用户名: 密码: 验证码:
基于三谐振脉冲变压器的脉冲功率源研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三谐振脉冲变压器是在空芯变压器的基础上引入第三级谐振电路形成的一种新型脉冲变压器,其最大的特点在于负载上的输出电压比空芯变压器高压绕组上的电压大的多(理论上最大可达2.77倍)。本文在国内首次对基于三谐振脉冲变压器的脉冲功率源进行了理论分析、工程设计和实验研究,提出了该类脉冲功率源的设计方法,并研制出一台基于三谐振脉冲变压器的脉冲功率源。
     首先,针对高变比空芯变压器次级锥形绕组电压分布不均可能导致绝缘击穿的问题,研究了锥形绕组的电压分布特性,为高变比空芯变压器及三谐振脉冲变压器的稳定运行提供了理论依据。采用“场—路”结合的思想,建立了多匝数变压器绕组电气参数有限元简化计算模型及等效多导体传输线(MTL)分析数学模型,运用有限元软件ANSYS计算电气参数有限元简化计算模型中的电路参数,然后将参数代入MTL模型求解从而得到锥形绕组的电压分布特性。计算结果与实验结果基本吻合,因此MTL模型可用于脉冲变压器锥形绕组冲击电压分布特性的理论分析和模拟计算。在此基础上,提出了锥形绕组电压分布改善措施并通过实验得到验证。
     然后,从基本电路理论出发,对空芯变压器及三谐振脉冲变压器电路进行分析,得出了理想状态下输出电压的表达式及三谐振脉冲变压器电路参数与回路三个固有频率的关系,并利用PSPICE软件进行电路模拟,分析了变压器参数、杂散参数及分布参数对变压器性能的影响。分析结果表明,不论是空芯变压器还是三谐振脉冲变压器,初级回路参数的影响都较大,在设计时要尽量减少初级回路电阻及初级回路杂散电感;对于三谐振脉冲变压器而言,因给定的负载电容为80pF,调谐电感的分布电容对三谐振脉冲变压器输出电压的影响很大,因此要尽量减小调谐电感的分布电容,此外,通过调节调谐电容和调谐电感的大小,可以调节三谐振脉冲变压器的输出状态。
     根据理论分析及电路模拟的结果,提出了适用于三谐振脉冲变压器的设计方法——迭代模拟法,并采用迭代模拟的方法在研制的空芯变压器基础上研制了一台基于三谐振脉冲变压器的脉冲功率源,进行了实验研究。实验结果表明,所研制的三谐振脉冲变压器输出电压的最大值最大可以达到锥形高压绕组输出电压的2倍,系统最大工作电压约为600kV,与理论分析的结果相吻合;与空芯变压器相比,虽然变压器能量传输效率没有提高,但是使用三谐振脉冲变压器使系统的功率容量增大,从而更多的能量可以通过空芯变压器传送到负载电容。实验和理论的结果都说明,将任意一台双谐振脉冲变压器改造成三谐振脉冲变压器具有可行性。
The triple resonance pulse transformer is a new type of pulse transformer, which is based on air-cored transformer. The voltage appearing across the pulse transformer is significantly less than the output voltage; instead, the full output voltage appears across the tuning inductor. The max ratio of peak load voltage to peak transformer voltage is 2.77. In the paper the theoretical analyses, engineering design and experimental investigation of the pulse power generator based on the triple resonance pulse transformer is made and the design method is bring forward. Based on the design method a pulse power generator based on the triple resonance pulse transformer is developed.
     First of all, in order to solve the flashover problem between coils because of un-uniform of the voltage distribution along the air-cored transformer's taper windings the voltage distribution of tapered winding is researched, which have theoretical and engineering significance for reliable and security operation of the air-cored transformer and triple resonance pulse transformer. Based on the idea of "field-circuit" association, multi-conductor transmission line (MTL) for tapered winding is bright forward. The distributed parameters of the MTL modle are obtained by use of the software ANSYS and then the distribution of the tapered winding can be gotten by solve the MTL model's time domain equations. The calculation results accord with the simulation experiment results, that is to say, MTL model of the tapered winding can be used for calculating voltage distribution of pulse transformer's taper winding. Based on the results, the methods to improve the distribution of the tapered winding are bring forwards by measuring and analyzing the voltage distribution of other taper windings with different structure.
