用户名: 密码: 验证码:
光热作用下几种高性能纤维的疲劳及老化性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高性能纤维材料优异的光、热稳定性及力学性能,是其在特殊场合应用的基础。而使用场合的苛刻条件和本身的耐久与稳定性是必须明确的。因此,本文对高性能纤维材料在热、光辐射、力及其复合作用下老化、降解、弯曲疲劳及其对应的老化机理进行表征研究,以此为这类材料的制备和高性能化,及其光、热稳定性的表征提供方法与指导。
     利用TGA-DTA/FTIR表征了Kevlar 49、Kevlar 129、Nomex、PBO四种高性能纤维在空气和氮气中的热降解性能,获得了各纤维在两种气氛中的特征温度,发现PBO纤维的起始和终止分解温度最高即耐热性能最好;Nomex纤维尽管起始分解温度不到450℃,但其终止分解温度接近800℃;四种纤维在空气中的各特征温度均低于在氮气中。利用热动力学理论,分析了各纤维在两个不同阶段的活化能和反应级数,发现除第一阶段Nomex纤维在空气中活化能更高,其它各阶段活化能均是空气中低于氮气中,反应级数接近。在空气中各种纤维的热裂解释放的气体主要为CO2、CO、H2O、NO2、HCN、还含有少量的NH3,其中CO2的吸收峰最为强烈;在氮气环境中高温裂解后的主要气体为CO2、CO、H2O、NO2、NO、HCN、还含有少量的苯环化合物,与空气中相比裂解产物中多了NO,且裂解产物中CO始终存在;依据裂解气体的构成,这类纤维的裂解均具有毒性。利用Py-GC/MS联用仪分析了Kevlar49、Kevlar 129、Nomex、PBO四种纤维的裂解过程,CO2占相当大比例,裂解产物有较多的含苯环的小分子物质出现,在600℃和700℃时Kevlar49、Kevlar 129裂解碎片较多,750℃是碎片量减少,而Nomex纤维在750℃时仍有较多的裂解碎片。对于PBO纤维由于其裂解温度较高,在750℃时的裂解产物中PBO的重复单元体、CO2占相当大比例,与其它三种纤维相比,分解产物中苯含量较少,其裂解性相对较安全。
     实现了柔性材料光力和光热复合下的原位测量,对芳纶纤维在力、光和光、热复合作用下的老化性能研究,表明在10%应力作用下进行光老化,芳纶纤维的断裂强力和伸长保持率仅为75%和69%,较光单独作用下明显下降,纤维的形态和微细结构降解得更为剧烈;光热复合作用下芳纶纤维的力学性能较光和热单独作用下降解更快,同时纤维的表面形态和结构较光和热单独作用降解更显著,故在实际使用过程中应考虑冗余设计。
     在本课题组自制准定点弯曲疲劳测试仪(FiBFAN)上,实现了微纳米尺度弯曲疲劳握持器的设计与成型,能有效的对纤维弯曲疲劳性能进行评价。该仪器可以原位测量不同温度下材料的弯曲疲劳性能,还能够原位观测和拍摄材料的弯曲疲劳破坏过程和纤维的断裂破坏形态,能够实时记录弯曲疲劳过程中的循环应力。利用定点弯曲疲劳仪研究了几种高性能纤维的弯曲疲劳性能,发现预加应力和弯曲角度是影响弯曲疲劳寿命最主要的因素,弯曲频率对弯曲疲劳寿命也有一定的影响。通过弯曲疲劳破坏的形态分析,发现Kevlar纤维和PBO纤维是原纤化劈裂破坏,高强聚乙烯为塑性积累断裂,而Nomex纤维表现为舌状的撕裂断裂。对比Kevlar、PBO、高强聚乙烯和Nomex纤维的弯曲疲劳特征值发现高强聚乙烯最耐弯曲疲劳。同时研究了热、湿、光老化对高性能纤维弯曲疲劳性能的影响,随着温度的增加,高强聚乙烯纤维的疲劳寿命减小,当温度增加到100℃,其弯曲疲劳寿命仅为20℃的30%。湿对纤维弯曲疲劳性能影响不大,Kevlar 49和PBO纤维在湿环境下弯曲疲劳寿命略有降低。光老化对Kevlar 49的弯曲疲劳影响较大,光老化一定时间后,纤维的弯曲疲劳寿命明显减小
     利用Kevlar长丝和芳纶1313长丝为原料通过机织的方法得到了Kevlar纯纺和Kevlar/芳纶1313混纤和交织三种结构的织物。实测表明,2.5 cm宽Kevlar纯纺经向强力为2500N以上,纬向为3248N;相近密度下混纤织物经向仅有1632N,纬向为1854N;交织织物经向强力为1300N,高于纬向;但交织织物的耐磨性能最好。织物加工过程的损伤分析,发现在加工过程中,经向损伤接近30%,大于纬向。
     反光和透光性测量表明,不同组织结构的芳纶织物透射和反射性能有一定的差别,但差别不大;纯纺、混纤、交织织物反光和透光性无甚差别。
The excellent light, thermal stabilities and mechanical properties of the high-performance fiber are the basis for the application of special occasions. The used harsh conditions of high-performance fiber, and the durability and stability must be clear. Therefore, the aging, degradation and bending fatigue of high-performance fiber under thermal, light radiation, and the combined effect occasions were investigated. The corresponding aging mechanisms also were discussed. These studies provided some guidance for the preparation of such materials, their modification for high performance, and the characterization of theirs'light and thermal stabilities.
