用户名: 密码: 验证码:
动态测量不确定度理论的拓展及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
较之静态测量系统,动态测量系统更具普遍意义。但长期以来,对于动态测量系统测量不确定度的评定大多采用静态化处理的方法。随着测量系统实时性、动态性要求的提高,这种做法已越来越不适用。而现有动态测量不确定度理论在理论体系和实践方法等都存在有待完善的地方。本文正是着眼这方面问题,从动态测量不确定度的评定、离群值的剔除、测量结果真值的估计、多观测器情况的处理以及多维情况下的处理等对动态测量不确定度理论进行研究,尝试建立一套较实用的动态测量结果测量不确定度评定的理论和方法。
     首先探讨动态测量数据的组成特点,进而采用建模的方法对动态测量数据的各种成分进行描述和不确定度评定。以评定结果为基础,通过定义置信距离和求解一致性矩阵,实现了对动态测量数据中离群值的剔除。针对动态测量通常无法通过时间上的重复测量来提高可靠性的情况,给出了多观测器空间冗余结构模型和数据处理方法。为适应多维测量结果测量不确定度评定的应用需求,推导了多维情况下显式和隐式映射的多维不确定度传播律公式,给出了多维测量不确定度的几何意义和不同的多维测量结果的质量比较方法,并对多观测器情况下多维测量结果真值最佳估计方法及其测量不确定度评定进行了研究。
     针对动态测量不确定度在数字计算条件下,计算机处理方法存在较多问题这一情况,本文在每一个环节都给出了算法实现的具体流程,并对最大一致测量数据组的求取、舍入误差引起的不确定度的处理等问题进行了重点研究,提出了采用“逻辑与”运算搜索最大全通图以及分级合并算法等具体解决方案。
     鉴于测量不确定度评定更多处于附属地位的现状,提出了以测量不确定度参数为核心的系统构建方法。结合理论研究,构建了滤波、表面增强拉曼散射光谱信号处理、传感器失效检测、数据融合以及多平台协同定位等一系列算法,并通过仿真及应用实例的检验,证明了这些算法的可行性。这些方法也为测量不确定度理论在更广范围内的应用和推广提供了一条较为有效的思路。
Compared with static measurement systems, dynamic measurement systems are more widely used. But under most circumstance, the measurement uncertainty evaluations of dynamic measurement systems are staticize as static measurement systems. This kind of method is more and more inapplicable for the dynamic measurement systems whose need more and more dynamic and real time performances. That is because the dynamic uncertainty has a lot of deficiencies in the theory and application methods. This thesis aims to do researches in this area, including dynamic uncertainty evaluation, outlier data elimination, true value evaluation, multi-observers and multi-dimensions processing method, etc.
     The characters of dynamic measurement data are discussed first, and then some models are selected to describe the components of dynamic measurement data and evaluate the dynamic measurement uncertainty. Based on the evaluation result, a confidence distance is defined to describe the consistency of the data from different observers. After that consistency matrix can be got, and the outlier data can be detected by solving the matrix. A spatial redundancy model and its data processing method are set up to resolve the reliability problem of the dynamic measurement system whose reliability usually cannot be improved by time repeat measurement. To evaluate the measurement uncertainty of multi-dimension measurement results, the multi-dimension measurement theory are also studied, including multi-dimension measurement transfer rule, geometric meaning of multi-dimension measurement result, the comparison method of different multi-dimension result, and the true value evaluation method of multi multi-dimension observers.
     To provide more processing methods for dynamic measurement uncertainty, the applicable algorithms of every theory in this thesis are also provided in every part. Especially, some key technique, such as picking up method of the maximum consistency measurement data set, and reduction method of rounding off errors, are discussed detailedly. Some algorithms, such as searching maximum consistency measurement data set by graph theory and logical AND operation, and hierarchical combine method are set up to solve the problem.
     As the measurement uncertainty theory and its evaluating are usually not treated as a necessary step, a method using measurement uncertainty as a key parameter to build systems and algorithms are discussed in this thesis. Based on this method, a set of algorithms, such as filtering method, surface enhanced Raman scattering signal processing algorithm, sensor failure detective method, data fusion algorithm, and multi-platform locating method, are set up. After simulation and using in real system, these methods are proved to have good performances. The using methods of measurement uncertainty also supply a new way to spread measurement uncertainty theory.
引文
[1] BIPM, IEC, IFCC, ISO, IUPAC, IUPAP, OIML International vocabulary of metrology -- Basic and general concepts and associated terms (VIM). Switzerland: ISO, 1993.
    [2] BIPM, IEC, IFCC, ISO, IUPAC, IUPAP, OIML. Guide to the expression of uncertainty in measurement (GUM). Switzerland: ISO, 1995.
    [3]中国计量科学研究院.测量不确定度规范及测量不确定度评定参考.北京:中国计量出版社, 1996.