     And then, by analyzing pulse transformer's lossless circuit, the analytical expression for the output voltage and the relation of the triple resonance circuit parameters are presented. Variations of output voltage and energy efficiency to circuit component values, stray parameters and distributing parameters are discussed by use of the software Pspice. It is indicated that both air-cored transformer and triple resonance pulse transformer the primary parameters are much influential, and therefore the resistance and stray inductance of primary circuit must be reduced. As for the triple resonance pulse transformer, the distributed capacitance of tuning inductor affects the output voltage of the transformer very much because the load capacitance is 80pF, and therefore the distributed capacitance of tuning inductor must be reduced. In addition, the triple resonance pulse transformer's output condition can be adjusted by tuning the tuning capacitor and the tuning inductor.
     According to the results of theoretic analysis and circuit simulation, the design method for the triple resonance pulse transformer is presented. By using the design methed—iterated simulation, a triple resonance pulse transformer is developed based on the developed air-cored transformer. The experimental results indicate that the ratio of the peak output voltage to the peak high voltage winding's voltage is 2 and the peak output voltage of the triple resonance pulse transformer is 600kV. Comparing with air-cored transforme, the energy transmission efficiency of the triple resonance pulse transformer is not improved. However, the power capacity of the triple resonance pulse trnasfomrer is increased, and more energy can by transmitted to the load capacitor. All results indicte that a triple resonance pulse transformer can be developed based on a discretional double resonance pulse transformer.
引文
1. Martin J. C..The prehistory of pulsed power[J],IEE,1995:1-3
    2. Martin J. C..Internal Report. Nanosecond pulse techniques. SSWA/JCM/703/207, AWRE, England,1970
    3. Mesyats G.A.. Pulsed power[M], New York:kluwer Academic/Plenum Publishers,2005
    4. Martin J. C.,. Nanosecond pulse techniques[J], Prpceedings of the IEEE,1992,80(6):934-945
    5. 张军,钟辉煌,杨汉武.高功率微波脉冲功率驱动源研究进展[J].高电压技术,2004,30(6):45-48
    6. 刘锡三.高功率脉冲技术的发展及应用研究[J].核物理动态,1995,12(4):16-18.
    7. 韩旻.脉冲功率技术基础[M].清华大学电气工程与应用电子技术系,2002
    8. 王莹.高功率脉冲电源[M].北京:原子能出版社,1991
    9. 曾正中.实用脉冲功率技术引论[M].西安:陕西科学技术出版社,2003
    10.刘锡三.高功率脉冲技术[M].北京:国防工业出版社,2005
    11. Yu. A. Andreev, Yu. I. Buyanov et al. High-power ultra-wideband electromagnetic radiation generator[A].11th IEEE Pulsed Power Conf.[C],1997:730-735
    12. R. S. Clark, L. F. Rinehart et al. Repetitive ultra-wideband source development at Sandia national laboratories[A].20th IEEE Power Modulator Conf.[C],1992:104-106