     The thermal degradations of the high-performance fibers, including Kevlar 49, Kevlar 129, Nomex, and PBO in the air and nitrogen were characterized by TGA-DTA/FTIR. The characteristic temperatures of the kinds of fibers in the two atmospheres were obtained. The heat resistance of PBO fiber was best and decomposition temperatures of the beginning and termination were the highest; despite the beginning decomposition temperatures of the Nomex fibers were the lowest and less than 450℃, the termination decomposition temperature was close to 800℃. The characteristic temperatures of the four kinds of fibers in the air were lower than the in nitrogen. The activation energy and reaction order in two different stages of the fibers were analyzed with the thermal dynamics theory. And it was found that, the activation energy of Nomex in the air was higher than in nitrogen in the first stage; the activation energy of the fibers in the air were lower than in the nitrogen in the other stages; and the reaction order were close in the two atmospheres. The gases released by the pyrolysis in air were mainly CO2, CO, H2O, NO, HCN, also containing a small amount of NH3, and the absorption peak of CO2 were the strongest. The gases released by the pyrolysis in nitrogen were mainly CO2, CO, H2O, NO2, NO, HCN, also containing a small amount of benzene compounds. The NO was exited in nitrogen, and the CO as pyrolysis product exited persistently. So the pyrolysis of these fibers was toxic based on the compositions of pyrolysis gas. The pyrolysis processes of Kevlar 49, Kevlar 129, Nomex, PBO were analyzed using Py-GC/MS spectrometer, respectively. It was found that the proportion of CO2 is large in pyrolysis products; and more small molecules containing benzene ring appeared in the pyrolysis products. There were more cleavage fragments of Kevlar 49, Kevlar 129 at 600℃and 700℃, and the cleavage fragments were reduced at 750℃. But there were still more cleavage fragments of Nomex fibers at 750℃.
     The pyrolysis temperature of PBO fiber was higher. So the proportion of the PBO repeat unit body and CO2 were large in the pyrolysis products at 750℃. The benzene contents of PBO were less than the other three fibers, and the pyrolysis of PBO was considerable safer.
     The in-situ measurements of flexible materials under the light—stress combined condition, light—thermal combined condition were achieved. The aging properties of aramid fiber under the two combined conditions were investigated, respectively. It was found that the maintain rate of the breaking strength and elongation were 75% and 69% under 10% stress and light combined condition. Which were significantly decreased compared with under the action of light alone. Meanwhile, the damage of the fiber morphology and fine structure were more seriously. The mechanical properties of aramid fibers under light and heat combined effect decreased faster than light or heat alone; and the fiber surface morphology and structure were more significant degradation too. So the redundancy design should be considered in the practical using process.