    [4]刘智敏.不确定度及其实践.北京:中国标准出版社, 2000.
    [5]刘智敏,陈坤尧,翁怀真,等.测量不确定度手册.北京:中国计量出版社, 1997.
    [6]赵志刚,赵伟.测量不确定度理论研究和应用中的若干热点问题.电测与仪表, 2007, 44(3): 1-4.
    [7] Ronald H Dieck. Measurement Uncertainty Models. ISA Transactions, 1997, 36(1): 29-35.
    [8] Abernethy R B, Benedict RP. Measurement Uncertainty: A Standard Methodology. ISA Transactions, 1985, 24(1): 75-79.
    [9] Ferrero, A. Salicone, S. Measurements Uncertainty. Instrumentation & Measurement Magazine, IEEE, 2006, 9(3): 44-51.
    [10] Zdenko Godec. Standard Uncertainty in Each Measurement Result Explicit or Implicit. Measurement, 1997, 20(2): 97-101.
    [11] V I Didenko, V P Fedotov. The Evaluation of Measurement Uncertainty. Elektrotechn Cas, 1993, 44(2): 33-37.
    [12]钱绍圣.测量不确定度.清华大学出版社, 2002.
    [13]朱坚民,王中宇,夏新涛,等.测量不确定度评定的研究进展与展望.洛阳工学院学报,2000, 21(2): 21-24.
    [14]王中宇,夏新涛,朱坚民.测量不确定度的非统计理论.国防工业出版社,2000.
    [15] Wang Zhongyu, et al. Grey Evaluation of Measurement Uncertainty. The Journal of Grey System, 1999, 11(4): 347-352.
    [16]朱坚民,宾鸿赞,王中宇,等.测量结果标准不确定度的灰色评定方法.华中理工大学学报, 2000, 28(9): 84-86.
    [17]肖明珠,陈光.非精确性测量数据的不确定度评定.系统工程与电子技术,2005, 27(5):929-930.
    [18]肖明耀,康金玉译.测量不确定度表达指南.中国计量出版社, 1994.
    [19]赵志刚,赵伟,黄松岭.多维测量结果不确定度评价方法初探.清华大学学报(自然科学版), 2007,47(10): -1557-1561.
    [20]吴静,赵伟.发展中的测量不确定度理论.电测仪表, 2003, 40(10):5-8.
    [21]谢少锋,陈晓怀,张勇斌.测量系统不确定度分析及其动态性研究.计量学报, 2002, 23(3):237-240.
    [22]林洪桦.动态测试数据处理.北京理工大学出版社, 1995.
    [23]宋明顺,陈意华,陶靖轩,等.测量不确定度评定中忽略相关项所带来的风险评估.计量学报, 2005, 26(1): 90-92.
    [24]李慎安.测量系统不确定度评定中相关性的非相关性转变.石油工业技术监督, 2001, 18(1): 5-6.
    [25] Zingales G. Compatibility in Industrial Measurements. Instrumentation and Measurement Technology Conference, 1999, 1: 377-380.
    [26] Iuculano G. Lazzari A, Pellegrini G. Analysis of the compatibility in an interlaboratory comparison process. Instrumentation and Measurement Technology Conference, 2002, 1: 237-240.
    [27] BIPM, IEC, IFCC, ISO, IUPAC, IUPAP, OIML International vocabulary of metrology -- Basic and general concepts and associated terms (VIM). Switzerland: ISO, 2007.
    [28]林洪桦.动态测量不确定度A类评定.宇航计测技术, 1996, 16(Z1): 109-116.
    [29]潘锋.自动量仪动态精度.北京:机械工业出版社, 1983.
    [30]龚蓬.动态测量误差修正灰色建模理论与应用技术研究[博士学位论文].合肥:合肥工业大学, 1999.
    [31]谢少锋.测量系统分析与动态不确定度及其应用研究[博士学位论文].合肥:合肥工业大学, 2003.
    [32]程真英.动态测量误差的贝叶斯建模预报及不确定度研究[硕士学位论文].合肥:合肥工业大学, 2004.
    [33]高玉英.基于贝叶斯理论的动态不确定度评定方法研究[硕士学位论文].合肥:合肥工业大学, 2007.
    [34]于连栋.动态测量系统现代建模理论研究[博士学位论文].合肥:合肥工业大学, 2003.
    [35]费业泰.误差理论与数据处理.北京:机械工业出版社, 2004.
    [36]罗云.动态不确定度原理及其评定方法的研究[硕士学位论文].合肥:合肥工业大学, 2009.
    [37]付继华,孟浩,王中宇.基于灰色理论的动态测量系统非统计建模方法.仪器仪表学报, 2008, 29(6): 1245-1249
    [38]谢少锋,陈晓怀,张勇斌.测量系统不确定度分析及其动态性研究.计量学报, 2002, 23(3): 237-240.
