用户名: 密码: 验证码:
电力市场和节能调度环境下电力系统调度与安全问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电网规模的快速扩张使调度员的工作越来越繁忙,不可避免地影响到了对电网的运行监控和调度安全;随着电力市场的逐步建立以及国家大力推行节能减排政策,电网调度员的职责也将从主要保证电网安全运行向保证以电网安全为前提下的电力市场正常运作和节能发电调度转变;这些变化使电网调度模式的变更研究成为必要。
     提高能源使用效率、节约能源、减少环境污染、促进能源和电力结构调整是我国现阶段能源利用和电力工业发展的主题,节能降耗从能源综合社会价值的角度对电力工业的发展提出了新的挑战、同时也为电力系统的调度和安全带来了一系列新问题,进而对大规模机组组合优化算法、网络安全校核优化算法和节能发电优化调度方法提出了新的要求。
     在节能降耗的国家政策下,特别是实施节能发电调度以后,对AGC控制带来了新的问题。如何响应国家号召,顺利实施节能调度,研究新形势下的机组AGC运行方式问题十分有必要;同时为提高节能调度环境下各AGC机组参与互联系统联络线功率和频率控制的积极性和主动性,应对其提供的AGC辅助服务予以评价并合理补偿;为此,应建立相应的评价、考核、补偿体系。
     针对上述几个重要问题进行了比较系统深入的研究,取得了一定的研究成果:
     ⑴为适应电网的快速扩张,满足调度运行和管理工作的现实需求,提出了增加值班调度员人数、在中调设立集控中心、增设调度层次、实施分区调度和调整调度关系的调度模式变更方法。
     ⑵分析和提出了新形势下调度工作可能变更的六个方面,提出了节能优先模式和综合电价模式的节能发电调度机制;在此基础上,进一步提出了结合电力市场和节能减排政策的发电调度机制。
     ⑶针对节能发电调度环境下机组组合问题的研究需求,建立了大规模月度机组组合的数学模型,提出了根据拉格朗日松弛法对偶解形成原问题可行解的新算法,该算法具有通用性,能应用于一般的用拉格朗日松弛法求解的问题;提出了考虑机组加减负荷速度约束和旋转备用约束的机组组合算法以及动态经济调度算法。
     ⑷针对节能发电调度环境下网络安全校核问题的研究需求,提出了基于机组组合的预定运行方式、在考虑机组出力调整量最小的情况下进行优化运行,采用实际应用中最成功的基于原始—对偶模型,将拉格朗日法、牛顿法和障碍函数法三者合一的线性规划内点算法。
     ⑸提出了在有无电力市场两种情况下实施节能发电调度的数学优化模型和分别以成本(价格)、能耗、环保为目标以及兼顾这三种因素的节能发电调度优化模式,并分析了节能发电调度实施将面临的问题、需要研究的若干相关问题、实施中应注意的问题及节能发电调度与电力市场建设的衔接手段。
     ⑹分析了节能发电调度环境下AGC面临的问题,提出了AGC性能改进的方法和提高CPS控制水平的综合策略;提出了节能发电调度环境下AGC的数学算法模型、运行方式建议及补偿方法,在此基础上,提出了新的电厂GCPS考核办法。
     最后对论文中所作的研究进行简要总结,并指出了这一领域有待进一步深入研究的问题。
The rapid expansion of power grid significantly increased the workload of network operators in the electricity dispatch and control centre, which inevitably has an adverse impact on the security of the network operation and monitoring. With the gradual establishment of electricity market and the deployment of government policy to reduce the emission and save energy, the responsibilities of the network operator are not only to secure the network operation but also to implement the energy saving dispatch and facilitate the electricity market. This necessitates the research on the grid dispatch mode.
     In the current stage, the main subject in electricity and energy industries in China is to improve the energy efficiency, save the energy, reduce the pollution and adjust the energy and electricity industry structure. In order to maximize the benefits of the energy to the society, the development of electricity industry is required to relish the new challenges of saving energy and reducing loss. This further brings a series of new problems to the system operation in terms of dispatch and security. In order to solve these problems, the system operator is required to improve the optimization algorithms of the large-scale generator combination and the network security verification as well as the methodology of energy saving dispatch.