     The micro-nano-scale bending fatigue grip design and molding were realized using fixed bending fatigue analyser (FiBFAN) which was made in TMT team(Textile Materials and Technology Lab), and the bending fatigue of the fibers can be effectively evaluated. The bending fatigue performance of flexible materials under different temperature conditions can be measured in situ by the instrument. It also allows for observation of the bending fatigue fracture process and fiber fracture morphology in situ. The cycle stress in the bending fatigue process can be recorded in real time.
     The bending fatigue properties of several high-performance fibers were investigated using the fixed-point bending fatigue analysis apparatus. It was found that the pre-tension and bending angle were the most important factors which affected the bending fatigue life; the bending frequency also had certain effect on the bending fatigue life. Through the analysis of the bending fatigue morphology, it can be found that the bending fatigue fracture of Kevlar and PBO fibers was resulted in fibrillation split; the high strength polyethylene was because of the plastic accumulation; while the fracture-ends of Nomex fiber were the tongue shape of the tear fraqcture. The resistance to bending fatigue of high-strength polyethylene was the best compared with Kevlar, PBO, and Nomex fibers. The influences of heat, moisture, light on the bending fatigue of high-performance fibers were also studied. The fatigue life of high strength polyethylene fiber decreased when the temperature increased. The bending fatigue life at 100℃was only 30% of the bending fatigue life at 20℃. The moisture had little effect on the bending fatigue properties of the fiber. And the bending fatigue life of Kevlar 49 and PBO fiber in the wet environment is slightly lower. The light aging of the Kevlar 49 was greater, and after a certain time of light aging, the bending fatigue life of the fibers significantly reduced.
     Pure Kevlar fabric, Kevlar/aramid 1313 blended and Kevlar/aramid 1313 interwoven fabrics with three structures were obtained using the Kevlar and Nomex filament yarn as the raw materials. It was found that the warp strength of pure Kevlar fabric whose width was 2.5 cm was more than 2500N; and the weft strength was 3248N by experiments. With the similar density, the warp strength of Kevlar/aramid 1313blended fabric was only 1632N; and the weft strength was 1854N. The warp strength of Kevlar/aramid 1313interwoven fabric was 1300 N, which was higher than the weft direction; but the wear resistance of Kevlar/aramid 1313interwoven fabric was the best.. The warp damage of the fabrics was nearly 30% during processing, which was bigger than the weft direction.
     The reflection and transmittance of different structure Kevlar fabric was different, but the differences were not big according the measurements. There was not much difference of reflection and transmittance among these three kinds of fabrics.
引文
[1]Brown JR and Ennis BC. Thermal analysis of Nomex. and Kevlar.Fibers. Textile Research Journal.1977,47(1):62-66
    [2]Brown JR and Hodgeman DKC. An ESR study of the thermal degradation of Kevlar 49 aramid.[J]Polymer.1982,23:365-368
    [3]Brown JR and Power AJ. Thermal Degradation of Aramids:PART I: Pyrolysis/GasChromatography/Mass Spectrometry of poly(1,3-phenyleneisophthalamide) and poly(1,4-phenylene terephthalamide) [J].Polymer Degradation and Stability.1982,4:379-392
    [4]Brown JR and Power AJ. Thermal Degradation of Aramids--PART Ⅱ:Pyrolysis/Gas Chromatography/Mass Spectrometry of some Model Compounds of poly(1,3-phenyleneisophthalamide) and poly(1,4-phenylene terephthalamide) [J].Polymer Degradation and Stability.1982,4:479-490
    [5]Yue CY, Sui GX and Looi HC. Effect of heat treatment on the mechanical properties of Kevlar29 fibre [J]. Composites Science and Technology.2000,60 (3):421-427
    [6]Wu Z, Li F and Huang L. The thermal degradation mechanism and thermal mechanical properties of two high performance heterocyclic polymer fibers [J]. Journal of Thermal Analysis and Calorimetry.2000,59:361-373
    [7]Villar-Rodil S and Paredes JI. Atomic Force Microscopy and Infrared Spectroscopy Studies of the Thermal Degradation of Nomex Aramid Fibers [J].Chem. Mater.2001,13 (1):4297-4304
    [8]Villar-Rodil S and Marti'nez-Alonso A. Studies on pyrolysis of Nomex polyaramid fibers [J]. Journal of Analytical and Applied Pyrolysis.2001,58 (2):105-115
    [9]Serge B, Xavier F and Franck P. Study of the thermal degradation of high performance fibres application to polybenzazole and p-aramid fibres Polymer Degradation and Stability 2001, (74):283-290
    [10]Perepelkin KE, Andreeva IV, Pakshver EA and Morgoeva IY. Thermal Characteristics of Para-Aramid Fibres[J]. Fibre Chemistry 2003,35 (4):265-269
    [11]Downing JW, Newell J.Characterization ofstructural changes in thermally enhanced Kevlar-29 fiber [J].Journal of Applied Polymer Science,2004,91(1):417-424.
