用户名: 密码: 验证码:
阻抗匹配三相变四相平衡变压器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要针对四相输变电系统关键技术及装备“阻抗匹配三相变四相平衡变压器”的理论与设计开展系统性研究工作,并探索该变压器应用于四相输变电、牵引供电系统及四相整流等领域的技术特性,具有重要的理论意义和工程实用价值。
     我国能源、资源中心与负荷中心具有一定的不和谐性,西电东送成为必然,全国西电东送规模2020年预计达到1.4亿千瓦。四相交流输电较三相交流输电在提高输送功率密度,节省线路走廊,降低电磁污染等方面具有明显的经济技术优势。加强四相交流输变电关键技术理论研究及产品设计,在条件成熟时积极推进四相交流输电的工程化,对于提高我国电网稳定、经济运行及理论创新具有重要意义。按照《铁路中长期发展规划》要求,至2020年,我国将新建和改造电气化铁路约3万公里,研究开发阻抗匹配三相变四相平衡变压器对于提高牵引供电能力,保证牵引供电系统稳定平衡运行等方面具有十分重要的意义。
     论文首先研究了平衡变压器的基本原理,系统性地分析并比较了Scott-Teaser变压器、Le Blanc变压器、Wood Bridge变压器、三相变两相阻抗匹配平衡变压器、Y N/平衡变压器、四相四柱式变压器等平衡变压器的接线特点及运行特性,形成了较为完整的平衡变压器的理论构架,为新型阻抗匹配三相变四相平衡变压器的研究提供理论依据。
     论文提出了阻抗匹配三相变四相平衡变压器的理论构想及其接线方案,讨论了阻抗匹配平衡变压器三相侧与四相侧绕组结构关系、阻抗匹配关系、安匝平衡关系、功率平衡关系,以及三相侧与四相侧电流、电压的平衡转换关系等,着重就绕组间等值阻抗关系的确定进行了理论论证与推导,系统性地阐述了该变压器的技术特性。
     论文建立了阻抗匹配三相变四相平衡变压器的数学模型,运用数学模型对该新型平衡变压器在平衡状态及不对称运行状态下的性能特性进行了分析研究;建立了该变压器在相坐标下的节点导纳矩阵,为三相交流系统与四相交流系统的统一建模及相互影响分析提供理论基础,形成了阻抗匹配三相变四相平衡变压器较为完整的理论研究体系。
     论文根据阻抗匹配平衡变压器应满足的基本技术条件,推导了以绕组间短路阻抗值为变量的阻抗匹配三相变四相平衡变压器内部阻抗的三个约束关系,构建了由短路阻抗值表示的四相侧等值电路,以绕组间短路阻抗值为变量建立的阻抗匹配三相变四相平衡变压器约束关系是该新型变压器结构设计与制造、电气分析与计算的理论依据。
     论文根据所建立的阻抗匹配三相变四相平衡变压器基本理论及阻抗约束关系,完成了100kVA实验样机的参数计算与结构设计。本变压器设计的关键是实现绕组间阻抗匹配关系,基于此,通过调整绕组结构布置,利用有限元仿真模型进一步优化设计,实现了满足阻抗约束关系的实验样机的参数设计。该变压器样机的设计方案对于阻抗匹配三相变四相平衡变压器工程化设计与制造具有重要的指导意义。根据该变压器设计参数,建立了相应的阻抗匹配三相变四相平衡变压器的matlab仿真模型,该仿真模型的建立为该变压器运行性能的进一步深入研究与理论分析提供了有利条件。
     论文根据该变压器数学模型以及四相侧等值电路模型,进行了变压器在短路故障状态下短路电流的分析与计算,并利用上述Matlab仿真模型进行了仿真验证。故障分析结果正确,为该新型阻抗匹配三相变四相平衡变压器故障保护方案的设计提供了理论依据。
     本文就阻抗匹配三相变四相平衡变压器在四相输电、城市轨道交通、四相整流等领域的应用特性与应用前景进行了前瞻性研究。
     讨论了该新型变压器应用于四相输电系统时,三相系统与四相系统的兼容性,分析了该变压器接线方案的技术性能。
     提出了该变压器应用于电气化铁道AT供电系统的接线方案,并分析了其技术性能,对该变压器应用于AT供电系统的有关参数进行了设计并开展了仿真计算,表明该接线方案可实现三相系统中性点接地运行,在抑制负序电流,降低成本等方面具有明显优势。
     首次提出了四相整流概念,给出了该新型变压器应用于四相整流的接线方案,分析了四相整流的工作机理及相关的技术特点,为电力电子整流技术的发展及其谐波治理拓宽了一种新的途径与方法;分析并计算了四相整流电路输出电压、电流及功率因数与触发延迟角的关系;建立了四相整流电路的仿真模型并进行了相应的仿真分析,仿真结果与理论分析、计算结果相一致,表明了四相整流理论分析的正确性;对四相整流系统的谐波进行了分析,理论分析及仿真结果表明四相整流电路中直流侧只存在4的倍数次谐波,降低了整流系统低次谐波污染;在相同输出电压情况下,四相整流较三相整流因各有关电气设备的绝缘及运行维护成本大为降低,具有较低的热损耗和较为稳定的功率因素等多方面的特点,在理论及工程应用上有进一步研究的价值。
This thesis concerns on the key technologies of four-phase power transmission and transformation along with’a new three-phase to four-phase impedance matching balance transformer’. The application characteristics of the novel transformer in the fields of four-phase power transmission and transformation, also four-phase rectification and traction power supply have been explored. The research is significant in theory, which has wide application prospect.
     In China, the main power supply region is far apart from the main load region, it is unavoidable that divert the electricity from the western region to the east . It is expected that the capacity of diversion the electricity from the western region to the east will up to 140000MW till 2020. Compared with three-phase transmission, the four-phase transmission can greatly increase the density of electricity transmission and decrease the transmission corridor cost. Also it can reduce the electromagnetic pollution of the transmission line. It has important significance for our stability of country’s power grid to pay more attentions to the four-phase transmission, and put it into practice in proper occasion.