    13. James P.O'Loughlin. Air Core Pulse Transformer Design. Power Modulator Conference 1988:325-330.
    14. Martin T. H., etc. Summar of the Hermes Flash X-ray Program. SC-RR-69-421,1969
    15. John A. Nation, Particle Accelerators, (10),5,1979.
    16. Bernstien B. And Smith I. An Electron Accelerator[J]. IEEE Trans. Nucl. Sci. NS-20,973:294
    17. Herbert H. G, Martin J. C. Some Pulse Power Improvements to SWARF Flash X-Ray Machine[A]. Proc.4th IEEE Pulsed Power Conference[C],1983:598
    18. Bepychev H. G. Nanosecond Intense Electron Beam Acelerator- Angara[J]. Instr. Exp. Tech. No.6,1983:14
    19. Pavlovskii A. I. Powerful Electron Accelerator Liu-10. Report Science Academy SSSR Vol.250 No.5,1980:1118
    20. Mesyats G.A.,Korovin S.D.,Gunin A.V.,et al.. Repetitively pulsed high-current accelerators with transformer charging of forming lines[J].Laser and Particle Beams,2003,21:197-209
    21. Korovin S.D.,Gubanov V.P.,Gunin A.V.,et al. Repetitive nanosecond high-voltage generator based on spiral forming line[A]. The 28th IEEE International Conference on Plasma Science and the 13th IEEE International Pulsed Power Conference[C],2001:1249-1251
    22. Gunin A.V.,Klimov A.I.,Korovin S.D.,Pegel I.V.,et al. Relativistic X-band BWO with 3 GW output power[J]. IEEE Trans.Plasma Sci.,1998,26(3):326-331
    23. Mesyats G.A.,Korovin S.D.,Rostov V.V.,Shpak V.G.,and Yalandin M.I.. The RADAN series of compact pulsed power generators and their applications[A]. Proceedings of the IEEE[C], 2004,92(7):1166-1178
    24. Eltchaninov A.S.,Shpak V.G.,Urike Y.Y.,and Yalandin M.I.. RADAN-150 and RADAN-220—A compact pulsed X-ray apparatμs[J]. Defectoscopy,1984,(12):68-70
    25. Mesyats G.A.,Shpak V.G.,Yalandin M.I.,and Shunailov S.A. Compact high-current accelerators based on the RADAN SEF-303 pulsed power source[A]. Proc.9th IEEE Int.Pulsed Power Conf.[C],Albuquerque,New Mexico,1993:835-838
    26. Ashby S., et al, CLIA-A Compact Linear Induction Accelerator Systems. Proc.9th Int. Conf. on High-Power Particle Beams,1992
    27.徐宜志等.闪光-Ⅰ强流脉冲电子束加速器[J].原子核物理,第9卷,1987:169
    28.邱爱慈等.闪光-Ⅱ强流脉冲电子束加速器[J].强激光与粒子束,1991,3(3):340
    29.康强,常安碧,李名加,孟凡宝,苏友斌.带脉冲形成线的1.0 MV 100 Hz紧凑型Tesla变压器的研制[J].强激光与粒子束,2006,18(3):451-454
    30.康强,常安碧,李名加,苏友斌.重复高压脉冲产生与成形一体化装置研制[J].强激光与粒子束,2008,20(4):701-704
    31. Song X.X.,Liu G.Z.,Peng J.C.,et al. TPG400:a compact short pulse electron beam accelerator[A].The 1st Euro-Asian Pulsed Power Conference[C],Chengdu,2006:316-320
    32.宋晓欣,刘国治,彭建昌,苏建仓等.重复频率脉冲电子束加速器——TPG700[A].全国第七届高功率微波学术研讨会[C],四川峨眉,2008:238-244
    33.彭建昌,苏建仓,宋晓欣等.30 GW高功率重频脉冲驱动源[A].全国第七届高功率微波学术研讨会[C],四川峨眉,2008:245-250
    34. G. J. Rohwein. High Voltage Air Core Pulse Transformers, SAND 80-0451, Augμst 1984.
    35.刘金亮,钟辉煌,谭启美,刘车波.大功率Tesla变压器谐振特性的研究[J].高电压技术,1997,23(4):3-5
    36. O'Loughlin J.P.,Sidler J.D.,and Rohwein G.J. Air core pulse transformer design[A]. Power Modulator Symposium[C],IEEE Conference Record of the 1988 Eighteenth:325-330
    37.张建德,陈冬群等.空心变压器的理论分析和实验研究[J].国防科技大学增刊.1997,20:43-46
    38. Jame Corum, Jame Daum. Tesla Coil Research. AD-A282 289,U.S. Army Armament research, Development and Engineering Center, May 1992
    39. G. J. Rohwein. High Voltage Air Core Pulse Transformers. SAND 80-0451, August 1984
    40.刘正云Tesla变压器的设计[D].长沙:国防科技大学硕十论文.1993
    41. Sarjeant W.G.,and Rohwein G.J. A review of repetitive pulse power component technology[A]. 4th IEEE International Pulsed Power Conf.[C].1983:303-308
    42. Jing Luo, B M Novac, et al. Fast and Accurate Two-Dimensional Modelling of High-Current, High-Voltage Air-Cored Transformers [J]. JOURNAL OF PHYSICS D:APPLIED PHYSICS:38 (2005)955-963
    43. M.C.Scott, J.P. O'Loughlin and R.P. Copeland. A 350KV Dual Resonant Transformer For Charging a 40pF PFL at Kilo-Hertz Rep-rates[A].10th IEEE International Pulsed Power Conference[C],1995:1466-1471
    44. P.Sarkar, S.W.Braidwood, et al. A Compact Battery-Powered 500 kV Pulse Generator for UWB Radiation [A].15th IEEE International Pulsed Power Conference[C],2005:1306-1309
    45. C. E. Baum, W. L. Baker, et al. JOLT: A Highly Directive, Very Intensive, Impulse-Like Radiator[J]. Proceedings of IEEE, Vol.92, No.7,2004:1096-1109
    46. G.J.Rohwein. A Three-Megavolt Transformer for PFL Pulse Charging [J]. IEEE Trans.Nuc.Scl.,NS-26, June 1979:.4211-4213
    47.刘金亮,张建德,李永忠,等.一种给脉冲形成线充电的带绕式高压脉冲变压器[J].强激光与粒子束,2003,15(4):394-396
    48. W.J.Sarjeant and G.J.Rohwein. A Review of Repetitive Pulse Power Component Technology [A],4th IEEE International Pulsed Power Conference[C],1983:631-637
    49. M.T.Buttram and G.J.Rohwein. Operation of a 300 kV,100 Hz,30 kW Average Power Pulser[A]. Proc.13th Pulsed Power Modulator Symposium[C], BμFfalo,New York,June 1978
    50. James P.O'Loughlin. Air Core Pulse Transformer Design. Power Modulator Conference 1988:325-330
    51. P.D'A.Champney, C.Eichenberger. Explosively driven 1MV Output Air-core Pulse Transformer Design. Final Report PSI-FR-3358-01,1988, Pulse Sciences, Inc.
