用户名: 密码: 验证码:
真空紫外用纳米蓝色发光材料的制备及发光性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米发光材料由于其具有小尺寸效应、表面与界面效应、量子尺寸效应以及宏观量子隧道效应等,可以表现出块体材料所不具备的独特的发光性能而受到研究者们广泛的研究。此外,纳米发光材料还具有比块体发光材料更大的应用前景,如纳米发光材料可以用于制备微型显示设备,可以获得更高的显示分辨率,使画面更加生动清晰等,因此本论文主要考察了蓝色纳米发光材料的发光性能,并与传统块体材料进行比较。
     目前真空紫外商用蓝色荧光粉为BaMgAl10O17:Eu2+,它最主要的优点为具备较高的量子效率和好的色纯度。然而,在使用过程中尚存在两个主要问题:一是合成温度过高导致能耗大、生产成本高且产物易烧结;二是容易发生性能劣化。针对以上问题,我们采用sol-gel法成功地合成了纳米BaMgAl10O17:Eu2+,将其反应温度从传统固相法的1600℃降低至了1250℃。通过在sol-gel合成过程中添加一定量的表面活性剂十六烷基三甲基溴化铵,成功地获得了发光强度好、稳定性能优异的纳米BaMgAl10O17:Eu2+蓝色发光材料。为了进一步改善上述纳米样品的发光性能,使其能够达到应用的要求,我们在之前纳米样品的基础上进行了掺杂改性研究。通过在纳米BaMgAl10O17:Eu2+中共掺杂Ca2+和Mg2+,进一步提高了其发光性能与热稳定性,它的发光强度非常接近商用BaMgAl10O17:Eu2+蓝粉的发光强度,而热稳定性超过了商用粉。
     钨酸盐由于其在真空紫外具有广泛的吸收而有望成为一种非常好的真空紫外发光材料基质。本论文采用水热法合成了30nm、50nm和70nm的CaWO4蓝色发光材料,并研究了它们的发光性质。在不同纳米CaWO4材料中,发现其吸收峰发生了一定的蓝移,同时随着纳米CaWO4粒径的减小,其中的氧空位浓度逐渐增加。针对这一现象,我们尝试从CaWO4氧空位的形成能方面进行了解释。此外,我们在纳米CaWO4中还进行了Tb3+及Tb3++Yb3+的掺杂。在纳米CaWO4:Tb发光材料中,发现了其特有的高猝灭浓度现象,在保持Tb浓度一致的前提下,纳米CaWO4:Tb还表现出了比块体CaWO4:Tb更长的衰减时间。在CaWO4:Tb,Yb发光材料中,通过对其紫外-可见-近红外发光性质的研究,发现其中Tb与Yb之间存在能量传递。由于施主离子的特征发射和受主离子的特征激发不存在重叠,同时该两种离子存在能量传递且施主离子的发射能量是受主离子发射能量的两倍,证实了在CaWO4:Tb,Yb中发生了量子剪裁现象。通过对其量子效率的计算,得到掺杂0.01Tb与0.2Yb的CaWO4发光材料其量子效率可以达到140.4%,并且Yb3+的2F5/2-2F7/2发射与Si的带隙匹配较好,因此这种高量子效率的近红外量子剪裁发光材料在硅基太阳能电池方面具有潜在的应用。
Recently, intense research activity has been focused on nano-sized luminescence materials regarding its unique optical characteristics comparing with the bulk phosphor. These natures are mainly caused by the small size effect, surface effect, quantum size effect and quantum tunnel effect. In addition, nanophosphor also exhibits some advantages on the aspect of the application that they are specially employed to acquire miniature luminescence device and high resolution display equipment. Therefore, this paper is mainly focus on the synthesis and investigation of photoluminescence of nanophosphors as well as comparing with the bulk phosphor.
     At present, the commercial blue phosphor for VUV application is BaMgAl10O17:Eu2+, which has the advantages of high quantum efficiency and good color purity. However, there are two serious problems of BaMgAl10O17:Eu2+ during the manufacture:one is the high reaction temperature leading to high energy consumption, high production cost and easily sintered; the other is the degradation of BaMgAl10O17:Eu2+ under the thermal and VUV irradiation treatment. Aiming at the above problems, we successfully synthesized BaMgAl10O17:Eu2+ nanophosphor by sol-gel method, which reduced the synthesis temperature about 350℃. Through the introduction of surfactant cetyl-tri-methyl-ammonium bromide (CTAB) in the sol-gel process,BaMgAl10O17: Eu2+ nanophosphor with good emission intensity and thermal stability was achieved. With the purpose of impelling BaMgAl10O17:Eu2+ nanophosphor for application, chemical doping was employed on the basis of the optimum condition. It was found that the codopant of Ca2+ and Mg2+ could further improve its photoluminescence, especially the thermal stability. The optimum nanophosphor presented a considerable emission intensity and higher thermal stability than the commercial one.
     Tungstates are expected to be the new hosts of VUV luminescence materials because of their broad absorption in VUV region. In this paper,30nm,50nm and 70nm of CaWO4 nanophosphors were synthesized by hydrothermal reaction. From the investigation of their luminescence properties, blue shift was observed in the absorption and excitation spectra. Besides, it was found in CaWO4 nanophosphors that the concentration of oxygen vacancy was increasing with the reduction of the particle size. A possible mechanism for the relationship was given based on the formation energy of oxygen vacancy in CaWO4 nanophosphor. In addition, we doped Tb3+ and Yb3+ in CaWO4 nanophosphor. The CaWO4:Tb nanophosphor presented the unique higher quenching concentration comparing with the bulk. By maintaining the concentration of Tb3+, the nano- CaWO4:Tb also exhibited longer life decay time than that of the bulk. For CaWO4:Tb, Yb luminescence material, the energy transfer from Tb to Yb was observed through the investigation of its UV-VIS-NIR luminescence properties. Due to the overlap between donor characteristic emission and acceptor characteristic absorption was absent and the sum of the absorption energy of the two acceptors equaled the emission energy of the one donor, NIR quantum cutting was proved in CaWO4:Tb, Yb. By calculating, the quantum efficiency of CaWO4:0.01Tb,0.2Yb reached 140.4%. According to the energy of Yb3+2F5/2-2F7/2 emission is just above the band gap of the crystalline Si, the material could be potentially applied in silicon-based solar cells.
引文
[1]L. Weber, History of the plasma display panel, IEEE Transactions on Plasma Science,34 (2006) 268-278.
    [2]W. Mayer, Plasma display panel, Google Patents,1981.
    [3]Y. Wang, T. Endo, L. He, C. Wu, Synthesis and photoluminescence of Eu3+-doped (Y, Gd) BO3 phosphors by a mild hydrothermal process, Journal of Crystal Growth,268 (2004) 568-574.
    [4]K. Kim, H. Jung, H. Park, D. Kim, Synthesis and characterization of red phosphor (Y, Gd) BO3: Eu by the coprecipitation method, transition (5D0→>7F2).
    [5]X. Zeng, S. Im, S. Jang, Y. Kim, H. Park, S. Son, H. Hatanaka, G. Kim, S. Kim, Luminescent properties of (Y, Gd) BO3:Bi3+, RE3+(RE= Eu, Tb) phosphor under VUV/UV excitation, Journal of Luminescence,121 (2006) 1-6.
    [6]J. Dhanaraj, R. Jagannathan, T. Kutty, C. Lu, Photoluminescence Characteristics of Y2O3:Eu3+ Nanophosphors Prepared Using Sol- Gel Thermolysis, J. Phys. Chem. B,105 (2001) 11098-11105.
    [7]Q. Li, L. Gao, D. Yan, Effects of the coating process on nanoscale Y2O3:Eu3+ powders, Chem. Mater,11(1999)533-535.
    [8]J. Wan, Z. Wang, X. Chen, L. Mu, W. Yu, Y. Qian, Controlled synthesis and relationship between luminescent properties and shape/crystal structure of Zn2SiO4:Mn2+ phosphor, Journal of Luminescence,121 (2006)32-38.
    [9]S. Lu, T. Copeland, B. Lee, W. Tong, B. Wagner, W. Park, F. Zhang, Synthesis and luminescent properties of Mn2+ doped Zn2SiO4 phosphors by a hydrothermal method, Journal of Physics and Chemistry of Solids,62 (2001) 777-781.
    [10]D. Lee, Y. Kang, H. Park, S. Ryu, VUV characteristics of BaAl12O19:Mn2+ phosphor particles prepared from aluminum polycation solutions by spray pyrolysis, Journal of Alloys and Compounds,353 (2003) 252-256.
    [11]J. Zhou, Y. Wang, B. Liu, Y. Lu, Effect of H3BO3 on structure and photoluminescence of BaAl12O19:Mn2+ phosphor under VUV excitation, Journal of Alloys and Compounds,484 (2009) 439-443.
    [12]S. Oshio, K. Kitamura, T. Shigeta, S. Horii, T. Matsuoka, S. Tanaka, H. Kobayashi, Firing technique for preparing a BaMgAl10O17:Eu2+ phosphor with controlled particle shape and size, Journal of the Electrochemical Society,146 (1999) 392-399.