     The government policy of saving energy and reducing loss gave arise a new problem to the automatic generation control (AGC) especially after adopting the energy saving dispatch. Therefore it is very necessary to study how to realize the energy saving dispatch and the transmission requirements to the AGC in order to adhere to the policy and realize the energy saving dispatch. On the other hand, in order to motivate the generator to provide the service of power frequency control in an interconnected grid, the system operator needs to assess and compensate the auxiliary service of AGC provided by the generator. Therefore, a mechanism to evaluate, review and monitor the AGC service should be established.
     This thesis systematically studies the above important problems and the following achievements have been made:
     Firstly, to meet the requirements of the dispatch operation and management in the electricity control centre with the rapid expansion of power grid, a novel dispatch mode is proposed by increasing the number of dispatch engineers, setting up a central control centre, increasing the dispatch layers so that the zonal dispatch and dispatch adjustment can be achieved.
     Secondly, a new energy saving dispatch mechanism is proposed based on the analysis of the six aspects affected by the new energy policy. And based on this proposal, a further improvement is achieved to take the electricity market and emission reduction into consideration.
     Thirdly, a mathematic model is established for the large scale of monthly generator dispatch combinations in order to study the generation combination requirements under the energy saving dispatch criteria. A lagrangian relaxation method based algorithm is proposed to find the solution of the problem. This algorithm is very robust and can be used to solve the general Lagrange relaxation problem. Furthermore the new algorithm incorporates the restriction of the loading and de-loading characteristics of the generator and the spinning reserve requirement as well as the dynamic energy saving dispatch algorithm.
     Fourthly, in order to study the network security verification in the energy saving dispatch environment, a predefined system operation mode based on the combination of the generators is proposed. This method optimizes the operation to minimize the adjust of the generator output by adopting the linear interior point algorithm based on the Lagrange and Newton algorithms as well as barrier function.