     According to‘long-term develop layout of railway’, China will build or upgrade electrical-railway about 30000km till 2020. Develop the new three-phase to four-phase impedance match balance transformer is very important to the stability of the traction power supply.
     This thesis studied principle of the balance transformer, then compared the wiring and operation characteristics of Scott-Teaser transformer, Le Blanc transformer, Wood Bridge transformer, three-phase to two-phase impedance match balance transformer, four-phase four-core transformers and Y N/ balance transformer. The study has formed a whole theory system of balance transformer, which is the reference of the novel balance transformer research.
     The theory and wiring topology of a novel three-phase to four-phase impedance match balance transformer has been put forwards. The various relations of three-phase side and four-phase side have been analyzed, such as impedance match relation, ampere-turn balance relation, power balance relation and the conversion relation of current and voltage. The author concerns more on the deduction of the identification of equivalent impedance between the windings.
     The mathematic model of the novel three-phase to four-phase impedance match balance transformer has been established, and the characteristic of transformer in both balance status and asymmetry status have been analyzed according to the established model. Also the bus admittance matrix of the transformer in phase coordinate has been determined, which formed a foundation of the theory of three-phase to four-phase impedance match balance transformer.
     This thesis deduced three constraint relations in interior winding of the novel transformer, whose variable are short-circuit impedance between windings. And then the equivalent circuit of four-phase side has been settled as the theory and calculating foundation.
     Based on the principle of three-phase to four-phase impedance match balance transformer and the constraint relation of impedance, the parameter design and calculation of 100kVA model machine has been done. The critical technology of the design is how to realize the constraint relation of impedance by the structure layout of the windings, and apply the Finite Element Optimization Method to verify the correctness of the design. Base on the design parameters, the simulink model of the novel transformer have been established.
     The short-circuit currents in short fault status have been calculated, according to the established transformer mathematic model and verified the results by the simulink model, which is a basic reference of the novel transformer fault protection. This thesis has studied the application characteristic of the novel transformer in the field of four-phase transmission, urban light railway and four-phase rectifying. The compatibility of the novel transformer in three-phase transmission system has been discussed.
     The wiring layout of the novel transformer that apply to the electrical-railway AT power supply system has been proposed. The simulation of the application of novel transformer in AT power system has been performed, which demonstrated great advantages in negative sequence current suppression and cost reduction.