    [13]S. Zhang, T. Kono, A. Ito, T. Yasaka, H. Uchiike, Degradation mechanisms of the blue-emitting phosphor BaMgAl10O17:Eu2+ under baking and VUV-irradiating treatments, Journal of Luminescence,106 (2004) 39-46.
    [14]B. Dawson, M. Ferguson, G. Marking, A. Diaz, Mechanisms of VUV damage in BaMgAl10O17:Eu2+, Chem. Mater,16 (2004) 5311-5317.
    [15]Y. Kang, H. Roh, H. Park, S. Park, Optimization of VUV characteristics and morphology of BaMgAl10O17:Eu2+ phosphor particles in spray pyrolysis, Ceramics International,29 (2003) 41-47.
    [16]鱼志坚,庄卫东,Sr,Ca掺杂对铝酸盐蓝色荧光粉性能的影响,中国稀土学报,19(2001)590-593.
    [17]W. Zhuang, X. Cui, Z. Yu, C. Zhao, H. He, X. Huang, Influence of Doping on the Crystal Structures and Luminescent Properties of Aluminate Phosphors for Plasma Display Panel, Society for Information Display,2003, pp.1223-1226.
    [18]Y. Wang, Z. Zhang, Luminescence Thermal Degradation Mechanism in BaMgAl10O17:Eu2+ Phosphor, Electrochemical and Solid-State Letters,8 (2005) H97.
    [19]Z. Zhang, Y. Wang, X. Li, Y. Du, W. Liu, Photoluminescence degradation and color shift studies of annealed BaMgAl10O17:Eu2+ phosphor, Journal of Luminescence,122 (2007) 1003-1005.
    [20]Z. Zhang, Y. Li, Effects of Si4+ and B3+ doping on the photoluminescence of BaMgAl10O17: Eu2+ phosphor under UV and VUV excitation, Journal of Alloys and Compounds,478 (2009) 801-804.
    [21]A. Ellens, F. Zwaschka, F. Kummer, A. Meijerink, M. Raukas, K. Mishra, Sm2+ in BAM: fluorescent probe for the number of luminescing sites of Eu2+ in BAM, Journal of Luminescence, 93 (2001) 147-153.
    [22]梁超,董岩,张超,吴直森,于金,蒋建清,BaMgAl10O17:Eu2+荧光粉包膜研究,东南大学学报(自然科学版),(2005).
    [23]马林,胡建国,王慧琴,徐燕,BaMgAl10O17:Eu2+荧光粉表面包膜的研究,复旦大学学报(自然科学版),(2002).
    [24]马林,胡建国,王慧琴,徐燕,BAM荧光粉表面包膜处理及其发光性能,发光学报,24(2003)523-526.
    [25]M. Raukas, K. Mishra, T. Reilly, Protective spinel coating for aluminate phosphors, Google Patents,2001.
    [26]H. Yang, X. Wang, G. Duan, Y. Cui, L. Shen, Y. Xie, S. Han, Luminescent properties of BaMgAl10O17:Eu2+phosphors modified with MgF2, Materials Letters,58 (2004) 2374-2376.
    [27]Y. Wang, F. Li, Synthesis of BaAl12O19:Mn2+ nanophosphors by a reverse microemulsion method and its photoluminescence properties under VUV excitation, Journal of Luminescence, 122 (2007) 866-868.
    [28]L. Yu-hua, Preparation and characterization of BaMgAl10O17:Eu2+ phosphor coated with MgF2 by sol-gel process, Transactions of Nonferrous Metals Society of China,15 (2005).
    [29]T. Justel, H. Nikol, J. Merikhi, Luminescent screen with luminescent material composition containing an oxide, Google Patents,1999.
    [30]I. Jung, Y. Cho, S. Lee, S. Sohn, D. Kim, D. Lee, Y. Kweon, Optical properties of the BaMgAl10O17:Eu2+ phosphor coated with SiO2 for a plasma display panel, Applied Physics Letters,87 (2005) 1908.
    [31]K. Toda, Recent research and development of VUV phosphors for a mercury-free lamp, Journal of Alloys and Compounds,408 (2006) 665-668.
    [32]Y. Li, Y. Wang, Z. Zhang, W. Liu, Precipitation Synthesis of Sr2MgSi207:Eu2+ Phosphor and Its Luminescent Properties under Vacuum Ultraviolet Excitation, Electrochemical and Solid-State Letters,9 (2006) J37.
    [33]Y. Li, Y. Wang, Z. Wang, Z. Zhang, UV-VUV-excited photoluminescence of Tm3+ substituted β-rhenanite as a blue-emitting phosphor, Journal of Luminescence,130 (2010) 1225-1229.
    [34]R. Rao, Tm3+ activated lanthanum phosphate:a blue PDP phosphor, Journal of Luminescence, 113(2005)271-278.
    [35]G. Bizarri, B. Moine, On the role of traps in the BaMgAl10O17:Eu2+ fluorescence mechanisms, Journal of Luminescence,115 (2005) 53-61.
    [36]S. Oshio, T. Matsuoka, S. Tanaka, H. Kobayashi, Mechanism of Luminance Decrease in BaMgAl10O17:Eu2+ Phosphor by Oxidation, Journal of The Electrochemical Society,145 (1998) 3903.
    [37]I. Hirosawa, T. Honma, K. Kato, N. Kijima, Y. Shimomura, Oxidation of doped europium in BaMgAl10O17 by annealing studied by x-ray-absorption-fine-structure measurements, Journal of the Society for Information Display,12 (2004) 269.
    [38]Q. Zhang, B. Zhu, Y. Zhuang, G. Chen, X. Liu, G. Zhang, J. Qiu, D. Chen, Quantum Cutting in Tm3+/Yb3+-Codoped Lanthanum Aluminum Germanate Glasses, Journal of the American Ceramic Society,93 (2010) 654-657.
    [39]C. Martin, C.S.U.F.C.D.O. CHEMISTRY, Nanomaterials--a membrane-based synthetic approach, (1994).
    [40]X. Chen, S. Mao, Titanium dioxide nanomaterials:synthesis, properties, modifications, and applications, Chem. Rev,107 (2007) 2891-2959.
    [41]G. Cao, Nanostructures & nanomaterials:synthesis, properties & applications, Imperial College Pr,2004.
    [42]A. Crosby, J. Lee, Polymer nanocomposites:the nano-effect on mechanical properties, Polymer reviews,47 (2007) 217-229.
    [43]P. Buffat, J. Borel, Size effect on the melting temperature of gold particles, Physical Review A,13(1976)2287-2298.
    [44]K. Ishikawa, K. Yoshikawa, N. Okada, Size effect on the ferroelectric phase transition in PbTiO3 ultrafine particles, Physical Review B,37 (1988) 5852-5855.
    [45]K. Jung, C. Lee, Y. Kang, Effect of surface area and crystallite size on luminescent intensity of Y2O3:Eu phosphor prepared by spray pyrolysis, Materials Letters,59 (2005) 2451-2456.
    [46]J. Yoo, J. Lee, The effects of particle size and surface recombination rate on the brightness of low-voltage phosphor, Journal of Applied Physics,81 (2009) 2810-2813.
    [47]A. Ekimov, A. Efros, A. Onushchenko, Quantum size effect in semiconductor microcrystals, Solid state communications,88 (1993) 947-950.
    [48]A. Ekimov, A. Onushchenko, Quantum size effect in three-dimensional microscopic semiconductor crystals, SPIE MILESTONE SERIES MS,180 (2005) 3.
    [49]Y. Wang, N. Herron, Nanometer-sized semiconductor clusters:materials synthesis, quantum size effects, and photophysical properties, The Journal of Physical Chemistry,95 (1991) 525-532.
    [50]I. Sagnes, A. Halimaoui, G. Vincent, P. Badoz, Optical absorption evidence of a quantum size effect in porous silicon, Applied Physics Letters,62 (2009) 1155-1157.
    [51]W. Chen, J. Bovin, A. Joly, S. Wang, F. Su, G. Li, Full-Color Emission from In2S3 and In2S3: Eu3+ Nanoparticles, J. Phys. Chem. B,108 (2004) 11927-11934.
    [52]T. Takagahara, K. Takeda, Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials, Physical Review B,46 (1992) 15578.
    [53]L. Landau, E. Lifshitz, Quantum mechanics:non-relativistic theory, Butterworth-Heinemann, 1991.
    [54]L. Wang, Y. Li, Na (Y1.5Na0.5) F6 single-crystal nanorods as multicolor luminescent materials, Nano Lett,6 (2006) 1645-1649.
    [55]Y. Jingzhong. Present Status and Progress in Study of Nano Luminescent Materials [J], Materials Review,1 (2001).
    [56]C. Feldmann, T. Justel, C. Ronda, P. Schmidt, Inorganic luminescent materials:100 years of research and application, Advanced Functional Materials,13 (2003) 511-516.
    [57]Z. YinM, Preparation and properties of nanometric scale luminescent materials doped by rare earth, Chin. J. Lumin.,21 (2000) 314-319.
    [58]Z. Wei-Wei, X. Mei, Z. Wei-Ping, Y. Min, Q. Ze-Ming, X. Shang-Da, C. Garapon, Site-selective spectra and time-resolved spectra of nanocrystalline Y2O3:Eu, Chemical Physics Letters,376 (2003) 318-323.