    52. S.C.Kim, et al. Development of Air Core Type 500 kV HV Pulse Transformer [A].15th IEEE International Pulsed Power Conference[J],2005:696-699
    53.李永忠,张建德,李传胪,刘金亮,李继键.高压强流脉冲变压器[J].国防科技大学学报,2001,23(1):110-113
    54. G. J. Rohwein. Design of pulse transformers for PFL charging.2nd IEEE International Pulsed Power Conference,1979:87-90
    55. F. M. Bieniosek. Triple Resonance High Voltage Pulse Transformer Circuit[A].6th IEEE International Pulsed Power Conference[C],1987:700-702
    56. N.Tesla. U.S. Patent No.1119732(1 December 1914)
    57. F. M. Bieniosek. Triple Resonance Pulse Transformer Circuit. Rev. Sci. Instrum.61(6), June 1990:1717-1719
    58. S.H. Nam, et al. Design of a High Voltage Resonance Pulser.16th IEEE International Pulsed Power Conference,2007:1327-1331
    59.于赞基.变压器线圈中特快速暂态仿真的建模[J].中国电机工程学报,1995,15(11):299-305
    60. Shibuya Y, Fujita S, Hosokawa N. Analysis of very fast transient overvoltage in transformer winding. IEE Pro.-Gener. Transm. Distrib.,1997,144(5):461-468
    61. J.L.Guardado, K.J.Cornick. A computer model for calculating steep-fronted surge distribution in machine windings [J]. IEEE Transactions on Energy Conversion,1989,4(1):95-101
    62. Y.Shibuya, S.Fujita, E.Tamaki. Analysis of very fast transients in transformers. IEE Pro.-Gener.Transm.Distrib.,2001,148(5):377-383
    63.邓晖,姜建国,曹海翔,等.大型汽轮发电机定子绕组的脉冲传播模型[J].中国电机工程学报,1999,19(8):7-11
    64.李名加,阮江军,康强,等.脉冲变压器锥形绕组电压分布数值分析[J].高电压技术,2004,30(6):51-53
    65. Popov M, Sluis L V D, Paap G C et al. Computation of very fast transient overvoltages in transformer windings [J]. IEEE Transactions on Power Delivery,2003,18(4):1268-1274
    66. Yamashita H, Cingoski V, Nakamae E et al. Design improvements on graded insulation of power transformers μsing transient electric field analysis and visualization technique [J].IEEE Transactions on Energy Conversion,1999,14(4):1379-1384
    67. I. Boscolo, A. Luches et al. Electron beam production by a Tesla transformer accelerator [J]. Rev. Sci. Instrum.1977,48 (7):747-751
    68.张嘉生.一种重复频率的高功率发生器[J].强激光与粒子束,1999,11(4):470-472
    69.樊亚军.高功率亚纳秒电磁脉冲产生[D].西安:西安交通大学博士学位论文,2004
    70.张自成.紧凑重频Tesla变压器型吉瓦脉冲发生器[D].长沙:国防科学技术大学博十论文,2008
    71. S.H. Nam, S.S. Park, et al. Design of a High Voltage Resonance Pulser[C].16th IEEE International Pulsed Power Conference,2007:1327-1331
    72.石磊,钟辉煌,刘金亮Tesla变压器型强流电子加速器充电理论分析[J].高电压技术,2000,26(1):3~5
    73.钟辉焊,李传胪,刘正云Tesla变压器的理论分析与工程设计[J].国防科技大学学报增刊,1993,15:52-57
    74. Jame Corum, Jame Daum. Tesla Coil Research. AD-A282 289,U.S. Army Armament research, Development and Engineering Center, May 1992.