     Fifthly, a mathematic optimization model is proposed to realize the energy saving dispatch based on whether there is an electricity market, which uses the cost, energy loss and environment index as targets to optimize the generation dispatch based on the analysis of the major problems faced by the energy saving dispatch. The problems of how to realize the seamless combination between the energy saving dispatch and the construction of electricity market are also addressed.
     Finally, The AGC problems in the energy saving dispatch environment are analyzed and a comprehensive strategy is proposed to improve the AGC performance and enhance the CPS function. Based on the AGC mathematic algorithm, system operation mode and compensation method, a new power plant GCPS examination method is proposed.
     In conclusion this thesis studied the problems of power system dispatch and security in the environment of electricity market and energy saving dispatch. The major research achievements were summarized and the direction of further research in this aspect was also pointed out.
引文
[1] Huang Y, Kashiwagi T, Morozumi S. A Parallel OPF Approach for Large-scale Power Systems [J]. Power System Management and Control, 2002: 162~166
    [2] X.H.Guan, W.H.Edwin Liu, Alex D. Papalexopoulos. Application of a fuzzy set method in an optimal power flow. Electric Power Systems Research [J]. 1995, 34: 11~18
    [3]文福拴,韩祯祥.模拟进化优化方法在电力系统的应用综述(连载),电力系统自动化[J], 1996, 20(1)、(2)、(3)
    [4] Y. T. Hsiao, C. C. Liu, H. D. Chiang, Y. L. Chen. A New Approach for Optimal VAR Sources Planning in Large Scale Electric Power Systems. IEEE Trans. on Power Systems [J]. 1993, 8(3): 988~996
    [5] Hua Wei, H. Sasaki, J. Kubokawa, R. Yokoyama. An interior point nonlinear programming for optimal power flow problems with a novel data structure. IEEE Trans. on Power Systems [J]. 1998, 13(3): 870~877
    [6] Hua Wei, H. Sasaki, R. Yokoyama. An application of interior point quadratic programming algorithm to power system optimization problems. IEEE Transactions on Power Systems [J]. 1996, 11(1): 260~266
    [7] O.Alsac, J. Bright, M. Prais, B. Stott. Further Developments in LP-based Optimal Power Flow. IEEE Trans. on Power Systems [J]. 1990, 5(3): 697~711
    [8]赵晋权,侯志俭,吴际舜.改进最优潮流牛顿算法有效性的对策研究[J].中国电机工程学报, 1999, 19(12) : 70~75
    [9] W.G. Wood, Spinning Reserve Constrained Static and Dynamic Economic Dispatch, IEEE Trans. PAS, Vol. 101, No.2, Feb.1982, pp381~383
    [10] F. N. Lee, Short-Term Unit Commitment - A New Method, IEEE Trans. PWRS, Vol. 3, No. 2, May 1988, pp421~428
    [11] X. Guan, P. B. Luh, H. Yan, An Optimization-Based Method for Unit Commitment, Electrical Power & Systems, Vol. 14, No.1, February 1992, pp9~17