    [59]S.Z. Lu, D. Li, S.H. Huang, Energy transfer between Eu3+ ions at different crystallographic sites of Y2O3:Eu3+ nanocrystals., Acta Physica Sinica,50 (2001) 933-937.
    [60]D. Williams, B. Bihari, B. Tissue, J. McHale, Preparation and fluorescence spectroscopy of bulk monoclinic Eu3+:Y2O3 and comparison to Eu3+:Y2O3 nanocrystals, J. Phys. Chem. B,102 (1998)916-920.
    [61]D. Williams, H. Yuan, Size dependence of the luminescence spectra and dynamics of Eu3+ Y2O3 nanocrystals, Journal of Luminescence,83 (1999) 297-300.
    [62]T. Igarashi, M. Ihara, T. Kusunoki, K. Ohno, T. Isobe, M. Senna, Relationship between optical properties and crystallinity of nanometer Y2O3:Eu phosphor, Applied Physics Letters,76 (2000) 1549.
    [63]Z. Qi, C. Shi, W. Zhang, T. Hu, Local structure and luminescence of nanocrystalline Y2O3:Eu, Applied Physics Letters,81 (2002) 2857.
    [64]Z. Wei, L. Sun, C. Liao, X. Jiang, C. Yan, Y. Tao, X. Hou, X. Ju, Size dependence of luminescent properties for hexagonal YBO3:Eu nanocrystals in the vacuum ultraviolet region, Journal of Applied Physics,93 (2003) 9783.
    [65]Z. Wei, L. Sun, C. Liao, X. Jiang, C. Yan, Synthesis and size dependent luminescent properties of hexagonal (Y, Gd)BO3:Eu nanocrystals, Journal of Materials Chemistry,12 (2002) 3665-3670.
    [66]Z. Wei, L. Sun, X. Jiang, C. Liao, C. Yan, Y. Tao, J. Zhang, T. Hu, Y. Xie, Correlation between size-dependent luminescent properties and local structure around Eu3+ ions in YBO3:Eu nanocrystals:An XAFS Study, Chem. Mater,15 (2003) 3011-3017.
    [67]于江波,袁曦明,陈敬中,纳米发光材料的研究现状及进展,材料导报,15(2001)30-32.
    [68]D. Cooke, J. Lee, B. Bennett, J. Groves, L. Jacobsohn, E. McKigney, R. Muenchausen, M. Nastasi, K. Sickafus, M. Tang, Luminescent properties and reduced dimensional behavior of hydrothermally prepared Y2Si05:Ce nanophosphors, Applied Physics Letters,88 (2006) 103108.
    [69]L. Jacobsohn, B. Bennett, R. Muenchausen, J. Smith, D. Wayne Cooke, Luminescent properties of nanophosphors, Radiation Measurements,42 (2007) 675-678.
    [70]H. Suzuki, T. Tombrello. C. Melcher, J. Schweitzer, UV and gamma-ray excited luminescence of cerium-doped rare-earth oxyorthosilicates, Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,320 (1992) 263-272.
    [71]J. Naud, T. Tombrello, C. Melcher, J. Schweitzer, The role of cerium sites in the scintillation mechanism of LSO, IEEE,2002, pp.367-371.
    [72]P. Sharma, M. Jilavi, R. Nass, H. Schmidt, Tailoring the particle size from μm→nm scale by using a surface modifier and their size effect on the fluorescence properties of europium doped yttria, Journal of Luminescence,82 (1999) 187-193.
    [73]Q. Li, L. Gao, D.S. Yan, Luminescent characterization of nano-Y2O3:Eu3+. Chin. J. Inorg. Mater.,12(1997)237-241.
    [74]A. Huignard, T. Gacoin, J. Boilot, Synthesis and luminescence properties of colloidal YVO4: Eu phosphors, Chem. Mater,12 (2000) 1090-1094.
    [75]A. Huignard, V. Buissette, A. Franville, T. Gacoin, J. Boilot, Emission processes in YVO4:Eu nanoparticles, J. Phys. Chem. B,107 (2003) 6754-6759.
    [76]W. Zhang, P. Xie, C. Duan, K. Yan, M. Yin, L. Lou, S. Xia, J. Krupa, Preparation and size effect on concentration quenching of nanocrystalline Y2Si05:Eu, Chemical Physics Letters,292 (1998) 133-136.
    [77]Z. Wei, L. Sun, C. Liao, J. Yin, X. Jiang, C. Yan, S. L., Size-dependent chromaticity in YBO3: Eu nanocrystals:correlation with microstructure and site symmetry, J. Phys. Chem. B,106 (2002) 10610-10617.
    [78]X. Yu, Y. Wang, Photoluminescent Properties of Nanoscaled Zn2Si04:Mn2+ Green Phosphor Under Vacuum Ultraviolet Excitation, Journal of Nanoscience and Nanotechnology,10 (2010) 2173-2176.
    [79]X. Yu, Y. Wang, Synthesis and VUV spectral properties of nanoscaled Zn2Si04:Mn2+ green phosphor, Journal of Physics and Chemistry of Solids,70 (2009) 1146-1149.
    [80]X. Yu, Y. Wang, Synthesis and photoluminescence improvement of monodispersed Zn2Si04: Mn2+ nanophosphors, Journal of Alloys and Compounds, (2010).
    [81]S. Bhaskar, P. Dobal, B. Rai, R. Katiyar, H. Bist, J.O. Ndap, A. Burger, Photoluminescence study of deep levels in Cr-doped ZnSe, Journal of Applied Physics,85(1999) 439.
    [82]K. Yokota, S. Zhang, K. Kimura, A. Sakamoto, Eu2+-activated barium magnesium aluminate phosphor for plasma displays-Phase relation and mechanism of thermal degradation, Journal of Luminescence,92 (2001) 223-227.
    [83]S. Dole, S. Venkataramani, Gadolinium lutetium aluminate phosphor with cerium luminescence, Google Patents,1993.
    [84]N. Kijima, Y. Shimomura, C. Miura, T. Hisamune, M. Nabu, K. Toriumi, Aluminate phosphor, Google Patents,1997.
    [85]Z. Chen, Y. Yan, Morphology control and VUV photoluminescence characteristics of BaMgAl10O17:Eu2+phosphors, Physica B:Condensed Matter,392 (2007) 1-6.
    [86]D. Kim, S. Hwang, I. Kim, J. Park, S. Byeon, Low-temperature synthesis of fine BaMgAl10O17:Eu2+ phosphor based on the solubility isotherms, Journal of Solid State Chemistry, 178(2005)1414-1421.
    [87]Q. Li, L. Gao, D. Yan, The crystal structure and spectra of nano-scale YAG:Ce3+, Materials chemistry and physics,64 (2000) 41-44.
    [88]V. Abbruscato, Optical and Electrical Properties of SrAl2O4:Eu, Journal of the Electrochemical Society,118(1971)930.
    [89]R. Kasuya, T. Isobe, H. Kuma, Glycothermal synthesis and photoluminescence of YAG:Ce3+ nanophosphors, Journal of Alloys and Compounds,408 (2006) 820-823.
    [90]X. Yu, C. Zhou, X. He, Z. Peng, S. Yang, The influence of some processing conditions on luminescence of SrAl2O4:Eu2+ nanoparticles produced by combustion method, Materials Letters, 58(2004)1087-1091.
    [91]E. Rosa, L. Diaz-Torres, P. Salas, A. Arredondo, J. Montoya, C. Angeles, R. Rodriguez, Low temperature synthesis and structural characterization of nanocrystalline YAG prepared by a modified sol-gel method, Optical Materials,27 (2005) 1793-1799.
    [92]D. Jia, Y. Wang, X. Guo, K. Li, Y. Zou, W. Jia, Synthesis and Characterization of YAG:Ce LED Nanophosphors, Journal of the Electrochemical Society,154 (2007) J1.
    [93]L. Tian, Y. Sun, Y. Yu, X. Kong, H. Zhang, Surface effect of nano-phosphors studied by time-resolved spectroscopy of Ce3+, Chemical Physics Letters,452 (2008) 188-192.
    [94]D. Jia, SrAl2O4:Eu Nanophosphor Synthesized with Salted Sol-Gel Method, Electrochemical and Solid-State Letters,9 (2006) H93.
    [95]T. Kida, K. Motoori, H. Abe, M. Rahman, M. Akiyama, M. Nagano, Preparation of Eu-Doped SrAl2O4 Phosphor Films from Self-Assembled Polycation/Hydroxide Multilayer Films, Journal of the Electrochemical Society,155 (2008) J274.
    [96]C. Lu, R. Jagannathan, Cerium-ion-doped yttrium aluminum garnet nanophosphors prepared through sol-gel pyrolysis for luminescent lighting, Applied Physics Letters,80 (2002) 3608.
    [97]R. Kasuya, T. Isobe, H. Kuma, J. Katano, Photoluminescence enhancement of PEG-modified YAG:Ce3+ nanocrystal phosphor prepared by glycothermal method, J. Phys. Chem. B,109 (2005) 22126-22130.