    [12]Mostafa MS, Afify N and Gaber A. Investigation of thermal properties of some basalt samples in egypt [J]. Journal of Thermal Analysis and Calorimetry.2004,6 (75):179-18
    [13]Tamargo-Marti'nez K, Villar-Rodil S, Paredes JI and Marti'nez-Alonso A. Thermal decomposition of poly(p-phenylenebenzobisoxazole) fibres:monitoring the chemical and nanostructural changes by Raman spectroscopy and scanning probe microscopy[J]. Polymer Degradation and Stability.2004,2 (86):263-268
    [14]Sha JJ, Nozawa T, Park JS, Katoh Y and Kohyama A. Effect of heat treatment on the tensile strength and creep resistance of advanced SiC fibers [J]. Journal of Nuclear Materials 2004: 592-596
    [15]Astruc A, Bartolomeo P, Fayolle B, Audouin L and Verdu J. Acceleratedoxid ative ageing of polypropylene fibers in aqueous medium under high oxygen pressure as studied by thermal analysis[J]. Polymer Testing 2004,16 (23):919-923
    [16]Fouada H, Mourad AH and Barton DC. Effect of pre-heat treatment on the static and dynamicthermo-mechanical properties of ultra-high molecular weight polyethylene [J]. Polymer Testing 2005(24):549-556
    [17]Dadashian F, Yaghoobi Z and Wilding MA. Thermal behaviour of lyocell fibres[J]. Polymer Testing 2005,15 (24):969-977
    [18]Robert B, Derzon DK and Gillen KT. Nylon 6.6 accelerated aging studies: thermale-oxidativedegradation and its interaction with hydrolysis [J]. Polymer Degradation and Stability.2005,6 (88):480-488
    [19]Emirkhanian R, Salvia M, Ferreira J, Jaffrezic N and Chazeau L. Characterisation of thermal relaxations of polyaniline fibers by dynamic mechanical thermal analysis [J]. Materials Science and Engineering.2006,15 (26):227—231
    [20]Genc G, Burcu A, Balkose D and Semra U. Moisture sorption and thermal characteristics of polyaramide blend fabrics[J]. Journal of Applied Polymer Science.2007,102 (1):29-38
    [21]Sunol JJ, Saurina J, Carrasco F, Colom X and Carrillo F. Thermal degradation of lyocell, modal and viscose fibers under aggressive conditions [J].Journal of Thermal Analysis 2007, 81 (1):41-44
    [22]Smmazcelik T and Y(?)lmaz T. Thermal aging effects on mechanical and tribological performance of PEEK and short fiber reinforced PEEK composites[J]. Materials and Design 2007 (28):641-648
    [23]Koptelov AA, Milekhin YM and Baranets YN.Application of the Random Break Theory to Thermal Degradation of Polymers [J]. Russian journal of applied chemistry.2009,82 (11): 2047-2054
    [24]赵稼祥.美国Kevlar布性能测试分析.纤维复合材料.1994,11(2):3239
    [25]吴岚.纺织材料老化与特种工业用纺织品的储存[J]..上海纺织科技.2001.29(3):60-61
    [26]林兰天,周静PBO-AS纤维的力学性能探讨[J].上海纺织科技,2004,32(1):6-7.
    [27]王华东,杨杰,邹萍,盛如,杜宗英.苯硫醚砜的热老化[J].高分子材料科学与工程,2004,20(1):156.