    [12]陈皓勇.基于改进拉格朗日松弛法的电能成本分析,博士学位论文,西安:西安交通大学, 2000
    [13]刘振宏,蔡茂诚译.组合最优化—算法和复杂性,清华大学出版社, 1988年6月
    [14] P.G. Lowery, Generating Unit Commitment by Dynamic Programming, IEEE Trans. PAS, Vol. 85, No. 5, May 1966
    [15] J.D. Guy, Security Constrained Unit Commitment, IEEE Trans. PAS, Vol. 90, No. 3,May/June 1971
    [16] C.K. Pang, H.C. Chen, Optimal Short-term Thermal Unit Commitment, IEEE Trans. PAS, Vol. 95, No. 4, July/December 1976
    [17]国家发展改革委,国家环境总局,国家电监会,国家能源办.节能发电调度办法(试行). 2007
    [18]国家发展改革委,国家环境总局,国家电监会,国家能源办.节能发电调度试点工作方案. 2007
    [19]国家发展改革委,国家环境总局,国家电监会,国家能源办.节能发电调度办法实施细则(试行). 2007
    [20]国家发展改革委,国家环境总局,国家电监会.节能发电调度信息发布办法(试行). 2008
    [21]赵庆波,杨素萍,赵永亮等.国内外电力市场辅助服务新发展状况综述[J].现代电力, 2003, 20(6): 45~50
    [22]赵庆波,曾鸣,刘敏等.电力市场中的负荷频率控制方案研究[J].中国电机工程学报, 2002, 22(11): 45~50
    [23]王炜. CPS标准下的AGC控制策略比较研究[D].大连理工大学, 2005
    [24] Ibraheem, Kumar P, Kothari D P. Recent philosophies of automatic generation control strategies in power systems [J]. IEEE Trans on Power Systems, 2005, 20(1): 345~357
    [25] Donde V, Pai M A, Hisken I A. Simulation and optimization in an AGC system after deregulation [J]. EEE Trans on Power Systems, 2001, 16(3): 481~489
    [26] Schulte R P. An automatic generation control modification for present demands on interconnected power systems [J]. IEEE Trans on Power Systems, 1996, 11(3): 1286~1294
    [27] Ayant Kumar, Kah-Hoe Ng, Gerald Sheble. AGC simulator for price-based operation Part I: A model [J]. IEEE Transactions on Power Systems, 1997, 12(2): 527~532
    [28] Hirst Eric. Maximizing Generator Profits across Energy and Ancillary-Services Markets The Electricity Journal [J], 2000, 13(5): 61~69
    [29] Ali Keyhani, Ashkan Kian. Market monitoring and control of ancillary services [J]. Decision Support Systems, 2001(30): 255~267
    [30] T.P.Imthias Ahamed, P.S.Nagendra Rao, P.S.Sastry. A reinforcement learning approach to automatic generation control [J]. Electric Power Systems Research, 2002(63): 9~26
    [31]焦连伟,文福拴,祁达才,林济铿,倪以信.电力市场环境中辅助服务的获取与定价[J].电网技术, 2002, 26(7): 1~6
    [32]武亚光,张锐,金钟鹤.自动发电控制(AGC)系统运用控制方式与措施探讨.东北电力技术, 2001(10): 1~3
    [33]李正.大区互联电网自动发电控制AGC控制策略研究[D].四川大学, 2003
    [34]刘乐,刘娆,李卫东.自动发电控制中频率偏差系数确定方法的探讨[J].电力系统自动化, 2006, 30(06): 42~47
    [35]唐跃中,张王俊,张建等.基于CPS标准的AGC控制策略研究[J].电网技术, 2004, 28(21): 75~79
    [36]吕隆明,周思宇,李敏.基于优化理论的大电网CPS标准研究,四川电力技术, 2007, 30(03): 74~76
    [37]徐兴伟,林伟,王家宏.东北电网A标准AGC模式应用于CPS标准分析[J].电力系统自动化,2003, 27(21): 72~74
    [38]刘娆,林伟,李卫东,刘乐,王玮,徐兴伟,柳焯.互联电力系统运行控制性能评价标准的探讨[J].电力系统自动化, 2005, 29(08): 87~91
    [39]邹斌,许卫洪,丁峰.一种新的AGC机组绩效考评方法[J].电力系统自动化, 2005,29(11): 23~28