    [98]C. Chang, Z. Yuan, D. Mao, Eu2+ activated long persistent strontium aluminate nano scaled phosphor prepared by precipitation method, Journal of Alloys and Compounds,415 (2006) 220-224.
    [99]Q. Zhang, K. Pita, C. Kam, Sol-gel derived zinc silicate phosphor films for full-color display applications, Journal of Physics and Chemistry of Solids,64 (2003) 333-338.
    [100]J. Lin, D. S nger, M. Mennig, K. Baerner, Sol-gel deposition and characterization of Mn2+-doped silicate phosphor films, Thin Solid Films,360 (2000) 39-45.
    [101]E. Kaduk, Zinc silicate phosphor of improved maintenance, Google Patents,1968.
    [102]I. Chang, M. Shafer, Efficiency enhancement in manganese-doped zinc silicate phosphor with AlPO4 substitution, Applied Physics Letters,35 (2009) 229-231.
    [103]R. Morimo, R. Mochinaga, K. Nakamura, Preparation and characterization of a manganese activated zinc silicate phosphor by fume pyrolysis of an alkoxide solution [Zn2Si04:Mn], Materials Research Bulletin,29 (1994) 751-757.
    [104]W. Pan, G. Ning, X. Zhang, J. Wang, Y. Lin, J. Ye, Enhanced luminescent properties of long-persistent Sr2MgSi2O7:Eu2+, Dy3+ phosphor prepared by the co-precipitation method, Journal of Luminescence,128 (2008) 1975-1979.
    [105]H. Ji, G. Xie, Y. Lv, H. Lu, A new phosphor with flower-like structure and luminescent properties of Sr2MgSi207:Eu2+, Dy3+ long afterglow materials by sol-gel method, Journal of sol-gel science and technology,44 (2007) 133-137.
    [106]W. Drozdowski, A. Wojtowicz, D. Winiewski, P. Szupryczyski, S. Janus, J. Lefaucheur, Z. Gou, VUV spectroscopy and low temperature thermoluminescence of LSO:Ce and YSO:Ce, Journal of Alloys and Compounds,380 (2004) 146-150.
    [107]R. Muenchausen, L. Jacobsohn, B. Bennett, E. Mckigney, J. Smith, D. Cooke, A novel method for extracting oscillator strength of select rare-earth ion optical transitions in nanostructured dielectric materials, Solid State Communications,139 (2006) 497-500.
    [108]X. Tan, Fabrication and properties of Sr2MgSi207:Eu2+,Dy3+ nanostructures by an AAO template assisted co-deposition method, Journal of Alloys and Compounds,477 (2009) 648-651.
    [109]W. Pan, G. Ning, X. Zhang, J. Wang, Y. Lin, J. Ye, Enhanced luminescent properties of long-persistent Sr2MgSi2O7:Eu2+, Dy3+ phosphor prepared by the co-precipitation method, Journal of Luminescence,128 (2008) 1975-1979.
    [110]R.E. Muenchausen, E.A. McKigney, L.G. Jacobsohn, M.W. Blair, B.L. Bennett, D.W. Cooke, Science and Application of Oxyorthosilicate Nanophosphors, IEEE TRANSACTIONS ON NUCLEAR SCIENCE,55 (2008) 1532.
    [111]L.G. Jacobsohn, B.L. Bennett, R.E. Muenchausen, J.F. Smith, D. Wayne Cooke, Luminescent properties of nanophosphors, Radiation Measurements,42 675-678.
    [112]S. Porto, J. Scott, Raman Spectra of CaWO4, SrWO4, CaMoO4, and SrMoO4, Physical Review,157(1967)716-719.
    [113]B. Ganguly, M. Nicol, Effect of hydrostatic pressure on the vibrational properties and the structure of SrWO4 and PbMo04, physica status solidi (b),79 (1977) 617-622.
    [114]A. Page, S. Godbole, M. Sastry, Electronic spectra and co-operative optical transitions in CaWO4:Tb3+ single crystal, Journal of Physics and Chemistry of Solids,50 (1989) 571-575.
    [115]M. Kay, B. Frazer, I. Almodovar, Neutron Diffraction Refinement of CaWO4, The Journal of Chemical Physics,40 (1964) 504.
    [116]N. Faure, C. Borel, M. Couchaud, G. Basset, R. Templier, C. Wyon, Optical properties and laser performance of neodymium doped scheelites CaWO4 and NaGd(WO4)2, Applied Physics B: Lasers and Optics,63 (1996) 593-598.
    [117]V. Mikhailik, H. Kraus, G. Miller, M. Mykhaylyk, D. Wahl, Luminescence of CaW04, CaMoO4, and ZnWO4 scintillating crystals under different excitations, Journal of Applied Physics, 97(2005)083523.
    [118]A. Kuzmin, J. Purans, Local atomic and electronic structure of tungsten ions in AW04 crystals of scheelite and wolframite types, Radiation Measurements,33 (2001) 583-586.
    [119]D. Errandonea, F. Manjon, M. Somayazulu, D. H usermann, Effects of pressure on the local atomic structure of CaWO4 and YLiF4:mechanism of the scheelite-to-wolframite and scheelite-to-fergusonite transitions, Journal of Solid State Chemistry,177 (2004) 1087-1097.
    [120]A. Zalkin, D. Templeton, X-Ray Diffraction Refinement of the Calcium Tungstate Structure, The Journal of Chemical Physics,40 (1964) 501.
    [121]Y. Wang, J. Ma, J. Tao, X. Zhu, J. Zhou, Z. Zhao, L. Xie, H. Tian, Synthesis of CaWO4 nanoparticles by a molten salt method, Materials Letters,60 (2006) 291-293.
    [122]X. Lou, D. Chen, Synthesis of CaWO4:Eu3+ phosphor powders via a combustion process and its optical properties, Materials Letters,62 (2008) 1681-1684.
    [123]L. Li, Y. Su, G. Li, Size-induced symmetric enhancement and its relevance to photoluminescence of scheelite CaWO4 nanocrystals, Applied Physics Letters,90 (2007) 054105.
    [124]S.-J. Chen, J. Li, X.-T. Chen, J.-M. Hong, Z. Xue, X.-Z. You, Solvothermal synthesis and characterization of crystalline CaWO4 nanoparticles, Journal of Crystal Growth,253 (2003) 361-365.
    [125]Z. Chen, Q. Gong, J. Zhu, Y.P. Yuan, L.W. Qian, X.F. Qian, Controllable synthesis of hierarchical nanostructures of CaWO4 and SrWO4 via a facile low-temperature route, Materials Research Bulletin,44 (2009) 45-50.
    [126]P. Yang, Z. Quan, C. Li, H. Lian, S. Huang, J. Lin, Fabrication, characterization of spherical CaWO4:Ln @MCM-41(Ln=Eu3+, Dy3+, Sm3+, Er3+) composites and their applications as drug release systems, Microporous and Mesoporous Materials,116 (2008) 524-531.
    [127]R.P. Rao, Tm3+ activated lanthanum phosphate:a blue PDP phosphor, Journal of Luminescence,113 (2005)271-278.
    [128]Y. Su, L. Li, G. Li, NaYF4:Eu2+ Microcrystals:Synthesis and Intense Blue Luminescence, Crystal Growth & Design,8 (2008) 2678-2683.
    [1]Z. Chen, Y. Yan, J. Liu, Y. Yin, H. Wen, J. Zao, D. Liu, H. Tian, C. Zhang, S. Li, Microwave induced solution combustion synthesis of nano-sized phosphors, Journal of Alloys and Compounds,473 (2009) L13-L16.
    [2]B. Jeon, G. Hong, Y. Yoo, J. Yoo, Spherical BaMgAl10O17:Eu Phosphor Prepared by Aerosol Pyrolysis Technique for PDP Applications, Journal of The Electrochemical Society,148 (2001) H128.
    [3]陈哲,严有为,PDP用纳米BaMgAl10O17:Eu荧光粉的燃烧合成及发光性能,物理化学学报,22(2006)1030-1033.
    [4]D. Lee, Y. Kang, K. Jung, Effect of Aluminum Polycation Solution on the Morphology and VUV Characteristics of BaMgAlO Blue Phosphor Prepared by Spray Pyrolysis, Electrochemical and Solid-State Letters,6 (2003) H27.
    [5]Y. Kang, H. Roh, H. Park, S. Park, Optimization of VUV characteristics and morphology of BaMgAl10O17:Eu2+ phosphor particles in spray pyrolysis, Ceramics International,29 (2003) 41-47.
    [6]K. Jung, D. Lee, Y. Kang, H. Park, Improved photoluminescence of BaMgAl10O17 blue phosphor prepared by spray pyrolysis, Journal of Luminescence,105 (2003) 127-133.
    [7]M. Yu, J. Lin, J. Fang, Silica Spheres Coated with YVO4:Eu3+ Layers via Sol-Gel Process:A Simple Method To Obtain Spherical Core-Shell Phosphors, Chem. Mater,17 (2005) 1783-1791.
    [8]Q. Meng, J. Lin, L. Fu, H. Zhang, S. Wang, Y. Zhou, Sol-gel deposition of calcium silicate red-emitting luminescent films doped with Eu3+, Journal of Materials Chemistry,11 (2001) 3382-3386.