     This thesis proposed the concept of four-phase rectifying for the first time. The wiring layout of the novel transformer applying to four-phase rectifying has been presented, which extended a new access of harmonic suppression; The relations of output voltage, current and power factor with the trigger angle have been deduced; The simulation model of four-phase rectifying has been established, and the simulation results are consistent with theory calculation results, which verified the correctness of the theory analyses. Meanwhile, the harmonic of four-phase rectifying system has been calculated, and both theory and simulation revealed that the DC side of the four-phase rectification circuit exist harmonic only in multiples of four, which raised the lowest order of system harmonic. Given the same output voltage, the cost of insulation equipment and maintenance in four-phase rectifying largely reduced compared with three-phase rectifying. The lower thermal losses and better power stability are the merits of four-phase rectifying, and it is definitely worth to be further studied.
引文
[1]国家电网公司.我国特高压输电技术的研究与应用[J].中国科技产业,2006,(2):103-109.
    [2]舒印彪.我国特高压输电的发展与实施[J].中国电力, 2005, 38(11):1-8.
    [3]苏宏田,齐旭,吴云.我国特高压直流输电市场需求研究[J].电网技术,2005,29 (24):1-4.
    [4]万启发.二十一世纪我国的特高压发展[J].高电压技术, 2005, 26(6):12-13.
    [5]周孝信.我国电网技术的现状与未来[J].电网技术,1995,19(2):1-4.
    [6]关志成,张福增,王国利,等.我国特高压的特有技术问题[J].电力设备,2006,7(1): 1-4.
    [7]许加柱.新型换流变压器及其滤波系统的理论与应用研究[D].湖南大学博士论文,2007,1-115.
    [8]江哲生.我国电力发展规划预测及电网的发展趋势[EB/OL]. http://www.secidc.org.cn/rules/dlfz.doc,2009-01-15.
    [9]国家发展改革委.能源发展“十一五”规划[EB/OL]. http://news.xinhuanet.com/fortune/2007-04/11/content_5960916.htm, 2009-01-15.
    [10]国家发展改革委.综合交通网中长期发展规划[EB/OL]. http://jtyss.ndrc.gov.cn/fzgh/t20080414_203812.htm, 2009-01-15.
    [11]铁道部.中长期铁路网规化[EB/OL]. http://news.163.com/06/0309/20/2BQ2Q5S70001126S.html, 2009-01-15.
    [12]周晓勤.中国轨道交通建设和发展的思考[EB/OL]. http://www.g114.cc/News/77891651219750.html, 2009-01-15.
    [13]李群湛,贺建闽.牵引供电系统分析[M].西安:西安交通大学出版社,2007:50-51.
    [14]刘福生,聂光前.利用阻抗匹配的方法构成的新型平衡变压器[J].铁道学报, 1988, 10(4):16-22.
    [15]周先哲,刘光晔,严玲.新型输变电技术研究综述[J].广西电力,2006,(2):5-11.
    [16]王秀丽,宋永华,王海军.新型交流输电技术与展望[J].中国电力,2003,36(8):40- 46.
    [17]李广凯,梁海峰,赵成勇,等.几种特殊输电方式的分析比较和展望[J].中国电力, 2004,37(4):43-48.
    [18]郑健超.优质能源送千里,可靠电力进万家——21世纪输配电技术展望[M].北京:中国电力出版社,2001:1-18.
    [19]胡骅,虞海泓.特高压交流输电技术的研究与发展[J].科技通报,2006,22(5):675- 680.
    [20]吴敬儒,徐永禧.我国特高压交流输电发展前景[J].电网技术, 2005,29(3):1-4.
    [21]周浩,余宇红.我国发展特高压输电中一些重要问题的讨论[J].电网技术,2005, 29(12):1-9.
    [22]张惠勤.世界各国750kV电网发展状况[J].电网技术,2002,26(3):37-40.
    [23] CIGRE Working Group. Electric power transmission at voltage of 1000kV or±600kV DC and above network problems and solutions peculiar to UHV AC transmission[C]. CIGRE, 1998:1-45.
    [24]郭永基,陈寿孙.交流紧凑型输电线路应用的研究[C].中国电机工程学会1989年电力系统与电网技术年会论文集, 1989:8-18.
    [25]王正钊.紧凑型输电线路原理与应用技术[J].湖北水力发电,2003,52 (9):55-62.