    [40]郏斌,王锡凡.电力市场环境下的系统频率控制[J].电力系统自动化, 1999, 23(2): 55~58
    [41]刘继春.电力市场运营系统.北京:中国电力出版社[M]. 2004, 145~146
    [42]姚鹏.电力市场环境下自动发电控制研究[D].西安理工大学, 2003
    [43]周全仁. AGC在电网安全稳定中的作用及改善AGC运行的措施[J].电网技术, 1996, 20(12): 41~44
    [44]徐兴伟,林伟.互联电网控制性能标准下自动发电控制策略的选择[J].电网技术. 2003, 27(10): 32~34
    [45]陈艺华,王步云等.节能调度及相关问题分析.专题论坛, 2008, 36(3): 16~19
    [46]廖萍,李兴源.实施节能发电调度的研究.四川电力技术, 2008, 31(1): 8~9, 33
    [47]邹斌,周浩,李晓刚.电力市场原理与实践[M].北京:中国林业出版社,北京大学出版社, 2006
    [48] Lai L.L. Power System Restructuring and Deregulation [M]. London: John Wiley & Sons Ltd, 2001
    [49]周浩,文福拴,张富强等.电力市场风险管理——建模分析与预防策略[M].杭州:浙江大学出版社, 2006
    [50] Tetsuo Sasaki, Kazuhiro Enomoto. Dynamic Analysis of Generation Control Performance Standards [J]. IEEE transactions on power systems, 2002, 17(3): 806~811
    [51]曾伊琳.扬长避短应对节调—大型火力发电企业应对节能调度策略[J].中国电力企业管理, 2009, 13(2): 38-39
    [52]杨梅,王黎,马光文等.节能调度对电力企业的影响及对策研究[J].水力发电, 2009, 35(1): 88~91
    [53]焦莉,陈艺华,王步云.日发电计划环节中落实节能调度的思路[J].陕西电力, 2008, 36(3): 12~15
    [54]尚金成.兼顾市场机制的主要节能发电调度模式比较研究[J].电网技术, 2008, 32(4): 78~85
    [55]尚金成.兼顾市场机制与政府宏观调控的节能发电调度模式及运作机制[J].电网技术, 2007,31(24): 55~62
    [56]耿建,高宗和,张显等.节能电力市场设计初探[J].节能电力市场设计初探,电力系统自动化, 2007, 31(19): 18~21
    [57]尚金成.节能发电调度的经济补偿机制研究: (一)基于行政手段的经济补偿机制设计与分析[J].电力系统自动化, 2009, 33(2): 44~47
    [58]尚金成.节能发电调度的经济补偿机制研究: (二)基于市场机制的经济补偿机制设计与分析[J].电力系统自动化, 2009, 33(3): 46~50
    [59]尚金成.电力节能减排的理论体系与技术支撑体系[J].电力系统自动化, 2009, 33(6): 31~35
    [60]尚金成.基于时间尺度的节能发电优化调度协调模型及算法[J].电网技术, 2008, 32(15): 56~61
    [61]李清清,周建中,莫莉等.基于节能调度的竞价市场厂网合作策略[J].电力系统自动化, 2008, 32(14): 40~44
    [62]谭忠富,陈广娟,赵建保.以节能调度为导向的发电侧与售电侧峰谷分时电价联合优化模型[J].中国电机工程学报, 2009, 29(1): 55~62
    [63]杨杰,付弢,续爱世.大型火力发电机组煤耗分析,热力发电, 2002
    [64]沈学东.丰满发电厂标准水耗考核研究,东北电力技术, 1999
    [65]谢建民.风力发电成本主要影响因素分析与计算,华东电力, 2003
    [66]丁明.风力发电系统运行和规划问题研究综述,国际电力, 2003
    [67]孔娟.太阳能光伏发电系统的研究[硕士学位论文].青岛:青岛大学
    [68]郑诗程.光伏发电系统及其控制研究[博士学位论文].合肥:合肥工业大学, 2005
    [69]王成瑞.垃圾发电技术及其发展,黑龙江电力, 2002
    [70]李书恒.潮汐发电技术的现状与前景,海洋科学, 2006
    [71]刘肇旭.大亚湾核电站的外部电网运行可靠性评价,中国电力, 1994
    [72]杨丽君.大容量火电机组调峰及经济性研究,黑龙江电力, 2002
    [73]张志坚.分布式发电及其关键技术,山西电力, 2007
    [74]夏清,黎灿兵,江健健等,《国外电力市场的监管方法、指标与手段》, 2003
    [75]刘维烈,汪德星,高伏英等.电力系统调频与自动发电控制[M].北京:中国电力出版社, 2006
    [76]郑刚,刘嘉宁.广东电网实施控制性能标准考核存在的问题分析[J].广东电力, 2006, 19(5): 18~21
    [77]梁俊晖. CPS性能指标和广东电网频率控制策略的改进[J].广东输电与变电技术, 2007, 8(1): 12~15
    [78]李正,敬东,赵强. CPS/DCS标准在大区互联电网AGC控制策略中的应用[J].电力系统及其自动化学报, 2003, 15(2): 27~32
    [79]高宗和.自动发电控制算法的几点改进[J].电力系统自动化, 2001, 25(22): 49~51
    [80]高宗和,滕贤亮,涂力群.互联电网AGC分层控制与CPS控制策略[J].电力系统自动化, 2004, 28(1): 78~81
    [81]杨小煜,沈松林,吴杏平.华北、东北联网后华北电网自动发电控制(AGC)及其考核的实现[J].电网技术, 2001, 25(7): 60~62
    [82]华中电监局.华中区域发电厂并网运行管理规定实施细则[Z].武汉:华中电监局, 2008
