Beaumont P.Performance evaluation of a distance relay as applied to a transmission system with UPFC[J].IEEE Transactions on Power Delivery,2006,21(3):1137-1146.
    [131] Flannery P,Venkataramanan G.A grid fault tolerant doubly fed induction generator wind turbine via series connected grid side converter[C].WINDPOWER 2006 Conference,Pittsburgh,PA,2006.
    [132] Flannery P,Venkataramanan G.Evaluation of voltage sag ride-through of a doubly fed induction generator wind turbine with series grid side converter[C].The 38th Annual Power Electronics Specialists Conference,Orlando,FL,United states,2007:1839-1845.
    [133] Singh B,Emmoji V,Singh S N.Performance evaluation of series and parallel connected grid side converters of DFIG[C].IEEE Power and Energy Society General Meeting,Pittsburgh,PA,USA,2008.
    [134] Flannery P,Venkataramanan G.A fault tolerant doubly fed induction generator wind turbine using a parallel grid side rectifier and series grid side converter[J].IEEE Transactions on Power Electronics,2008,23(3):1126-1135.
    [135] Zhan C,Barker C D.Fault ride-through capability investigation of a doubly-fed induction generator with an additional series-connected voltage source converter[C].The 8th IEE International Conference on AC and DC Power Transmission,London,UK,2006:79-84.
    [136] Vas P.Electrical machines and drives a space-vector theory approach[M].Oxford, U. K.: Oxford University Press,1992.
    [137] Briz F,Degner M W,Lorenz R D.Dynamic analysis of current regulators for AC motors using complex vectors[J].IEEE Transactions on Industry Applications,1999,35(6):1424-1432.
    [138] Briz F,Degner M W,Lorenz R D.Analysis and design of current regulators using complex vectors[J].IEEE Transactions on Industry Applications,2000,36(3):817-825.
    [139] Vas P.Vector control of AC machines[M].Oxford, U. K.: Oxford University Press,1990.
    [140]汤蕴璆,史乃.电机学[M].北京:机械工业出版社,2005.
    [141]郭家虎.变速恒频双馈风力发电系统控制技术的研究[D].上海大学博士学位论文,2008.
    [142]高景德,王祥珩,李发海.交流电机及其系统的分析[M].北京:清华大学出版社,2005.
    [143] Lee C Y,Chen B K,Lee W J,Hsu Y F.Effects of various unbalanced voltages on the operation performance of an induction motor under the same voltage unbalance factor condition[J].Electric Power Systems Research,1998,47(3):153-163.
    [144] CENELEC.European standard EN-50160 Voltage characteristics of electricity supplied by public distribution systems[S].Brussels,Belgium,2000.
    [145] Saccomando G,Svensson J.Transient operation of grid-connected voltage source converterunder unbalanced voltage conditions[C].Proceedings of Industry Applications Conference,36th IAS Annual Meeting,Chicago,IL,USA,2001:2419-2424.
    [146]袁旭峰,程时杰,文劲宇.改进瞬时对称分量法及其在正负序电量检测中的应用[J].中国电机工程学报,2008,28(1):52-58.
    [147] Tsili M,Papathanassiou S.A review of grid code technical requirements for wind farms[J].IET Renewable Power Generation,2009,3(3):308–332.
    [148] Aung M T,Milanovic J V.The influence of transformer winding connections on the propagation of voltage sags[J].IEEE Transactions on Power Delivery,2006,21(1):262-269.
    [149]杨淑英.双馈型风力发电变流器及其控制[D].合肥工业大学博士学位论文,2007.
    [150] Seman S,Niiranen J,Arkkio A.Ride-through analysis of doubly fed induction wind-power generator under unsymmetrical network disturbance[J].IEEE Transactions on Power Systems,2006,21(4):1782-1789.
    [151] Erlich I,Wilch M,Feltes C.Reactive power generation by DFIG based wind farms with AC grid connection[C].Proceedings of 2007 the 12th European Conference on Power Electronics and Applications,Aalborg,Denmark,2007:1-10.
    [152] Llorente J I,Visiers M.Method and device for injecting reactive current during a mains supply voltage dip:USA,Worldwide Patent WO2006/089989[P].2006-8-31.
    [153] Qiao W,Venayagamoorthy G K,Harley R G.Real-time implementation of a STATCOM on a wind farm equipped with doubly fed induction generators[J].IEEE Transactions on Industry Applications,2009,45(1):98-107.
    [154] Ribrant J,Bertling L M.Survey of failures in wind power systems with focus on Swedish wind power plants during 1997-2005[J].IEEE Transactions on Energy Conversion,2007,22(1):167-173.
    [155]王志新,张华强.风力发电及其控制技术新进展[J].2009,(19):1-7,19.
    [156]瞿兴鸿.直驱永磁同步风力发电控制系统的研究与设计[D].重庆大学硕士学位论文,2008.
    [157]周求宽.双PWM变换器励磁的交流励磁发电机励磁系统设计[D].重庆大学硕士学位论文,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700