    [9]J. Zhang, Z. Zhang, Z. Tang, Z. Zheng, Y. Lin, Synthesis and characterization of BaMgAl10O17: Eu phosphors derived by sol-gel processing, Powder Technology,126 (2002) 161-165.
    [10]S. Oshio, T. Matsuoka, S. Tanaka, H. Kobayashi, Mechanism of particle growth of a BaMgAl10O17:Eu2+ phosphor by firing with AIF3, Journal of The Electrochemical Society,145 (1998).
    [11]F. Li, L. Hu, Z. Li, X. Huang, Influence of temperature on the morphology and luminescence of ZnO micro and nanostructures prepared by CTAB-assisted hydrothermal method, Journal of Alloys and Compounds,465 (2008) L14-L19.
    [12]X. Yu, Y. Wang, Synthesis and photoluminescence improvement of monodispersed Zn2SiO4: Mn2+ nanophosphors, Journal of Alloys and Compounds, (2010).
    [13]X. Sun, X. Chen, Z. Deng, Y. Li, A CTAB-assisted hydrothermal orientation growth of ZnO nanorods, Materials Chemistry and Physics,78 (2003) 99-104.
    [14]I. Jung, Y. Cho, S. Lee, S. Sohn, D. Kim, D. Lee, Y. Kweon, Optical properties of the BaMgAl10O17:Eu2+ phosphor coated with SiO2 for a plasma display panel, Appl. Phys. Lett,87 (2005) 191908.
    [15]M. Abdullah, K. Okuyama, I.W. Lenggoro, S. Taya, A polymer solution process for synthesis of (Y,Gd)3Al5O12:Ce phosphor particles, Journal of Non-Crystalline Solids,351 (2005) 697-704.
    [16]S. Lee, H. Kim, S. Byeon, J. Park, D. Kim, Thermal-shock-assisted solid-state process for the production of BaMgAl10O17:Eu phosphor, Ind. Eng. Chem. Res,44 (2005) 4300-4303.
    [17]L. Hench, J. West, The sol-gel process, Chemical Reviews,90 (1990) 33-72.
    [18]B. Lakshmi, C. Patrissi, C. Martin, Sol-Gel Template Synthesis of Semiconductor Oxide Micro-and Nanostructures, Chem. Mater,9(1997) 2544-2550.
    [19]N. Kim, S. Choi, H. Lee, K. Kim, Nanostructures and luminescence properties of porous ZnO thin films prepared by sol-gel process, Current Applied Physics,9 (2009) 643-646.
    [20]Y. Xu, Z. Ren, G. Cao, W. Ren, K. Deng, Y. Zhong, Synthesis of single crystal Bi2Te3 nanoplates via an inorganic-surfactant-assisted solvothermal route, Materials Letters,62 (2008) 4525-4528.
    [21]肖志国,罗昔贤,蓄光型自发光材料及制品发展概况,化学工业出版社,2003.
    [22]G. Blasse, B. Grabmaier, Luminescent materials, Springer-Verlag Berlin,1994.
    [23]S. Oshio, T. Matsuoka, S. Tanaka, H. Kobayashi, Mechanism of luminance decrease in BaMgAl10O17:Eu2+ phosphor by oxidation, Journal of The Electrochemical Society,145 (1998).
    [24]Z. Zhang, Y. Wang, Enhanced emission and improved thermal stability of BaMgAl10O17:Eu2+ phosphor via additional Mg2+ doping, Materials Letters,61 (2007) 4128-4130.
    [25]K. Mishra, M. Raukas, A. Ellens, K. Johnson, A scattered wave model of electronic structure of Eu2+ in BaMgAl10O17 and associated excitation processes, Journal of Luminescence,96 (2002) 95-105.
    [26]B. Dawson, M. Ferguson, G. Marking, A. Diaz, Mechanisms of VUV damage in BaMgAl10O17:Eu2+, Chem. Mater,16 (2004) 5311-5317.
    [27]R. Kasuya, T. Isobe, H. Kuma, Glycothermal synthesis and photoluminescence of YAG:Ce3+ nanophosphors, Journal of Alloys and Compounds,408 (2006) 820-823.
    [28]X. Chen, L. Yang, R. Cook, S. Skanthakumar, D. Shi, G. Liu, Crystallization, phase transition and optical properties of the rare-earth-doped nanophosphors synthesized by chemical deposition, Nanotechnology,14 (2003) 670.
    [29]R. Muenchausen, E. McKigney, L. Jacobsohn, M. Blair, B. Bennett, D. Cooke, Science and application of oxyorthosilicate nanophosphors, Nuclear Science, IEEE Transactions on,55 (2008) 1532-1535.
    [30]B. Tissue, Synthesis and luminescence of lanthanide ions in nanoscale insulating hosts, Chem. Mater,10(1998)2837-2845.
    [31]Q. Li, L. Gao, D. Yan, Effects of the coating process on nanoscale Y2O3:Eu3+powders, Chem. Mater,11 (1999)533-535.
    [32]D. Lockwood, Quantum confined luminescence in Si/SiO2 superlattices, Phase Transitions, 68(1999)151-168.
    [33]C. Lu, R. Jagannathan, Cerium-ion-doped yttrium aluminum garnet nanophosphors prepared through sol-gel pyrolysis for luminescent lighting, Applied Physics Letters,80 (2002) 3608.
    [34]朱绍龙,周伟,李一明,140-200nm VUV光谱辐射探测系统的强度定标,复旦学报(自然科学版),30(1991)3.
    [35]T.Jstel, J. Krupa, D. Wiechert, VUV spectroscopy of luminescent materials for plasma display panels and Xe discharge lamps, Journal of Luminescence,93 (2001) 179-189.
    [36]B. Howe, A. Diaz, Characterization of host-lattice emission and energy transfer in BaMgAl10O17:Eu2+, Journal of Luminescence,109 (2004) 51-59.
    [37]B. Moine, G. Bizarri, B. Varrel, J. Rivoire, VUV-extended measurements of quantum efficiency of sodium salicylate and of some NBS standard phosphors, Optical Materials,29 (2007) 1148-1152.
    [38]S. Zhang, T. Kono, A. Ito, T. Yasaka, H. Uchiike, Degradation mechanisms of the blue-emitting phosphor BaMgAl10O17:Eu2+ under baking and VUV-irradiating treatments, Journal of Luminescence,106 (2004) 39-46.
    [39]J. Krupa, M. Queffelec, UV and VUV optical excitations in wide band gap materials doped with rare earth ions:4f-5d transitions, Journal of Alloys and Compounds,250 (1997) 287-292.
    [40]M. Zachau, D. Schmidt, U. Mueller, C. Chenot, Barium magnesium aluminate phosphor, Google Patents,2000.
    [41]K. Toda, Y. Imanari, T. Nonogawa, K. Uematsu, M. Sato, New VUV Phosphor, NaLnGeO4: Eu3+(Ln= Rare Earth), Chemistry Letters,32 (2003) 346-347.
    [42]D. Wang, Q. Yin, Y. Li, M. Wang, Concentration quenching of Eu2+ in SrO Al2O3:Eu2+ phosphor, Journal of Luminescence,97 (2002) 1-6.
    [43]P. Yang, P. Deng, Z. Yin, Concentration quenching in Yb:YAG, Journal of Luminescence,97 (2002)51-54.
    [44]D. Dexter, J. Schulman, Theory of concentration quenching in inorganic phosphors, The Journal of Chemical Physics,22(1954) 1063.
    [45]Y. Liu, C. Shi, Luminescent Centers of Eu2+ in BaMgAl10O17 Phosphor, Materials Research Bulletin,36 (2001) 109-115.
    [46]唐功本,肖亦农,稀土蓝色荧光粉的研究,江苏化工,30(2002)25-29.
    [47]B. Smets, Phosphors based on rare-earths, a new era in fluorescent lighting, Materials Chemistry and Physics,16 (1987) 283-299.
    [48]B. Smets, J. Verlijsdonk, The luminescence properties of Eu2+-and Mn2+-doped barium hexaaluminates, Materials Research Bulletin,21 (1986) 1305-1310.
    [49]K. Yokota, S. Zhang, K. Kimura, A. Sakamoto, Eu2+-activated barium magnesium aluminate phosphor for plasma displays-Phase relation and mechanism of thermal degradation, Journal of Luminescence,92 (2001) 223-227.
    [50]G. Bizarri, B. Moine, On BaMgAl10O17:Eu2+ phosphor degradation mechanism:thermal treatment effects, Journal of Luminescence,113 (2005) 199-213.
    [51]Z. Zhang, Y. Wang, X. Li, Y. Du, W. Liu, Photo luminescence degradation and color shift studies of annealed BaMgAl10O17:Eu2+ phosphor, Journal of Luminescence,122 (2007) 1003-1005.
    [52]Z.H. Zhang, Y.H. Wang, X.X. Li, Effects of Si4+and B3+ doping on the photoluminescence of BaMgAl10O17:Eu2+ phosphor under UV and VUV excitation, Journal of Alloys and Compounds, 478(2009)801-804.