    [26]项立人.紧凑型线路发展现状及在我国的应用前景[J].电网技术,1996,20(2): 1-5.
    [27]何大愚.柔性交流输电技术的定义、机遇及局限性[J].电网技术,1996,20(6):18- 24.
    [28]陈辉祥.柔性交流输电技术的发展及其应用[J].广东电力,2002,15(6):11-14.
    [29] P. C. S. Krishnayya, P. J. Lambetch and etc. Technical problems associated with developing HVDC converter stations for voltage above 600kV [J]. IEEE Trans. Power Delivery, 1987, 2(1):174-181.
    [30] P. S. Maruvada, N. G. Trinh, R. D. Dallaire, N. Rivest.Corona studies for bipolar HVDC transmission at voltage between±600kV and±1200kV. Part I: long term bipolar studies [J].IEEE Trans. on Power Apparatus and Systems, 1981, 100(3):1453-1461.
    [31] Ramaswami, R.Venkata, S.S. El-Sharkawi, M.A. Six-Phase Transmission Systems: Capacitance Switching [J].IEEE Trans.on Power Apparatus and Systems, 1984, 103(12):3681-3687.
    [32] ABB Corp. HVDC Transmission at 800Kv[C]. International Workshop for 800kV HVDC System, Delhi, 2005:13-79.
    [33] Siemens. UHVDC System and equipment[C]. International Workshop for 800kV HVDC Systems, Delhi, 2005:32-89.
    [34] Kimbark E W. Direct current transmission [M]. New York: John Wiley & Sons, 1971:3-41.
    [35]周乐荣.高压直流输电的现状及发展[J].广东电力,1997,(5):1-14.
    [36]张桂斌,徐政.直流输电技术的新发展[J].中国电力,2000,33(3):32-35.
    [37]郎需军,高戟,林清海,等.高压直流输电技术[J].山东电力技术,2003,11 (1):26-36.
    [38]浙江大学.直流输电[M].北京:水利电力出版社,1985:1-57.
    [39]段占宝.高压直流输电和交流输电的优缺点分析[J].电力与能源,2007,(33):6-15
    [40]戴熙杰.直流输电基础[M].北京:水电出版社,1990:1-15.
    [41]袁清云.特高压直流输电技术现状及在我国的应用前景[J].电网技术, 2005, 29(14): 1-3.
    [42] Wang Xifan. Fractional Frequency Transmission System[C]. Proceedings of International Sessions in IEE Japan, --Power and Energy Society Annual Conference Tokyo, 1994-08.
    [43] Wang Xifan, Wang Xiu-li.Feasibility study of fractional frequency transmission system [J]. IEEE Trans. On Power Systems, 1996, 11(2):962-967.
    [44]王锡凡.分频输电系统的研究[J].电力系统及其自动化学报,1998,10(2):34-38.
    [45] J.R. Stewart, S.J. Dale, K.W. Klein. Magnetic field reduction using high phase order lines [J], IEEE Trans. Power Deliv. PWRD, 1993,(8): 628–636.
    [46] H. C. Barnes.Energy Transfer—I Overhead Transmission Systems[R]. Keynote Address Conference on Research for the Electric Power Industry, Washington, December 11-14,1972
    [47] S.N. Tiwari, G.K. Singh and A.S. Bin Saroor. Multi-phase transmission research-a survey [J].Electric Power System Research, 1992, (24): 207-215.
    [48] J.R.Stewart, D.D.Wilson.HighPhaseOrderTransmission [J].IEEE Trans.on Power Apparatus and Systems.1978, 97(6):2308-2316.
    [49] Venkata, S.S, Guyker, W.C, Booth, W.H, et al. EPPC-A computer program for six-phase transmission line design [J]. IEEE Trans.PowerApparatus and Systems, 1982, 101(7):1859-1869.
    [50] T.L. Landers R.J. Richeda, E. Krizanskas, J.R. Stewart, and R.A. Brown. High phase order economics: constructing a new transmission line [J]. IEEE Trans. PWRD, 1998, 13(4): 1521-1526.
    [51] Stewart J R, Kallaur E, Grant I S. Economics of EHV high phase order transmission [J]. IEEE Trans. Power Apparatus and Systems.1984,103(11):3386- 3392
    [52] Stewart J R, Grant I S. High phase order-ready for application [J]. IEEE Trans.Power Apparatus and Systems, 1982, 101(6):1757-1767.