    [28]Huang W, Wang Y and Xia YM. Statistical dynamic tensile strength of UHMWPE-fibers [J]. Polymer 2004 (45):3729-3734
    [29]刘晓艳 柔性高性能纤维光热稳定性研究[D].东华大学博士学位论文,2005
    [30]叶健青,张玉华.芳砜纶的热稳定性分析[J].东华大学学报.2005,31(20):14-16
    [31]张丽,李亚滨.芳砜纶纤维耐热性能的研究[J].天津工业大学学报,2006,15(6):18-19.
    [32]杨庆斌,刘逸新,王瑞.理对竹原纤维和竹浆纤维力学性能的影响[J].天津工业大学学报,2006,25(6):34-36.
    [33]殷瑛,郑今欢,张玲玲,陈维国.理对PTT纤维结构和力学性能的影响[J].纺织学报,2006,27(11):33-35.
    [34]斯奎,宁荣昌.PBO纤维耐热性研究及进展[J].材料导报,2006,20(1):74-75.
    [35]王新威, 胡祖明, 刘兆峰PBO纤维的热降解过程分析华东理工大学学报(自然科学版)2008,34(2):235-241
    [36]王新威,胡祖明,刘兆峰间位、对位芳香族聚酰胺纤维热分解过程的Py/GC—M与TGA—DTA/MS分析分析测试学报2008,27(4):349-354
    [37]Liu JJ, Yu WD. Charatterization of thermal relaxations of high-strength nylon 6 fibers by DMA.[P].86th Textile-Institute World Conference 2008 (11):76-82
    [38]Liu JJ, Yu WD. A dynamic mechanical thermal analysis study of high modulus polyethylene fibers[P].1st International Symposium of Textile Bioengineering and Informatics.2008 (8):281-285
    [39]Huang G Research on thermal properties of Nomex/Viscose FR fibre blended fabric Materials and Design 2009 (30):4324-4327
    [40]Wu GP, Lu CX and Ling LC.Comparative investigation on the thermal degradation and stabilization of carbon fiber precursors [J]. Polymer bulletin.2009,62 (5):667-668
    [41]Hao LC and Yu, WD. Evaluation of thermal protective performance of basalt fiber nonwoven fabrics [J]. Journal of thermal analysis and calorimetry.2010,100 (2):551-555
    [42]Johnson LD, Tincher WC and Bach HC. Photodegradative wavelength dependence of thermallyresistant organic polymers[J]. Journal ofApplied Polymer Science.1969,13 (9): 1825-1832
    [43]Day M and Wiles DM. Effect of light on the flammability of Nomex Fabric[J]. Textile Research Journal.1974,44 (11):887-891
    [44]Carlsson DJ, Gan LH and Wiles DM. Photodegradation of Aramids. I. Irradiation in the Absence of Oxygen. Journal of Polymer Science:Polymer Chemistry Edition.1978,16(9): 2353-2363
    [45]Carlsson DJ, Gan LH and Wiles DM. Photodegradation of Aramids[J].II. Irradiation in air. Journal of Polymer Science:Polymer Chemistry Edition.1978,16 (9):2365-2376
    [46]Brown JR, Browne NM, Burchill PJ and Egglestor GT. Photochemical ageing of Kevlar 49[J].Textile Research Journal.1983,53 (4):214-219
    [47]Malvar LJ. Durability of Composites in Reinforced Concrete [C].CDCC'98-First International Conference on Durability of Composites for Construction Sherbrooke (Quebec) Canada August 1998
    [48]Masaki M, Yoshimune S, Yoshihiro Y and Akira T. Influence of ultraviolet rays on shear strength of single fiber (Vectoran, PBO, Kevlar) [J].Society of Polymer Science,2005,54(1): 1168.
    [49]M.A. Said, Brenda Dingwall, A. Gupta, A.M. Seyam, G Mock Investigation of ultraviolet (UV) resistance for high strength fibers[J]. Advances in Space Research 2006(37) 2052-2058
    [50]Peter JW, Hu XB, Philip C and Alan J. Environmental Effects on Poly-p-phenylenebenzobisoxazole Fibers. I. Mechanisms of Degradation [J].2002, (37):54
    [51]牛晓明,杨旭东,丁辛.光氧老化对聚丙烯长丝蠕变行为的影响[J].东华大学学报,2004,30(6):52-53.