    75.张建德,李传胪,钟辉煌.空芯变压器的理论分析与工程设计.国防科技大学学报,1995,17(s0):94-97
    76.贾新章OrCAD/Pspice 9实用教程[M].西安:西安电子科技大学出版社,1999
    77.张东辉,严萍,高迎慧,孙鹞鸿Pspice电路仿真中变压器模型的使用[J].电气应用,2007,26(1):21-26
    78.王瑞华.脉冲变压器设计(第二版)[M].北京:科学出版社,1996
    79. Denicolai M.,Optimal performance for Tesla transformers,Rev.Sci.Instrum.,2002,73(9),3332-3336
    80. S.C.Kim, et al. Development of an Air-core Cylindrical HV Pulse Transformer [A]. The First Euro-Asian Pulsed Power Conference[C], Chengdu, China, September 2006
    81.马勋.带绕式空芯变压器的设计[D].绵阳:中国工程物理研究院硕士论文,2008
    82.海特维西,李远.电感计算[M].北京:国防工业出版社,1960
    83.贺元吉,张亚洲.非共振态下空心变压器的理论分析与实验研究[J].高电压技术,29(10),2003:11-34
    84.朱德恒,严璋.高电压绝缘[M].北京:清华大学出版社,1990
    85.白昭,邓颖.变压器内绕组硬纸板筒制造工艺及分析[J].变压器,2002,39(11):19-22
    86.李十忠,刘金亮,杨建华等.带绕式空心脉冲变压器电感的测量及误差分析[J].中国测试技术2006,32(1)
    87. Adler R.J.Pulse power formulary. Albuquerque,New Mexico:North Star Research Corporation,2001
    88.柯罗文(Korovin S.D.),用在强脉冲重复频率加速器中的特斯拉变压器,国外核试验技术,1996,19(1):1-23
    89.张自成,杨汉武,张建德等.紧凑型Tesla变压器的参数测量[J].国防科技大学学报,2008,30(4):116-120
    90.李名加,常安碧,康强,张永辉,甘延青,刘忠.脉冲变压器锥形高压绕组研制.强激光与粒子束,2009,21(4):630-632
    91.高牧纲.屏蔽与接地[M].北京:北京邮电大学出版社,2004
    92.张仁豫等编著.高电压实验技术北京:清华大学出版社,1982
    93.梁曦东等主编.中国电气工程大典(第1卷,现代电气工程基础).北京:中国电力出版社,2009
    94.杨克俊.电磁兼容原理与设计技术[M].北京:人民邮电出版社,2004
    95.贺元吉.一种测量亚ns级脉冲高电压的电容分压器[J].哈尔滨理工大学学报,2004,9(3):41-43
    96.陈裕涛.宽频带电容分压器[A].强流粒子束学术交流会文集[C],1983
    97. Ekdahl C.A. Voltage and current sensors for a high-density Z-pinch experiment. Rev.Sci.Instrum., 1980,151(12):1645
    98.刘金亮,怀武龙等.脉冲高电压的频率对电容分压器性能的影响[J].国防科技大学学报增刊,2000,22(3):10-13
    99.贾止春,许锦兴.电力电子学[M].武汉:华中理工大学出版社
    100.张军,钟辉煌,杨汉武.高功率微波脉冲功率驱动源研究进展.高电压技术[J].2004,30(6):45-48
    101.钱宝良,钟辉煌,张建德.国外高功率微波的研究进展[J].国防科技参考,1999,4:16-18
    102.罗敏,常安碧,曹绍云,等.高功率大电荷量重复频率气体开关实验研究[J].强激光与粒子束,2003,15(4):412-416
    103.丛培天,邱爱慈,曾正中,等.“强光一号”预脉冲气体开关特性研究[J].强激光与粒子束,2003,15(7):725-728
    104. Donaldson A L, Garcia D, Kristiansen M, et al. A gap distance threshold in electrode erosion in high energy in high current, high energy spark gaps[A]. Proceedings of the 17th power modulator symposium[C].1986.146-147
    105.易爱平,郭建明,罗志宏等.“晨光号”加速器主开关的实验研究[J].高电压技术,2001,27(4):47-49

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700