    [53] Stewart J R. Insulation coordination, environmental and system analysis of existing double circuit line reconfigured to six-phase operation [J]. IEEE Trans. Power Delivery, 1992, 7(3):1628-1633.
    [54] Chandrasekaran A, Elangovan S, Subrahrnanian P S. Stability aspect of a six-phase transmission system[J]. IEEE Trans. Power System, 1986,1(1):108-112.
    [55] A.D.D. Rosso, C.A. Canizares, V.M. Dona. A study of TCSC controller design for power system stability improvement [J]. IEEE Trans.On Power System, 2003, (18): 1487-1496.
    [56] Stewart J R, Oppel L J, Richeda R J. Corona on an operating utility six-phase transmission line [J]. IEEE Trans. Power Delivery, 1998, 13(4):1363-1369.
    [57] C.M.Portela, M.C.Tavares. Six-Phase Transmission Line—Propagation Characteristics and New Three-Phase Representation[J].IEEE Trans.On Power Delivery, 1993, 8(3):1470-1483.
    [58] I.A. Metawally. Electrostatic and environmental analyses of high phase order transmission lines [J]. Electr. Power Syst. Res., 2002, 61(2):149-159.
    [59] R. Billinton, S.O. Fareed and M.F. Firuzabad. Composite system reliability evaluation incorporating a six-phase transmission line [J]. IEE Proc., 2003, 150(4): 413-419.
    [60] M.W. Mustafa, M.R. Ahmed, H. Shareef. Fault analysis on double three-phase to six-phase converted transmission line [C]. IEEE Power Engg. Conference, IPBC, 2005, 1-5.
    [61] H. Elrefale.Modeling arching faults of six-phase transmission lines[C]. IEE Conf., 2004, 48-51.
    [62] James R. Stewart, Laurie J. Oppel,Thomann, et al. Transformer Winding Selection Associated with Reconfiguration of Existing Double Circuit Line to Six-Phase Operation[J]. IEEE Transactions on Power Delivery,1992,7(2):979- 985
    [63]刘福生,肖乐军,张志文.三相变两相(四相)的阻抗匹配原理及其应用[C].电力系统及其自动化专业第十届学术年会论文集,1994,48-50.
    [64]周有庆,姚建刚,彭建春.四相输电方式研究[J].中国电机工程学报,1999,19(5): 80-84.
    [65]周先哲,刘光晔,严玲.四相输电系统的经济性分析[J].华北电力技术,2006,(1): 15-18
    [66]刘光晔,杨以涵.四相输电的技术优势及其应用前景[J].中国电力,2000,33(10): 33-35
    [67]刘光晔,杨以涵.新型四相架空输电线路[J].电工技术学报,1999,14(2):73-76.
    [68]刘光晔.四相输电系统的理论研究[D].华北电力大学博士论文,2003,1-107.
    [69]粟福珩.高压输电的环境保护[M].北京:水利水电出版社,1992:1-35.
    [70]张扬,郭明凡.超高压输电线路电磁场影响及防治[J].电力环境保护,2007,23(4): 25-27.
    [71]陈赤环,汤华锋,孙爱卿.电力网中电磁辐射污染的危害、防护与治理[J].中国科技信息,2006,(5):105.
    [72]侯云,彭继文.500kV输变电工程电磁辐射现状及预防[J].湖南电力,2005,25(3): 19-21.
    [73]杨新村,沈江,傅正财,等.输变电设施的电场、磁场及其环境影响[M].北京:中国电力出版社,2007:1-95.
    [74]王小凤,周浩.我国1000kV特高压交流输电线路电磁环境的研究[J].环境科学与技术,2007,30(6):23-26.
    [75]强生泽.220kV同塔双回输电线空间工频电场理论计算[J].高压电技术,2004,30 (5):45-58.
    [76]王群,李永卿,陈静,等.110kV高压输电线路电磁场分析及评价[J].北京工业大学学报,2005,31(3):308-312.
    [77]周先哲,刘光晔,刘庆丰,等.四相输电线路附近的电磁场辐射分析[J].华北电力技术,2005,11
    [78]周有庆,刘光晔,刘湘涛.一种Y/>/—▽接线的新型平衡变压器研究[J].中国电机工程学报, 1998, 18(5): 364-367.