    [1]V. Pike, S. Patraw, A. Diaz, B. Deboer, Defect chemistry and VUV optical properties of the BaMgAl10O17:Eu2+-Ba0.75Al11O17.25:Eu2+ solid solution, Journal of Solid State Chemistry,173 (2003) 359-366.
    [2]鱼志坚,庄卫东,Sr, Ca掺杂对铝酸盐蓝色荧光粉性能的影响,中国稀土学报,19(2001)590-593.
    [3]都云昆,BAM的硝酸盐热分解法合成及其热稳定性研究,兰州大学硕士研究生学位论文,(2004).
    [4]A. Ellens, F. Zwaschka, F. Kummer, A. Meijerink, M. Raukas, K. Mishra, Sm2+ in BAM: fluorescent probe for the number of luminescing sites of Eu2+ in BAM, Journal of Luminescence, 93(2001)147-153.
    [5]J. Zhang, Z. Zhang, Z. Tang, Y. Tao, X. Long, Luminescent Properties of the BaMgAl10O17: Eu2+, M3+(M= Nd, Er) Phosphor in the VUV Region, Chem. Mater,14 (2002) 3005-3008.
    [6]Y. Wang, X. Xu, L. Yin, L. Hao, High Thermal Stability and Photoluminescence of Si-N Codoped BaMgAl10O17:Eu2+ Phosphors, Journal of the American Ceramic Society,93 (2010) 1534-1536.
    [7]K. Jung, H. Lee, Y. Kang, S. Park, Y. Yang, Luminescent properties of (Ba, Sr) MgAl10O17:Mn, Eu green phosphor prepared by spray pyrolysis under VUV excitation, Chem. Mater,17 (2005) 2729-2734.
    [8]V. Singh, T. Gundu Rao, J. Zhu, A rapid combustion process for the preparation of MgSrAl10O17:Eu2+ phosphor and related luminescence and defect investigations, Journal of Luminescence,128 (2008) 583-588.
    [9]L. Zhang, J. Zhang, Z. Zhang, Effect of Er3+ and Nd3+ doping on the luminescent properties of BaMgAl10O17:Eu phosphor, Rare Metals (English Edition)(China),22 (2003) 60-63.
    [10]L. Chao, Z. Chao, D. Yan, C. Tong, J. Jianqing, H. Jinhua, Improving Thermal Stability of BaMgAl10O17:Eu Phosphor, Journal of Rare Earths,24 (2006) 153-156.
    [11]M. Peng, Z. Pei, G. Hong, Q. Su, The reduction of Eu3+ to Eu2+ in BaMgSiO4:Eu prepared in air and the luminescence of BaMgSiO4:Eu2+ phosphor, Journal of Materials Chemistry,13 (2003) 1202-1205.
    [12]M. Peng, Z. Pei, G. Hong, Q. Su, Study on the reduction of Eu3+→Eu2+ in Sr4Al14O25:Eu prepared in air atmosphere, Chemical Physics Letters,371 (2003) 1-6.
    [13]Z. Zhang, Y. Li, Effects of Si4+ and B3+ doping on the photoluminescence of BaMgAl10O17: Eu2+ phosphor under UV and VUV excitation, Journal of Alloys and Compounds,478 (2009) 801-804.
    [14]Z. Zhang, Y. Wang, Enhanced emission and improved thermal stability of BaMgAl10O17:Eu2+ phosphor via additional Mg2+ doping, Materials Letters,61 (2007) 4128-4130.
    [15]T. Etsell, S. Flengas, Electrical properties of solid oxide electrolytes, Chemical Reviews,70 (1970) 339-376.
    [16]K. Kim, Y. Kim, H. Chun, T. Cho, J. Jung, J. Kang, Structural and optical properties of BaMgAl10O17:Eu2+ phosphor, Chem. Mater,14 (2002) 5045-5052.
    [17]A. Denton, N. Ashcroft, Vegard's law, Physical Review A,43 (1991) 3161-3164.
    [18]M. Yashima, N. Ishizawa, M. Yoshimura, Application of an Ion Packing Model Based on Defect Clusters to Zirconia Solid Solutions:Applicability of Vegard's Law, Journal of the American Ceramic Society,75 (1992) 1550-1557.
    [19]R. Bis, J. Dixon, Applicability of Vegard's Law to the PbSnTe Alloy System, Journal of Applied Physics,40 (1969) 1918.
    [20]G. Blasse, B. Grabmaier, Luminescent materials, Springer-Verlag Berlin,1994.
    [21]S. Oshio, T. Matsuoka, S. Tanaka, H. Kobayashi, Mechanism of luminance decrease in BaMgAl10O17:Eu2+ phosphor by oxidation, Journal of the Electrochemical Society,145 (1998).
    [22]C. Lu, W. Hsu, C. Huang, S. Godbole, B. Cheng, Luminescence characteristics of europium-ion doped BaMgAl10O17 phosphors prepared via a sol-gel route employing polymerizing agents, Materials Chemistry and Physics,90 (2005) 62-68.
    [23]T. Justel, H. Bechtel, W. Mayr, D. Wiechert, Blue emitting BaMgAl10O17:Eu with a blue body color, Journal of Luminescence,104 (2003) 137-143.
    [24]X. Wang, Q. Fang, Effects of Ca doping on the oxygen ion diffusion and phase transition in oxide ion conductor La2Mo2O9, Solid State Ionics,146 (2002) 185-193.
    [25]S. Tokunaga, A. Mikami, Effects of Zn-doping on red-luminescence in Eu-doped (Mg, Ca) S phosphor films, Applied Surface Science,244 (2005) 533-536.
    [26]Y. Kim, K. Kim, M. Jung, J. Hong, Combined Rietveld refinement of BaMgAl10O17:Eu2+ using X-ray and neutron powder diffraction data, Journal of Luminescence,99 (2002) 91-100.
    [27]Y. Kim, S. Kang, J. Lee, M. Jung, K. Kim, Structural refinement of BaMgAl10O17:Eu2+ using X-ray and neutron powder diffraction, Journal of Materials Science Letters,21 (2002) 219-222.
    [28]Y. Kim, S. Moon, S. Kang, M. Jung, J. Hong, Structural study of annealed Eu2+ using X-ray powder diffraction data, Journal of Materials Science Letters,22 (2003) 669-673.
    [29]Y. Abate, P. Kleiber, Photodissociation spectroscopy of the Mg-acetic acid complex, The Journal of chemical physics,125 (2006) 184310.
    [30]M. Ishida, Y. Imanari, T. Isobe, S. Kuze, T. Ezuhara, T. Umeda, K. Ohno, S. Miyazaki, First-principles study of blue silicate phosphors, Journal of Physics:Condensed Matter,22 (2010) 384202.
    [31]Z. Zhang, Y. Wang, X. Li, Y. Du, W. Liu, Photoluminescence degradation and color shift studies of annealed BaMgAl10O17:Eu2+ phosphor, Journal of Luminescence,122 (2007) 1003-1005.
    [32]Y. Wang, Z. Zhang, Luminescence Thermal Degradation Mechanism in BaMgAl10O17;:Eu2+ Phosphor, Electrochemical and Solid-State Letters,8 (2005) H97.
    [33]K. Mishra, M. Raukas, A. Ellens, K. Johnson, A scattered wave model of electronic structure of Eu2+ in BaMgAl10O17 and associated excitation processes, Journal of Luminescence,96 (2002) 95-105.
    [34]B. Dawson, M. Ferguson, G. Marking, A. Diaz, Mechanisms of VUV damage in BaMgAl10O17:Eu2+, Chem. Mater,16 (2004) 5311-5317.
    [1]S. Porto, J. Scott, Raman Spectra of CaWO4, SrWO4, CaMoO4, and SrMoO4, Physical Review, 157(1967)716-719.
    [2]B. Ganguly, M. Nicol, Effect of hydrostatic pressure on the vibrational properties and the structure of SrWO4 and PbMoO4) physica status solidi (b),79 (1977) 617-622.
    [3]A. Page, S. Godbole, M. Sastry, Electronic spectra and co-operative optical transitions in CaWO4:Tb3+ single crystal, Journal of Physics and Chemistry of Solids,50 (1989) 571-575.
    [4]M. Kay, B. Frazer, I. Almodovar, Neutron Diffraction Refinement of CaWO4, The Journal of Chemical Physics,40 (1964) 504.
    [5]N. Faure, C. Borel, M. Couchaud, G. Basset, R. Templier, C. Wyon, Optical properties and laser performance of neodymium doped scheelites CaWO4 and NaGd (WO4)2, Applied Physics B: Lasers and Optics,63 (1996) 593-598.
    [6]V. Mikhailik, H. Kraus, G. Miller, M. Mykhaylyk, D. Wahl, Luminescence of CaWO4, CaMoO4, and ZnWO4 scintillating crystals under different excitations, Journal of Applied Physics, 97(2005)083523.
    [7]A. Kuzmin, J. Purans, Local atomic and electronic structure of tungsten ions in AWO4 crystals of scheelite and wolframite types, Radiation Measurements,33 (2001) 583-586.
    [8]D. Errandonea, F. Manjon, M. Somayazulu, D. H usermann, Effects of pressure on the local atomic structure of CaWO4 and YLiF4:mechanism of the scheelite-to-wolframite and scheelite-to-fergusonite transitions, Journal of Solid State Chemistry,177 (2004) 1087-1097.