    [83]华东电监局.华东区域发电厂并网运行管理规定实施细则[Z].上海:华东电监局, 2008
    [84]东北电监局.东北区域发电厂并网运行管理规定实施细则[Z].沈阳:东北电监局, 2008
    [85]华北电监局.华北区域发电厂并网运行管理规定实施细则[Z].北京:华北电监局, 2008
    [86]南方电监局.南方区域发电厂并网运行管理规定实施细则[Z].广州:南方电监局, 2008
    [87]姚诸香,邹根华,罗奇. AGC机组辅助服务确定性指标及应用[J].华中电力, 2007, 20(5): 10-12
    [88]冯玉昌,滕贤亮,涂力群. AGC机组调节速率和精度的实时计算方法[J].电力系统自动化, 2004, 28(4): 75~77
    [89]李端超,江山立,陈家庚等. AGC机组调节效能定量评估与补偿方式研究[J].电网技术, 2001, 25(8): 15~19
    [90]韩少晓,孙嘉等.. AGC机组辅助服务定量评估[J].电网技术, 2005, 29(18): 26~29
    [91]邹斌,许卫洪,丁峰.一种新的AGC机组绩效考评办法[J].电力系统自动化, 2005, 29(11): 23~28
    [92]孟荣,赵舫.电力市场下AGC机组运行考核算法的研究[J].华北电力技术, 2007, 36(4): 8~11
    [93]温步瀛,周峰,程浩忠等.电力市场辅助服务及其定价研究综述[J].华东电力, 2001, 29(11): 30~33
    [94]赵大溥,陈志姚,钟金等.电力市场环境下辅助服务市场的实现[J].中国电力, 2007, 40(2): 80~84
    [95]焦连伟,文福拴,祁达才.电力市场中辅助服务的获取与定价[J].电网技术, 2002, 26(7): 1~6
    [96]陈艺华,王步云,马佳玲,王俊锴等.节能调度及其相关问题研究分析[J].陕西电力, 2008 36(3): 16~19
    [97]肖宝玲,赵庆波,童明光.我国电力AGC辅助服务市场的竞价交易模式探讨[J].现代电力, 2004, 21(2): 81~85
    [98]丁军威,沈瑜,黄永皓等. AGC辅助服务市场的竞价模式研究[J].清华大学学报(自然科学版), 2003, 43(9): 1191~1194
    [99]张森林.区域电力市场辅助服务运营模式研究[J].水电能源科学, 2008, 26(2): 188~191
    [100]张健,曹志东,许洪强,张元鹏,王晓峰,林启新,朱明祥.发电侧电力市场辅助服务付费新模型,电力系统自动化, 2002
    [101]葛炬,张粒子,周小兵等. AGC机组参与电力市场辅助服务的探讨[J].电网技术, 2002, 26(12): 61~65
    [102]石方迪,邰能灵,侯志俭.电力市场下AGC机组运行的经济补偿研究[J].继电器, 2003,30(2): 1~4
    [103]赵学顺,甘德强,文福拴等.计及联络线功率偏差处罚的AGC容量获取与调节策略.电力系统自动化, 2003, 27(23): 17~21
    [104]胡斌奇.基于CPS标准的互联电网自动发电控制策略研究[D].武汉:华中科技大学, 2005
    [105] JALEELIT N, VANSLYCKT L S. NERC s new control performance standard. IEEE Trans on Power Systems, 1999, 14(3): 1092~1099
    [106]华东电网实行CPS标准的探索.电力系统自动化, 2000, 24(8): 41~44
    [107]贾燕冰,高翔,高伏英等.华东电网CPS标准控制策略现状分析及展望.华东电力, 2007, 35(9): 19~21
    [108] Yong Yan, Fushuan Wen, Jian Wang. Large-scale long-term generation scheduling with fuel limits and emission limits [A]. IEEE Power and Energy Society 2008 General Meeting [C], Pittsburgh, PA, United states, 2008: 1~5
    [109]周毅.华东电网CPS考核标准运行分析[J].华东电力, 2006, 34(5): 41~43
    [110]言茂松,邹斌.概率学的AGC先验定价和后验考核新方法.电力系统自动化, 2003, 27(2): 1~6
    [111]许卫洪,邹斌.电力市场环境下AGC机组评估指标的仿真.江南大学学报, 2005, 4(2): 124~128
    [112]钱玉妹,崔恒志,高宗和.适应CPS标准的AGC系统设计与应用.电力系统自动化, 2003, 27(11): 69~71
    [113]张斌,江苏电力科学研究院有限公司.自动发电控制及一次调频控制系统[M].北京:中国电力出版社, 2005
    [114]高宗和,滕贤亮,张小白.互联电网CPS标准下的自动发电控制策略.电力系统自动化, 2005, 29(19): 40~44
    [115]中国南方电网.《南方电网联络线功率与系统频率偏差控制和考核管理办法(试行)》.广州:中国南方电网, 2005
    [116]赵学顺.电力市场环境下AGC和运行备用的获取与定价[D].杭州:浙江大学, 2003
    [117]曾鸣,史连军,董军等.与市场机制相协调的节能发电调度相关问题研究[J].电力技术经济, 2007, 19(5): 1~5
    [118]刘乐,刘娆,李卫东.考虑电网技术水平的频率偏差系数设定方式分析.电力系统自动化, 2008, 32(15): 17~20
    [119]华东电力调度交易中心,浙江大学电气工程学院. AGC容量需求计算分析报告[R].杭州:浙江大学, 2004