    [79]刘光晔.三相变四相电力变压器的接线方案与原理研究[J].中国电机工程学报, 2000,20(1):81-84.
    [80]张志文.新型平衡变压器和谐波抑制变压器理论与应用研究[D].湖南大学博士论文,2006.1-152
    [81]刘福生,左辰.AT供电系统牵引变压器的选型分析.电工技术学报,1987, 2(4): 32-38
    [82]刘福生,左辰.阻抗匹配平衡变压器牵引负荷的负序影响和谐波分析[J].电网技术, 1989, 13(1):26-32.
    [83]张丽艳,李群湛,余丹.阻抗匹配平衡牵引变压器负序分析[J].电力系统及其自动化学报, 2005,17(6):80-83.
    [84]刘福生.关于伍德桥接线变压器的改进方案[J].湖南大学学报, 1985, 2(2):35-38.
    [85]卢志海,厉吉文,周剑.电气化铁路对电力系统的影响[J].继电器,2004,32(11): 33-36.
    [86]王公社.电气化铁路对电力系统的负序影响浅析[J].电力电容器,1998,4:19- 22.
    [87] GB50052-1995.供配电系统设计规范[S].北京:中国标准出版社, 1995.
    [88]刘福生,肖乐军,周有庆.阻抗匹配平衡变压器的等值电路及其应用[J].铁道学报, 1994, 16 (3): 23-31.
    [89]张志文,王耀南,刘福生,等.平衡变压器的阻抗匹配系数与产品性能关系研究[J].湖南大学学报, 2003, 30(3): 49-53.
    [90]张志文,刘福生,熊芝耀,等.阻抗匹配平衡变压器的电量变换和运行计算[J].电工技术学报, 2000,15(2): 6-11.
    [91]熊芝耀,程敏胜,张志文,等.阻抗匹配平衡变压器单相负荷平衡补偿的研究与分析计算[J].湖南大学学报, 2001,28 (2):45-49.
    [92]贺建闽,李群湛. YN /V平衡变压器电气分析与计算[J].铁道学报,1994,16(2): 28-36.
    [93]黄足平. YN /V平衡变压器的内部阻抗约束关系及其等值电路[J].铁道学报, 1995,17(4):51-55.
    [94]肖乐军,江荣汉,刘福生,等.阻抗匹配平衡变压器牵引供电系统的短路分析[J].电力系统及其自动化学报,1995,7(4):19-24.
    [95]张志文,王耀南,唐求,等.多功能平衡牵引变压器及其配套滤波器谐波治理研究[J].电工技术学报, 2004, 19(3):25-30.
    [96]张志文,熊芝耀,刘福生.多功能平衡变压器的等值电路[J].电工技术学报,2002, 17(1):28-31.
    [97]张志文,王耀南,刘福生,等.多功能平衡牵引变压器运行方式研究[J].中国电机工程学报, 2004, 24(4):125-132.
    [98]贺达江,罗隆福,李勇,等.阻抗匹配三相变四相平衡变压器原理研究[J].电工技术学报,2008,23(10):40-46.
    [99]刘福生,左辰,聂光前,等.阻抗匹配平衡变压器的短路计算[C].新型平衡变压器的研究论文集(湖南大学),1990:42-48.
    [100]刘光晔,杨以涵.四相输电系统故障分析的对称分量法原理[J].电工技术学报, 1999,14(3):75-79.
    [101]刘涤尘主编.电气工程基础[M].武汉:武汉理工大学出版社,2001:23-157.
    [102]蒋寿生.新型四相输电方式与三相变四相变压器[J].电力自动化设备,2001,22 (4):37-40.
    [103]王加庆.四相输电方式研究[J].浙江电力,2006,1:14-16.
    [104] [苏]C.B.瓦修京斯基著,崔立君,杜恩田等译.变压器的理论与计算[M].北京:机械工业出版社, 1983:1-187.
    [105]刘传彝.电力变压器设计计算方法与实践[M].沈阳:辽宁科学技术出版社, 2002:1-208.
    [106]尹克宁.变压器设计原理[M].北京:中国电力出版社,2002:1-212.