    [9]A. Zalkin, D. Templeton, X-Ray Diffraction Refinement of the Calcium Tungstate Structure, The Journal of Chemical Physics,40 (1964) 501.
    [10]X. Lou, D. Chen, Synthesis of CaWO4:Eu3+ phosphor powders via a combustion process and its optical properties, Materials Letters,62 (2008) 1681-1684.
    [11]Y. Wang, J. Ma, J. Tao, X. Zhu, J. Zhou, Z. Zhao, L. Xie, H. Tian, Synthesis of CaWO4 nanoparticles by a molten salt method, Materials Letters,60 (2006) 291-293.
    [12]Y. Su, G. Li, Generation of tunable wavelength lights in core-shell CaWO4 microspheres via co-doping with Na+ and Ln3+(Ln= Tb, Sm, Dy, Eu), Journal of Materials Chemistry,19 (2009) 2316-2322.
    [13]J. Liao, B. Qiu, H. Wen, W. You, Photoluminescence green in microspheres of CaWO4:Tb3+ processed in conventional hydrothermal, Optical Materials,31 (2009) 1513-1516.
    [14]S. Chen, J. Li, X. Chen, J. Hong, Z. Xue, X. You, Solvothermal synthesis and characterization of crystalline CaWO4 nanoparticles, Journal of Crystal Growth,253 (2003) 361-365.
    [15]P. Yang, Z. Quan, C. Li, H. Lian, S. Huang, J. Lin, Fabrication, characterization of spherical CaWO4:Ln@MCM-41 (Ln=Eu3+, Dy3+, Sm3+, Er3+) composites and their applications as drug release systems, Microporous and Mesoporous Materials,116 (2008) 524-531.
    [16]Z. Chen, Q. Gong, J. Zhu, Y. Yuan, L. Qian, X. Qian, Controllable synthesis of hierarchical nanostructures of CaWO4 and SrWO4 via a facile low-temperature route, Materials Research Bulletin,44 (2009) 45-50.
    [17]O. Yaghi, H. Li, Hydrothermal synthesis of a metal-organic framework containing large rectangular channels, Journal of the American Chemical Society,117 (1995) 10401-10402.
    [18]A. Rabenau, The role of hydrothermal synthesis in preparative chemistry, Angewandte Chemie International Edition,24 (1985) 1026-1040.
    [19]P. Arkai, R. Merriman, B. Roberts, D. Peacor, M. Toth, Crystallinity, crystallite size and lattice strain of illite-muscovite and chlorite; comparison of XRD and TEM data for diagenetic to epizonal pelites, European Journal of Mineralogy,8(1996) 1119.
    [20]V. Lehmann, B. Jobst, T. Muschik, A. Kux, V. Petrova-Koch, Correlation between optical properties and crystallite size in porous silicon, Jpn. J. Appi. Phys. Vol,32(1993)2095-2099.
    [21]H. Rietveld, Line profiles of neutron powder-diffraction peaks for structure refinement, Acta Crystallographica,22(1967) 151-152.
    [22]H. Rietveld, A profile refinement method for nuclear and magnetic structures, Journal of Applied Crystallography,2(1969) 65-71.
    [23]Y. Wang, Y. Wen, F. Zhang, Novel Dy3+-doped Ca2Gd8 (SiO4) 6O2 white light phosphors for Hg-free lamps application, Materials Research Bulletin, (2010).
    [24]G. Counio, S. Esnouf, T. Gacoin, J. Boilot, CdS:Mn Nanocrystals in Transparent Xerogel Matrices:Synthesis and Luminescence Properties, J. Phys. Chem,100 (1996) 20021-20026.
    [25]A. Huignard, V. Buissette, A. Franville, T. Gacoin, J. Boilot, Emission processes in YVO4:Eu nanoparticles, J. Phys. Chem. B,107 (2003) 6754-6759.
    [26]Z. Shao, Q. Zhang, T. Liu, J. Chen, Computer study of intrinsic defects in CaWO4, Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,266(2008)797-801.
    [27]Z. Shao, Q. Zhang, T. Liu, J. Chen, First-principles study on electronic structure and absorption spectra for the CaWO4 crystal with oxygen vacancy, Computational Materials Science, 43(2008)1018-1021.
    [28]Y. Xu, Z. Ren, G. Cao, W. Ren, K. Deng, Y. Zhong, Synthesis of single crystal Bi2Te3 nanoplates via an inorganic-surfactant-assisted solvothermal route, Materials Letters,62 (2008) 4525-4528.
    [29]F. Li, L. Hu, Z. Li, X. Huang, Influence of temperature on the morphology and luminescence of ZnO micro and nanostructures prepared by CTAB-assisted hydrothermal method, Journal of Alloys and Compounds,465 (2008) L14-L19.
    [30]N. Kim, S. Choi, H. Lee, K. Kim, Nanostructures and luminescence properties of porous ZnO thin films prepared by sol--gel process, Current Applied Physics,9 (2009) 643-646.
    [31]H. Nussbaumer, Fast Fourier transform and convolution algorithms, Berlin and New York, Springer-Verlag (Springer Series in Information Sciences),2(1982).
    [32]W. Cho, M. Yashima, M. Kakihana, A. Kudo, T. Sakata, M. Yoshimura, Room-temperature preparation of the highly crystallized luminescent CaWO4 film by an electrochemical method, Applied Physics Letters,66 (1995) 1027.
    [33]J. Cuthbert, D. Thomas, Fluorescent decay times of excitons bound to isoelectronic traps in GaP and ZnTe, Physical Review,154(1967) 763-771.
    [34]Q. Lu, Z. Wang, J. Li, P. Wang, X. Ye, Structure and Photoluminescent Properties of ZnO Encapsulated in Mesoporous Silica SBA-15 Fabricated by Two-Solvent Strategy, Nanoscale research letters,4 (2009) 646-654.
    [35]A. Ekimov, A. Efros, A. Onushchenko, Quantum size effect in semiconductor microcrystals, Solid state communications,88 (1993) 947-950.
    [36]W. Chen, J. Bovin, A. Joly, S. Wang, F. Su, G. Li, Full-Color Emission from In2S3 and In2S3: Eu3+ Nanoparticles, J. Phys. Chem. B,108 (2004) 11927-11934.
    [37]严康,高兆芬,卞建红,钨酸盐类陶瓷微波介电性能,硅酸盐学报,34(2006)251-254.
    [38]L. Li, Y. Su, G. Li, Size-induced symmetric enhancement and its relevance to photoluminescence of scheelite CaWO4 nanocrystals, Applied Physics Letters,90 (2007) 054105.
    [39]Y. Su, L. Li, G. Li, Synthesis and optimum luminescence of CaWO4-based red phosphors with codoping of Eu3+ and Na+, Chemistry of Materials,20 (2008) 6060-6067.
    [40]J. Dhanaraj, R. Jagannathan, T. Kutty, C. Lu, Photoluminescence Characteristics of Y2O3: Eu3+ Nanophosphors Prepared Using Sol- Gel Thermolysis, J. Phys. Chem. B,105 (2001) 11098-11105.
    [41]R. Kasuya, T. Isobe, H. Kuma, Glycothermal synthesis and photoluminescence of YAG:Ce3+ nanophosphors, Journal of Alloys and Compounds,408 (2006) 820-823.
    [42]H. Bhatti, R. Sharma, N. Verma, N. Kumar, S. Vadera, K. Manzoor, Lifetime shortening in doped ZnS nanophosphors, Journal of Physics D:Applied Physics,39 (2006) 1754.
    [43]Y. Pan, Q. Su, H. Xu, T. Chen, W. Ge, C. Yang, M. Wu, Synthesis and red luminescence of Pr3+-doped CaTiO3 nanophosphor from polymer precursor, Journal of Solid State Chemistry,174 (2003) 69-73.
    [44]A. Campos, A. Sim es, E. Longo, J. Varela, V. Longo, A. de Figueiredo, F. De Vicente, A. Hernandes, Mechanisms behind blue, green, and red photoluminescence emissions in CaWO4 and CaMoO4 powders, Applied Physics Letters,91 (2007) 051923.
    [45]W. Zhang, P. Xie, C. Duan, K. Yan, M. Yin, L. Lou, S. Xia, J. Krupa, Preparation and size effect on concentration quenching of nanocrystalline Y2Si05:Eu, Chemical Physics Letters,292 (1998)133-136.
    [46]Z. Wang, Y. Wang, Y. Li, B. Liu, Low Dimensional Effects on Luminescent Properties of CaWO4:Tb Nanophosphor, Journal of The Electrochemical Society,157 (2010) J125.
    [47]Y. Chiang, E. Lavik, I. Kosacki, H. Tuller, J. Ying, Defect and transport properties of nanocrystalline CeO, Applied Physics Letters,69 (1996) 185.
    [48]X. Zhou, W. Huebner, Size-induced lattice relaxation in CeO nanoparticles, Applied Physics Letters,79(2001)3512.
    [49]Y. Jiang, J. Adams, M. van Schilfgaarde, R. Sharma, P. Crozier, Theoretical study of environmental dependence of oxygen vacancy formation in CeO, Applied Physics Letters,87 (2005)141917.