    [120]国务院.电力体制改革方案<国发[2002] 5号>[R].北京:国务院, 2002
    [121]邓大洪.东北区域电力市场启动,电力供应垄断坚冰解冻[EB/OL]. www.cb-h.com, 2004
    [122]严宇,马珂,于钊,朱伟江,陈刚.改进发电调度方式实施节能、环保、经济调度的探讨.中国电力, 2007.6, 40(6):6~9
    [123]叶剑波.节能调度对发电企业的影响及对策[J].中国电力企业管理, 2008, (1): 58~59
    [124]曾鸣,赵庆波.电力市场中的辅助服务理论及其应用[M].北京:中国电力出版社, 2003
    [125]彭涛.区域电力市场理论与交易体系研究[D].北京:清华大学, 2004
    [126]国家电力监管委员会.电力市场运营基本规则[Z]. 2005-11-07
    [127]中国电力企业联合会.电力市场辅助服务研究[R]北京:中国电力企业联合会
    [128]葛炬,张粒子,周小兵.电力市场环境下辅助服务问题的研究[J].现代电力, 2003, 20(1): 80~85
    [129]贾燕冰,高翔,高伏英等.关于华东电网实行SCPS的探讨[J].电力系统自动化, 2008, 32(1): 103~107
    [130]广东省电力调度中心.广东电网节能调度方式下的计及CPS合格率的AGC运行指标体系与补偿机制研究[Z].广州:广东省电力调度中心, 2008
    [131]广东省电力调度中心.面向十一五广东电网调度模式及技术支撑需求的分析与研究[Z].广州:广东省电力调度中心, 2007
    [132]广东省电力调度中心.广东电网十一五调峰调频策略研究报告[Z].广州:广东省电力调度中心, 2007
    [133]南方电监局.南方区域并网发电厂辅助服务管理实施细则[Z].广州:南方电监局, 2008
    [134]南方电监局,广东省经贸委.广东省电力行业节能政策研究[Z].广州:广东电网公司电力科学研究院, 2007
    [135]华南理工大学电力学院,国网南京自动化研究院.大规模电力系统竞价交易优化算法技术研究[Z].广州:华南理工大学,南京:国网南京自动化研究院, 2008
    [136]何仰赞,温增银.电力系统分析[M].第三版.武汉:华中科技大学出版社, 2002
    [137]黄蕾.区域电力市场下AGC控制模式研究[J].电网技术, 2006, 30(S2), 84~88
    [138]陈亮,马煜华,骆晓明.广东电网AGC运行需求与控制模式探讨[J].电力自动化设备, 2004, 24(12): 81~83
    [139]赵学顺,汪震,文福拴等.一种新的自动发电控制容量预测和获取机制[J].浙江大学学报(工学版), 2005, 39(5): 685~689
    [140] Electricity Reliability Council of Texas. ERCOT Methodologies for Determining Ancillary Service Requirements [EB/OL]. http://www.ercot.com
    [141]周峰,温步瀛,程浩忠.电力市场条件下发电厂AGC运行成本研究[J].华北电力技术, 2002, 32(10): 31~33
    [142]李端超,江山立,陈家庚等. AGC机组调节效能定量评估与补偿办法研究[J].电网技术, 2001, 25(8): 15~19
    [143]蔡文琴,张思蓉.电网企业购电成本模型研究[J].华中电力, 2007, 20(1): 37~41
    [144]四川省电力公司调度中心.节能发电调度准备情况专题汇报材料[Z].成都:四川省电力公司, 2007
    [145]南方电网综合改革课题组.南方电网综合改革项目研究报告[R].广州:中国南方电网有限责任公司, 2008
    [146]江苏电力调度通信中心.江苏电网节能发电调度工作介绍[Z].南京:江苏省电力公司, 2007
    [147]河南电力调度通信中心.河南电网节能发电调度试点工作开展情况介绍[Z].郑州:河南省电力公司, 2007
    [148]胥传普,杨立兵,刘福斌.关于节能降耗与电力市场联合实施方案的探讨[J].电力系统自动化, 2007, 31(23): 99~102
    [149] HirstE, KirbyB. Unbundling Elecricity Ancillary Services. IEEE Power Engineering Review, June 1996
    [150]宋永华,孙锦鑫(Song Yonghua, Sun Jinxin).英国电力市场面临新的改革—现行模式比较及其问题(The UK Electricity Market Facing a New Reform).电网技术(Power SystemTechnology),1999,23(7):55~60
    [151]宋永华,孙锦鑫(Song Yonghua, Sun Jinxin).英国将推出电力市场新模式(UK Electricity Market Facing New Reform Part?The Proposed Electricity MarkeArrangement).电网技术(Power System Technology),1999,23(8):69~73
    [152]李帆,朱敏(Li Fan, Zhu Min).英国电力市场及输电系统简介(An Introduction to the UK Electricity Pool and NGC Transmission System).电力系统自动化(Automation of Electric Power Systems), 1999 ,23(2):33~40
    [153]何志良.集控自动化系统及其与调度自动化系统的关系[J].电网技术, 2003, 27(3): 68~70