    [107]吴命利,范瑜.星形延边三角形接线平衡变压器的阻抗匹配与数学模型[J].中国电机工程学报, 2004,24(11):160-166.
    [108]吴命利,范瑜,郑琼林.十字交叉接线牵引变压器的运行特性(I)-数学模型与理论分析[J].电工技术学报,2004,19(9):11-17.
    [109]陆家榆,陈莉,丁青青,等.YN/V联结平衡变压器运行特性的数学模型[J].中国电机工程学报,1998,18(5):345-349.
    [110]肖乐军,刘福生,黄梅.阻抗匹配平衡变压器运行特性研究的数学模型及实验验证[J].电工技术学报,1993,8(4):11-15.
    [111]许加柱,罗隆福,李季,等.自耦补偿与谐波屏蔽换流变压器的接线方案和原理研究[J].电工技术学报,2006,21(9):44-50.
    [112]李季,罗隆福,许加柱,等.新型换流变压器及其滤波系统的数学模型与仿真计算[J].电工技术学报,2007,22(5):45-52.
    [113]刘光晔,周先哲,王耀南,等. YN/V联结平衡变压器非理想参数特性分析与仿真计算[J].中国电机工程学报,2006,26(9):143-149.
    [114]张志文,王耀南.星形-三角形接线三相变两相和三相变三相平衡变压器原理研究[J].电工技术学报, 2006, 21(11): 82-86.
    [115]张银宝,郑琼林,吴命利.十字交叉接线牵引变压器的运行特性(II)-电压损失计算与实测验证[J].电工技术学报, 2004, 19(10): 12-17.
    [116]胡钢墩.Yd(曲折延边)型联结平衡变压器的电压损失分析[J].变压器,2002,39 (9):1-4.
    [117]郑奕平.主变压器电压损失与无功补偿配置的定性分析[J].电气化铁道,2001, 2:8-9.
    [118]金明.三相变压器带不对称负载运行的研究[J].变压器,1999,12:19-22.
    [119]李俊卿,李志远,杨宝明.三相变压器不对称运行的分析[J].华北电力大学学报, 2001,28(4):15-18.
    [120] GB/T15543-1995.电能质量三相电压允许不平衡度[S].北京:中国标准出版社,1995.
    [121]周勇,王绪雄,刘中元.阻抗匹配平衡变压器的负序电流[J].郑州大学学报,2002, 23(4):43-45.
    [122]冯林桥,张志文,刘福生.两种接线平衡变压器的对比分析[J].变压器,1999,36(6): 16-20.
    [123]姚志松.节能变压器[M].浙江:浙江科学技术出版社,1987:1-247.
    [124] GB/T 6451-1999.三相油浸式电力变压器技术参数和要求[S].北京:中国标准出版社,1999.
    [125] GB/T6108.3-2003.铜扁绕组线导体尺寸[S].北京:中国标准出版社,2003.
    [126]罗隆福.基因控制遗传算法的理论与应用研究[D].湖南大学博士论文,2000,1-103.
    [127] Yonghwan OH,Taeyung Chung,Minkyu Kim,et al.Optimal design of electric machine using genetic algorithms coupled with direct method[J]. IEEE Trans.on Magn., 1999,23(3):1742-1745.
    [128] Pierce L W. Transformer design and application considerations for nonsinusoidal load currents [J]. IEEE Trans. Industry Applications, 1996, 32(3): 633-645.
    [129]王瑞明,杨琼.自适应遗传算法在电力变压器优化设计中的应用[J].变压器, 2006, 43(2):4-7.
    [130]罗隆福,李勇,许加柱,等.新型换流变压器配套滤波装置的优化设计[J].电网技术,2007,31(9):22-26.
    [131]罗隆福,赵建强,许加柱,等.新型换流变压器及其滤波系统外部短路故障电流的分析与计算[J].电网技术,2007,31(1):90-94.
    [132]肖乐军,聂光前,刘福生.阻抗匹配平衡变压器短路计算的相分量法[J].湖南大学学报,1995,22(2):83-88.
    [133]王维俭,王祥珩,王赞基.大型发电机变压器内部故障分析与继电保护[M].北京:中国电力出版社,2006:1-109.
    [134]刘光晔,周先哲.四相输电线路的参数及与三相系统兼容问题的研究[J].电网技术,2005,29(21):36-45.