    [52]班燕,Tio2纳米溶胶的制备及其在缓解芳纶纤维紫外光老化中的应用研究[D].东华大学硕士学位论文.2005
    [53]周颖,潘小丹,王华印.紫外辐射对聚酯纤维表面形态结构的影响[J].浙江理工大学学报,2005,22(3):235-236
    [54]Huang Gu Ultraviolet treatment on high performance filaments Materials and Design 2005 (26):47-51
    [55]周颖,胡国樑,王华印.外线辐射对聚酯纤维结构和性能的影响[J].纺织学报,2006,27(8):17-18
    [56]Zhang HP, Zhang JC, Chen JY and Hao XM. Effects of solar UV irradiation on the tensile properties andstructure of PPTA fiber [J]. Polymer Degradation and Stability 2006 (91): 2761-2767
    [57]王全华,付中玉,朱金唐.光对聚丙烯纤维结构和拉伸强度的影响[J].北京服装学院学报,2006,26(1):14-17
    [58]黄故.玻璃纤维在特殊条件下的强度分析[J].纺织学报,2006,27(8):65
    [59]Liu XY, Yu WD and Peng X.Improving the Photo-stability of High Performance Aramid Fibers by Sol-gel Treatments [J]. Fibers and Polymer.2008,9 (4):455-460
    [60]Zhang T, Jin JH, Yang SL and Li G Preparation and Characterization of Poly(p-phenylene benzobisoxazole) (PBO) Fiber with Anti-ultraviolet Aging. [J]. Acta chimicasinica.2010,68 (2):199-204
    [61]Newland GC Infulence of stress on the degradation of polymer [J].'polymer Engineering Science 1965,1(1):145-156
    [62]Popov AA. Stress durablity testing of polymer [J].polymer science 1980 A22:1501-1509
    [63]Popov AA. Oxidation destruction of polymer under mechanical load [J].Eoropean polymer journa 1982 18(2):413-420
    [64]Demetres B. The effects of tensile stress and the agrochemical Vapam on the ageing of low density polyethylene (LDPE) agricultural films. Part Ⅰ. Mechanical behaviour [J].Polymer Degradation and Stability 2005(88):489-503
    [65]Nakamura H, Nakamura T, Noguchi T and Imagawa K. Photodegradation of PEEK sheets under tensile[J]. Polymer Degradation and Stability 2006 (91):740-746
    [66]于伟东,刘晓艳.一种柔性材料弯曲疲劳中的多功能测量方法及装置:中国,200410067529.12004-10-27
    [67]于伟东,刘晓艳.一种用于显微镜上的微测量方法、装置及用途:中国,200510029966.9[P].2006-03-1.
    [68]于伟东,储才元.纺织物理中国纺织大学出版社[M]2001,12:120
    [69]Bunsel AAR and Hearl JWS. A Mechanism of Fatigue Failure in Nylon Fibres [J].JOURNAL OF MATERIALS SCIENCE.1971 (6):1303-1311
    [70]J. M. HERRERA RAMIREZ, A. R. BUNSELL Fracture initiation revealed by variations in the fatigue fracture morphologies of PA 66 and PET fibers [J]. Journal of materials science. 2005 (40):1269-1272
    [71]Christophe LC, Monasse B and Bunsell AR. Influence of temperature on fracture initiation in PET and PA66 fibres under cyclic loading [J] Journal of materials science.2007 (42):9276-9283
    [72]Herrera JM and Bunsell AR.Microstructural mechanisms governing the fatigue failure of polyamide 66 fibres [J] J Mater Sci 2006 (41):7261-7271
    [73]Lafitte MH and Bunsell AR. The fatigue behaviour of Kevlar-29 fibres [J] Journal of materials science 1982 (17):2391-2397
    [74]Konopasek L and Hearle JWS.The tensile fatigue behavior of aramid fibers and their fracture morphology [J] journal of applied polymer science 1997 (21):2791-2815
    [75]顾伯洪,来侃,姚穆.羊毛纤维重复弯曲疲劳性能的研究.[J]西北纺织工学院学报.1992(3):25-28
    [76]Hearle JWS, Wong BS. Flexural fatigue and surface abrasion of Kevlar-29 and other high-modulus fibers. Journal of material Science 1977(12):2447-2455.