    [154]王霄雁等.电力市场中的合同管理系统.电力系统自动化, 2002, 26(5): 13~15
    [155]郭创新等.集控站自动化模式及综合防误操作系统研究[J].电力自动化设备, 2001, 21(11):51~54
    [156]李函等.集中分层式稳定控制系统设计[J].电力系统自动化, 2000, 24(13):37~40
    [157]沈祥等.无人值班变电站远方监控系统的实际和应用[J].电力系统自动化, 2004, 28(2):89~90
    [158]魏光耀.无人值班变电站应用指南[M].沈阳:辽宁科学技术出版社, 1999
    [159]刘运生.现代数据库技术[M].北京:国防工业出版社, 2001
    [160]鲁士文.计算机网络和实现技术[M].北京:清华大学出版社, 2000
    [161]程文刚. 500kV南宁区域控制中心调度操作模式探讨[J].广西电力, 2006, 2:62~63
    [162]尚金成,黄永皓,夏清.电力市场理论研究与应用.北京:中国电力出版社, 2002.8
    [163]朱峰,杨立兵等.华东电力市场建设和模拟运行.华东电力, 2004, Vol. 32 (9)
    [164]尚金成等.电力市场技术支持系统设计与关键技术研究,北京,中国电力出版社, 2002
    [165]于尔铿,韩放,谢开,曹曝方.电力市场.北京:中国电力出版社, 1998
    [166]薛禹胜. 2000年国际大电网会议系列报道—关于系统分析技术的讨论.电力系统自动化.2000, 24(20): 1~4
    [167]谢开,刘广一,于尔铿,宋永华.电力市场中的输电服务(二)—辅助服务及其定价.电网技术, 1997, 21(4): 58~63
    [168] M.Fiotuhi Firuzabad, R.Billinton, S.Aboreshaid. Spinning Reserve Allocation Using Response Health Analysis. IEEPorc. - Gener. Transm. Distrib, 1996, 143(4): 337~343
    [169] W.Cheung, DavidSun. Energy and Ancillary Service Dispatch For the Interim ISO New England Electricity Market.IEEETransactionsonPowerSystems, 2000, 15(3): 968~974
    [170]黄永皓,尚金成.电力市场运营模式及其技术支持系统设计.北京:科学出版社, 1999
    [171] Ancillary Services: The Spanish Perspective IEEColloqui-um1996: OnPublished
    [172] HarrySingh, Alex Papalexopoulos. Competitive Procure-mentof Ancillary Services by an Independent System Operator. IEEE Transactions on Power Systems, 1999, 14(2): 498~504
    [173] JuanJ. Procurement and Remuneration of Ancillary Services in Competitive Environments: the Example of Argentina and Proposals for California. IEEColloquium on Published: 1996
    [174] J.Bujko, J.Malko, A.Weron, R.Weron. Electricity Market and Tools For Financial Risk Management in Poland A case Study.CIGRESession2000Papers
    [175] RichardFord.AncillaryServicesinEnglandandWales. IEEColloquium-28June, 1996
    [176]史连军,韩放.中国电力市场的现状与展望.电力系统自动化, 2000, 24(3): 1~4
    [177] RichardD.Christie, AnjanBose. Load Frequency Control Issues in Power System Operations After Deregulation. IEEE Transactions on Power Systems, 1996, 11(3): 1191~1200
    [178] ShamsN.Siddiqi, MartinL. Baughman.Reliability Differentiated Pricing of Spinning Reserve. IEEE Transactios on Power Systems, 1995, 10(3): 1211~1218
    [179] EricH, Allen, MarijaD. Reserve Markets For Power Systems Reliability. IEEE Transactionson Power Systems, 2000, 15(1): 228~233
    [180] HaoS, PapalexopoulosA. Reactive Power Pricing And Management. IEEE Transactions on Power Systems, 1997, 12(1): 95~104
    [181]黄永皓,尚金成,康重庆,夏清,孟远景,何南强.电力辅助服务交易市场的运作机制及模型,电力系统自动化, 2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700