    [39]殳伟群.动态不确定度问题初探.计量学报, 2003, 24(3): 245-249.
    [40] Aleksandar Timcenko, Peter Allen. Modeling dynamic uncertainty in robot motions. IEEE International Conference on Robotics and Automation, 1993.
    [41] Braganza D., Dixon, W.E., Dawson D.M., et al. Tracking control for robot manipulators with kinematic and dynamic uncertainty. Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 5293-5297.
    [42] Elster C, Link A. Uncertainty evaluation for dynamic measurements modeled by a linear time-invariant system. Metrologia, 2008, 45(4): 464-473.
    [43] Elster C., Link A., Bruns T. Analysis of dynamic measurements and determination of time-dependent measurement uncertainty using a second-order model. Measurement Science and Technology. 2007, 18(12): 3682-3687.
    [44] Engle, R. Models of dynamic uncertainty in univariate and multivariate systems. Proceedings, Twenty-First International Conference on Machine Learning, 2004.
    [45]蔡常丰,数学模型建模分析.北京:科学出版社, 1995.
    [46]胡广书.数字信号处理.北京:清华大学出版社, 2005.
    [47]何子述.现代数字信号处理及其应用.北京:清华大学出版社, 2009.
    [48]赵志刚,赵伟.基于动态不确定度理论的多传感器系统传感器失效检测方法.传感技术学报, 2006, 19(6): 2723-2726.
    [49]赵志刚,赵伟,黄松岭.基于动态测量不确定度理论的最佳线性数据融合算法.仪器仪表学报, 2007, 28(5): 928-932.
    [50]郑君里,应启珩,杨为理.信号与系统(第二版).北京:高等教育出版社, 2001.
    [51]刘卫东.信号与系统分析基础.北京:清华大学出版社, 2008.
    [52] Alan Campion, Patanjali Kambhampati. Surface-enhanced Raman scattering. Chemical Society Reviews, 1998:241-249.
    [53] Adam M. Schwartzberg, Tammy Y. Oshiro, Jin Z. Zhang, Thomas Huser, Chad E. Talley. Improving Nanoprobes Using Surface-Enhanced Raman Scattering from 30-nm Hollow Gold Particles. Analytical Chemistry, 2006, 78 (13): 4732-4736.
    [54] C. Shi, Y. Zhang, C. Gu, B. Chen, L. Seballos, T. Olson, J. Z. Zhang. Molecular Fiber Sensors Based on Surface Enhanced Raman Scattering (SERS). Journal of nanoscience and nanotechnology, 2009, 9(4): 2234-2246.
    [55] Chen Hui, Jiang Guochang, You Jinglin. Analysis of different methods for denoising of high temperature Raman spectra. Spectroscopy and Spectral Analysis, 2007, 27 (6): 1148-1151.
    [56] Efremov E V, Bujs J B, Gooijer C. Fluorescence rejection in resonance Raman spectroscopy using a picoseconds gated Intensified charge-coupled device camera. App l Spectrosc, 2007, 61 (6) : 571-578.
    [57] Mosier Boss P A, Lieberman S H, Newbery R. Fluorescence rejection in Raman spectroscopy by shifted-spectra, edge detection, and FFT filtering techniques. Appl Spectro sc, 1995, 49, 630-638.
    [58] Luo R. C., Lin M., Scherp P. C. Dynamic Multisensor Data Fusion System for Intelligent Robots. IEEE Journal of Robotics and Automation, 1988, 4(4):386-396.
    [59] Luo R. C., Key M. G. Multisensor lntegration and Fusion in Intelligent Systems. IEEE Transaction on Systems, Man and Cybernetics, 1989, 19(5): 901-931.
    [60]陈忠德,蒋静坪.一致性多传感器数据融合方法的改进.传感器技术, 1999, 24(5): 52-55.
    [61] Hans odeberg. Fusing Sensor Information Using Fuzzy Measures. Robotica, 1994, 12(5): 465-472.
    [62]车录锋,周晓军,程耀东.考虑传感器失效的多传感器加权数据融合算法.工程设计, 1999, 10(1): 38-40.
    [63] B. M. Zhang and K. L Lo,“A recursive measurement error estimation identification method for bad data analysis in power system state estimation,”IEEE Trans. on Power Systems, Vol. PWRS-6, No.1, 191-198, February 1991
    [64] B. M. Zhang, S. Y. Wang and N. D. Xiang,“A linear recursive bad data identification method with real-time application to power system state estimation”, IEEE Trans. on Power Systems. Vol. PWRS-7, No.3, 1378-1385, August 1992.
    [65]李尹,张伯明,孙宏斌,等.变负荷条件下追踪电力系统安全最优运行轨迹的参数化方法.中国电机工程学报, 2008, 28(4): 1-8.