    [77]Kundu S.K. Flexural bending fatigue of raw and chemically treated Jute. [J] textile research journal 1987,57 (7):118-120.
    [78]Sengonul A and Wilding MA. Flex fatigue in gel-spun high performance polyethylene fibres. [J] Journal of textile institute.1994(85):1-11
    [79]Sengonul A and Wilding MA.Flex Fatigue in Gel-spun High-performance Polyethylene Fibres at Elevated Temperatures[J] Journal of textile institute.1996(87):13-22
    [80]Kohji M,Yoshihiro M and Kenjiro K. The influence of vacuum on fracture and fatigue behavior in a single aramid fiber [J] International Journal of Fatigue 2000(22):757-765
    [81]Mower TM. Sheave-bending and tensile fatigue of aramid-fiber strength members for communications cables. [J] International Journal of Fatigue 2000 (22):121-135
    [82]Hobbs RE, Burgoyne CJ. Bending fatigue in high-strength fiber ropes. [J] International Journal of Fatigue 1991,13 (2):174-180
    [83]Grandini S and Goracci C. Fatigue resistance and structural characteristics of fiber posts: three-point bending test and SEM evaluation, Dental Materials.2005,21 (2):75-82
    [84]Yuen BKC and Taheri F.The effects of loading frequency, tensile overload and compressive underload on the fatigue crack propagation behaviour of polymethyl methacrylate. [J]polymer testing.2004,23 (5):491-500.
    [85]Mohsen M. Fatigue failrure of textile fibres. Woodhead publishing limited [M]2009, Part 1:42
    [86]Tone M and Schwartz P. Bending and torsional fatigue of nylon 66 monofilaments. Journal of applied polymer science 1992,46 (11):2023-2032
    [87]Nkiware L and mukhopadhyay SK. A study of flex fatigue characteristics of nylon 6.6 tire yarns and cords. [J] Journal of applied polymer science.2000,72 (13):1045-1053
    [88]Kazuto T, Kohji M, Takahiro O and Kenjiro K.Influences of stress waveform and wet environment on fatigue fracture behavior of aramid single fiber. [J]Composites Science and Technology 2004 (64):1531-1537
    [89]Burgoyne CJ, Hobbs RE, Strzemiecki J. Tension-bending and sheave bending fatigue of parallel lay aramid ropes. In:Proc 8th Int Conf on Offshore Mechanics and Arctic Engineering, The Hague,1989:691-8.
    [90]Liu XY and Yu WD, Bending fatigue properties of single aramid fibers, Chemical Fibers International 2004,54 (3):173-175
    [91]邓传明,于伟东,太空环境中舱外航天服的外层防护问题,2004,30(4):114-115
    [92]董永春,滑钧凯.纺织品整理剂的性能和应用.中国纺织出版社,1999,17.