    [135]高仕斌,钱清泉.电气化铁道应用三相变四相电力变压器的理论分析[J].中国电机工程学报,2004,34(3):174-177.
    [136]娄奇鹤,高仕斌.三相变四相变压器在AT供电系统中的应用研究[J].中国电机工程学报,2005,25(1):124-130.
    [137] Takeda M, Ikeda K, Teramoto A, et al. Harmonic current and reactive power compensation with an active filter [J]. IEEE Power Electronics Specialists Conference, 1988, 2:1174-1179.
    [138] Key T S. Comparison of standards and power supply options for limitingharmonic distortion in power system [J]. IEEE Trans. Industry Applications, 1993, 29(4): 688-695
    [139] Wagner V E. Effects of harmonics on equipment [J]. IEEE PWRD, 1993, 8(2): 672-700.
    [140] Toshilihiko T. A new method of harmonic power detection based on the instantaneous active power in three-phase circuit [J]. IEEE-PWRD, 1995, 10(4): 1737-1742.
    [141] Akagi H, Nabae A, Atoh S. Control strategy of active power filters using multiple voltage-source PWM converters [J]. IEEE Trans. Industry Applications 1986, 22(3):460-465.
    [142] Fujita H, Akagi H. An approach to harmonic current-free AC/DC power conversion for large industrial loads: the integration of a series active filter with a double-series diode rectifier [J]. IEEE Trans. Industry Applications,1997, 33(5):1233-1240
    [143] Fujita H. A practical approach to harmonic compensation in power systems[C]. IEEE -IAS Annual Meeting, Conference Record, 1995:1107-1112.
    [144] Tanaka T, Akagi H. A new method of harmonic power detection based on the instantaneous active power in three-phase circuits [J]. IEEE Trans. Power Delivery, 1995,6(3):1737-1742.
    [145]罗隆福,李季,许加柱,等.基于新型换流变压器的谐波治理研究[J].高压电器, 2006,42(2):96-98.
    [146]罗隆福,刘福生.自耦补偿和谐波屏蔽换流变压器及其应用前景[J].大众用电,2005,21(7):26-28.
    [147]罗隆福,李勇,刘福生,等.基于新型换流变压器的直流输电系统滤波装置[J].电工技术学报,2006,21(12):108-115.
    [148] Longfu Luo, Li Yong, Xu Jiazhu, et al. A New Converter Transformer and a Corresponding Inductive Filtering Methodfor HVDC Transmission System [J]. IEEE Trans. Power Delivery, 2008,(23):1426-1431.
    [149] Luo An, Tang Ci, Tang Jie, et al. A Hybrid Active Power Filter With Series Resonance Circuit Turned at Fundamental Frequency[C]. Proceedings of the CSEE, 2008, 12-23.
    [150]王兆安,杨君,刘进军.谐波抑制与无功功率补偿[M].北京:机械工业出版社,1999:1-154.
    [151]谢鹏,王善铭,王祥珩,等.三绕组谐波屏蔽变压器的研究[J].电工电能新技术,2005,24(2):41-43.
    [152] Zhang Zhiwen, Wang Yaonan, Li Jianying, et al. Study on suppressing harmonics for multi-function balanced transformer[C]. Proceedings of the Sixth International Conference on Electrical Machines and Systems,2003, 305-308
    [153] Li Dayi, Chen Qiaofu, Jia Zhengchun, et al. A Novel Active Power Filter with Fundamental Magnetic Flux Compensation [J]. IEEE Trans.Power Delivery,2004, 19(2):799-805
    [154] Dajiang He,Longfu Luo ,YongLi , etc.Mechanism Analysis of a Novel Four-Phase Rectifier Circuits[C].ICEMS,17-20,10,2008,3912-3916.
    [155]丁道宏.电力电子技术[M].北京:航空工业出版社,1992:1-178.
    [156] George J.Wakileh著,徐政,译.电力系统谐波-基本原理、分析方法和滤波器设计[M].北京:机械工业出版社,2005:1-187.
    [157]黄俊,王兆安.电力电子变流技术[M].北京:机械工业出版社,2003:1-117.
    [158]张一工,肖湘宁.现代电力电子技术原理与应用[M].北京:科学出版社,1999:1-179.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700