    [66]李予州,吴文传,张伯明,等.多时间尺度协调的区域控制偏差超前控制方法.电网技术, 2009, 33(3): 15-19.
    [67]刘智敏,刘风.现代不确定度方法与应用.北京:中国计量出版社, 1997.
    [68]陈奕钦.测量不确定度“'93国际指南”应用实例.北京:中国计量出版社, 1998.
    [69]李慎安.测量不确定度百问.北京:中国计量出版社, 2009.
    [70]王中宇.测量误差与不确定度评定.北京:科学出版社, 2008.
    [71]叶德培.测量不确定度理解评定与应用.北京:中国计量出版社, 2007.
    [72]李金海.误差理论与测量不确定度评定.北京:中国计量出版社, 2003.
    [73]钱绍圣.测量不确定度.北京:清华大学出版社, 2002.
    [74]黄红选,韩继业.数学规划.北京:清华大学出版社, 2006.
    [75]陈宝林.最优化理论与算法.北京:清华大学出版社, 2005.
    [76]李董辉,童小娇,万中.数值最优化.北京:科学出版社, 2005.
    [77]龚元明,萧德云,王俊杰.多传感器数据融合技术(上).冶金自动化, 2002(4): 4-7.
    [78]苏军.传感器技术在生产实践中的研究与应用.电子仪器仪表用户, 1997, 33(6): 3-4.
    [79] David L. Hall. Introduction to Multisensor Data Fusion. Proceedings of the IEEE 1997, 85(1): 6-23.
    [80]腾召胜,罗隆福,童调生,智能检测系统与数据融合.北京:机械工业出版社, 2000.
    [81]何友,王国宏,陆大琻,等.多传感器信息融合及应用.北京:电子工业出版社, 2000.
    [82]康耀红.数据融合理论与应用.西安:西安电子科技大学出版社, 1997.
    [83]刘同明,夏祖勋,解洪成.数据融合技术及应用.国防工业出版社, 2000.
    [84]赵宇,赵伟.现代测量中的数据融合技术.电测与仪表, 2003, 40(12): 6-7.
    [85] Wald, L. Some terms of reference in data fusion. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(3): 1190-1193.
    [86]杨万海.多传感器数据融合及其应用.西安:西安电子科技大学出版社, 2004.
    [87]龚元明,萧德云,王俊杰.多传感器数据融合技术.冶金自动化, 2002(4): 5.
    [88]李洪志,陈冬清.数据融合技术.高技术通讯, 1994(6): 42.
    [89]刘智敏.不确定度的新应用.计量技术, 2002(6): 50-52.
    [90] Salicone S. Measurement Uncertainty. An approach via the mathematical theory of evidence, Springer series in Reliability Engineering. NY: Springer, 2007.
    [91]姜启源,何青,高立.数学实验.北京:高等教育出版社, 1999.
    [92]童恒庆.理论计量经济学.北京:科学出版社, 2005.
    [93]张尧庭,方开泰.多元统计分析引论.北京:科学出版社, 1983.
    [94]孙文爽,陈兰祥.多元统计分析.北京:高等教育出版社, 1994.
    [95] Eric W N, Hugh F D. Multiple Platform Localization and Map Building, Sensor Fusion and Decentralized Control in Robotic Systems. Proc. SPIE 4196, Boston, 2000
    [96]衣晓,何友,关欣.基于最近邻的协同定位模型研究.飞行力学, 2004, 22(4): 57-59.
    [97] Kalman R. E.. A New Approach to Linear Filtering and Prediction Theory. Trans. ASME.J. Bas. Eng. 1960, 82(1): 34-45.
    [98] Joris De Schutter, Jan De Geeter, Tine Lefebvre, Hermen Bruyninckx , Kalman Filters: A Tutorial, Journal A, 1999, 40(4): 52-59.
    [99]张友民,戴冠中,张洪才.卡尔曼滤波计算方法研究进展.控制理论与应用, 1995, 12(5): 529-534.
    [100]齐国元,陈增强,袁著祉.非线性系统智能状态估计研究进展与展望.控制理论与应用, 2003, 20(6):13-817.
    [101] Ashley Stroupe, Martin C. Martin, and Tucker Balch. Merging Gaussian distributions for object localization in multi-robot systems. In Proc. of the Seventh International Symposium on Experimental Robotics (ISER '00).Springer-Verlag, December 2000.
    [102] R. C. Smith and P. Cheeseman.“On the Representation and Estimation of Spatial Uncertainty.”In The International Journal of Robotics Research, 1986, 5(4): 56-68.
    [103] ANNA L. BUCZAK. Hybrid Fuzzy-Genetic Technique for Multisensor Fusion. Information Sciences, 1996, 93(4):265-281.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700