    [93]http://www.shqnr.com/main.htm
    [94]Zheng W, Kobayashi Y and Hirata K. Suppression of radiation-induced oxidation of polymers by sputtered silicon oxide coating. Journal of Applied Polymer Science.2002,83(1):186-190
    [95]De P. A review on various coating method on textiles:Part I. Man Made Textiles in India. 2001; 44(3):87-92
    [96]尚海波Kapton薄膜及防护膜的原子氧侵蚀行为研究哈尔滨工业大学硕士学位论文[D].2006
    [97]陈克栋.芬兰对寒冷气候下机器仪器及材料方面问题的研究.润滑与密封1990,3(5):69-70
    [98]National Aeronautics and Space Administration. Go For EVA-Video Resource Guide. NASA Education Division,1997,6 (7):3
    [99]Phaneshwar K, Prabir K and Patra SB. Warner Nanostructured ultraviolet resistant polymer coatings [J]. Polymer Degradation and stability 2006 (91):2437-2442
    [100]Noureddine A, Hequet E, Tarimala S and Dai.Cotton Fabric Surface Modification for Improved UV Radiation Protection Using Sol-Gel Process [J]. ournal of Applied Polymer Science,2007(104):111-117
    [101]Ultraviolet resistant coating for articles United States Patent 2007 0077412
    [102]盛国旗,侯强棉织物的纳米TiO2溶胶在抗紫外整理[J].印染2006 19:32-34
    [103]王明勇,毛志平,李芮 锐钛矿型纳米TiO2在棉织物上的原位生长及其抗紫外线性能纺织学报[J].纺织学报2007,28(2):72-76
    [104]汪青,楚艳艳,崔世忠TiO2—ZnO复合水溶胶对纯棉织物的抗紫外线整理[J].针织工业200610:42-44
    [105]刘晓艳,于伟东,芳纶的热光老化降解研究[J].高科技纤维与应用2005,30(4):35
    [106]张丽芝.耐老化篷体材料的研制开发.硕士论文[D].2000
    [107]邓传明舱外航天服外层防护材料[D].东华大学硕士论文2004
    [108]Kern KT, Stanch PC, Harries WL, Tlnibeault ShA. Simulated space environmental effects on a polyetherimide and its carbon fiber-reinforced composites, [J]. Sampe Journal 1993, 29(3):2944
    [109]George PE, Dursch HW. Low earth orbit effects on organic composites flown on the long duration exposure facility. [J]. Journal of advanced materials.1994 (4):1019
    [110]Chandramohan q Chellamani K P. Protective Textiles. Colourage.2000 (9):4154
    [111]Mills, William Clark. Design and Modeling of a Mars Space Suit [D]. Stanford University Ph.Ddissertation.2001.
    [112]Marcy JL, Shalanski AC} Yarmuch MAR, Patchett BM. Material Choices for Mars.[J] Journalof Materials Engineering and Performance,2004,13 (2):208-217
    [113]Hagege R, Baudonenel J, Jarrin M and Tasssin C. Study of Torsion Fracture Behavior and aspect of some high modulus aramid Fibers new morphological mod-el. Bulletin Scientifique de PInstitut Textile de France.1981,10:157
    [114]Kitagawa T, Murase H and Yabuki KJ, Morphological Study on PBO Fibre. [J] Polymer Science,1998 Part B 36-39.
    [115]于伟东刘晓艳一种用于柔性材料的弯曲疲劳性能测量装置中国,200410053598.7[P].2006-08-10
    [116]朱航艳纺织品光学性能的表征与评价[D].东华大学硕士论文2004
    [117]TEIJ C. Heat resistant protective clothing useful as fire fighting dress comprises aramid fiber surface layer, moisture permeable waterproof intermediate layer and thermal insulation layer containing aramid fiber. JP2000212810-A
    [118]Algaba, I., Riva, A., and Crews, P. C. Influence of Fiber Type and Fabric Porosity on the Ultraviolet Protection Factor Provided by Summer Fabrics, AATCC Rev.2004,4(2):26-31.
    [119]Ravishankar, J, Diffey B. Laboratory Testing of UV Transmission through Fabrics May Underestimate Protection. [J] Photodermatol. Photoimmunol. Photomed 1997,13:202-203.
    [120]Crews P, Kachman S and Beyer A. Influences on UVR Transmission of Undyed Woven Fabrics.[J]Textile Chem. Color 1999,31(6):17-26.
    [121]Wilson, CA and Parisi, AV. Protection from Solar Erythemal Ultraviolet Radiation Simulated Wear and LaboratoryTesting [J] Textile Research. J 2006,76(3):216-225.
    [122]Algaba I. Modelization of the Influence of the Wearing Conditions of the Garments on the Ultraviolet Protection Factor, [J] Textile Res. J,2007,77(11):826-836.
    [123]Cheryl AW, Nicola KB and Raechel ML. Solar Protection-Effect of Selected Fabric and Use Characteristics on Ultraviolet Transmission [J] Textile Res. J 2008,78 (2):95-104.
    [124]Cai GM, Yang HH, Yu WD.,2008, Evaluation of light and thermal aging performance of aramid fabric. [P] Textile Bioengineering and Informatics Symposium Hong Kong.2008 (7) 313-317.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700