    [50]M. Tissandier, K. Cowen, W. Feng, E. Gundlach, M. Cohen, A. Earhart, J. Coe, T. Tuttle Jr, The proton's absolute aqueous enthalpy and Gibbs free energy of solvation from cluster-ion solvation data, J. Phys. Chem. A,102 (1998) 7787-7794.
    [51]P. Jia, X. Liu, G. Li, M. Yu, J. Fang, J. Lin, Sol-Cgel synthesis and characterization of SiO2@CaWO4, SiO2@CaWO4:Eu3+/Tb3+ core-shell structured spherical particles, Nanotechnology,17 (2006) 734.
    [52]B. Liu, Y. Wang, Z. Wang, J. Zhou, X. Gao, Photoluminescence Properties and Degradation Mechanisms of BaMgAl10O17:Eu2+ Phosphor under Baking Treatment, Electrochemical and Solid-State Letters,13(2010)J15.
    [1]Y. Su, G. Li, Generation of tunable wavelength lights in core-shell CaWO4 microspheres via co-doping with Na+ and Ln3+(Ln= Tb, Sm, Dy, Eu), Journal of Materials Chemistry,19 (2009) 2316-2322.
    [2]W. Wang, P. Yang, S. Gai, N. Niu, F. He, J. Lin, Fabrication and luminescent properties of CaW04:Ln3+(Ln= Eu, Sm, Dy) nanocrystals, Journal of Nanoparticle Research, (2010) 1-11.
    [3]J. Liao, B. Qiu, H. Wen, W. You, Photoluminescence green in microspheres of CaWO4:Tb3+ processed in conventional hydrothermal, Optical Materials,31 (2009) 1513-1516.
    [4]R. Wegh, H. Donker, K. Oskam, A. Meijerink, Visible quantum cutting in LiGdF4:Eu3+ through downconversion, Science,283 (1999) 663.
    [5]Z. Nie, J. Zhang, X. Zhang, X. Ren, G. Zhang, X. Wang, Evidence for visible quantum cutting via energy transfer in SrAl12O19:Pr, Cr, Optics letters,32 (2007) 991-993.
    [6]S. Hachani, B. Moine, A. El-akrmi, M. Frid, Luminescent properties of some ortho-and pentaphosphates doped with Gd3+-Eu3+:Potential phosphors for vacuum ultraviolet excitation, Optical Materials,31 (2009) 678-684.
    [7]G. Lakshminarayana, H. Yang, S. Ye, Y. Liu, J. Qiua, Cooperative downconversion luminescence in Pr3+/Yb3+:SiO2-Al2O3-BaF2-GdF3 glasses, J. Mater. Res,23 (2008) 3091.
    [8]S. Ye, B. Zhu, J. Luo, J. Chen, G Lakshminarayana, J. Qiu, Enhanced cooperative quantum cutting in Tm3+-Yb3+ codoped glass ceramics containing LaF3 nanocrystals, Optics express,16 (2008) 8989.
    [9]X. Huang, Q. Zhang, Efficient near-infrared down conversion in Zn2SiO4:Tb3+, Yb3+ thin-films, Journal of Applied Physics,105 (2009) 053521.
    [10]C. Yang, Y. Pan, Q. Zhang, Z. Jiang, Cooperative Energy Transfer and Frequency Upconversion in Yb3+-Tb3+and Nd3+-Yb3+-Tb3+ Codoped GdAl3(BO3)4 Phosphors, Journal of Fluorescence,17(2007) 500-504.
    [11]P. Vergeer, T. Vlugt, M. Kox, M. Den Hertog, J. Van der Eerden, A. Meijerink, Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+, Physical Review B,71 (2005) 14119.
    [12]S. Ye, Y. Katayama, S. Tanabe, Down conversion luminescence of Tb3+-Yb3+ codoped SrF2 precipitated glass ceramics, Journal of Non-Crystalline Solids, (2010).
    [13]Q. Zhang, X. Huang, Recent progress in quantum cutting phosphors, Progress in Materials Science,55(2010)353-427.
    [14]D. Chen, Y. Yu, Y. Wang, P. Huang, F. Weng, Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+:TbF3 nanocrystals embedded glass ceramics, The Journal of Physical Chemistry C,113 (2009) 6406-6410.
    [15]E. Martins, C. de Ara2jo, J. Delben, A. Gomes, B. da Costa, Y. Messaddeq, Cooperative frequency upconversion in Yb3+-Tb3+ codoped fluoroindate glass, Optics Communications,158 (1998)61-64.
    [16]Q. Zhang, C. Yang, Z. Jiang, X. Ji, Concentration-dependent near-infrared quantum cutting in GdBO:Tb, Yb nanophosphors, Applied Physics Letters,90 (2007) 061914.
    [17]Y. Wang, L. Xie, H. Zhang, Cooperative near-infrared quantum cutting in Tb3+, Yb3+ codoped polyborates La0.99-xYbxBaB9O16:Tb0.01,Journal of Applied Physics,105 (2009) 3528.
    [18]G. Jones, Optical Absorption Spectrum and Optical Zeeman Effect in CaWO4:Yb, The Journal of Chemical Physics,47 (1967) 4347.
    [19]M. Peng, Z. Pei, G. Hong, Q. Su, The reduction of Eu3+to Eu2+ in BaMgSiO4:Eu prepared in air and the luminescence of BaMgSiO4:Eu2+ phosphor, Journal of Materials Chemistry,13 (2003) 1202-1205.
    [20]T. Etsell, S. Flengas, The Electrical properties of solid oxide electrolytes, Chemical Reviews, 70(1970)339-376.
    [21]Z. Shao, Q. Zhang, T. Liu, J. Chen, Computer study of intrinsic defects in CaWO4, Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,266 (2008) 797-801.
    [22]H. Rietveld, Line profiles of neutron powder-diffraction peaks for structure refinement, Acta Crystallographica,22 (1967) 151-152.
    [23]H. Rietveld, A profile refinement method for nuclear and magnetic structures, Journal of Applied Crystallography,2(1969) 65-71.
    [24]A. Denton, N. Ashcroft, Vegard's law, Physical Review A,43(1991) 3161-3164.
    [25]D. Cooke, J. Lee, B. Bennett, J. Groves, L. Jacobsohn, E. McKigney, R. Muenchausen, M. Nastasi, K. Sickafus, M. Tang, Luminescent properties and reduced dimensional behavior of hydrothermally prepared YSiO5:Ce nanophosphors, Applied Physics Letters,88 (2006) 103108.
    [26]Y. Xu, Z. Ren, G Cao, W. Ren, K. Deng, Y. Zhong, Synthesis of single crystal Bi2Te3 nanoplates via an inorganic-surfactant-assisted solvothermal route, Materials Letters,62 (2008) 4525-4528.
    [27]F. Li, L. Hu, Z. Li, X. Huang, Influence of temperature on the morphology and luminescence of ZnO micro and nanostructures prepared by CTAB-assisted hydrothermal method, Journal of Alloys and Compounds,465 (2008) L14-L19.
    [28]N. Kim, S. Choi, H. Lee, K. Kim, Nanostructures and luminescence properties of porous ZnO thin films prepared by sol-gel process, Current Applied Physics,9 (2009) 643-646.
    [29]B. Grobelna, B. Lipowska, A. Klonkowski, Energy transfer in calcium tungstate doped with Eu3+ or Tb3+ ions incorporated into silica xerogel, Journal of Alloys and Compounds,419 (2006) 191-196.
    [30]A.I. Ekimov, A.L. Efros, A.A. Onushchenko, Quantum size effect in semiconductor microcrystals, Solid State Communications,56 (1985) 921-924.
    [31]J. Cuthbert, D. Thomas, Fluorescent decay times of excitons bound to isoelectronic traps in GaP and ZnTe, Physical Review,154 (1967) 763-771.
    [32]W. Chen, J. Bovin, A. Joly, S. Wang, F. Su, G. Li, Full-Color Emission from In2S3 and In2S3: Eu3+ Nanoparticles, J. Phys. Chem. B,108 (2004) 11927-11934.
    [33]严康,高兆芬,卞建红,钨酸盐类陶瓷微波介电性能,硅酸盐学报,34(2006)251-254.
    [34]Q. Lu, Z. Wang, J. Li, P. Wang, X. Ye, Structure and Photoluminescent Properties of ZnO Encapsulated in Mesoporous Silica SBA-15 Fabricated by Two-Solvent Strategy, Nanoscale research letters,4(2009) 646-654.
    [35]Y. Wang, J. Ma, J. Tao, X. Zhu, J. Zhou, Z. Zhao, L. Xie, H. Tian, Synthesis of CaWO4 nanoparticles by a molten salt method, Materials Letters,60 (2006) 291-293.
    [36]Y. Su, L. Li, G. Li, Synthesis and optimum luminescence of CaWO4-based red phosphors with codoping of Eu3+ and Na+, Chemistry of Materials,20 (2008) 6060-6067.
    [37]T. Yamashita, Y. Ohishi, Cooperative energy transfer between Tb3+ and Yb3+ ions co-doped in borosilicate glass, Journal of Non-Crystalline Solids,354 (2008) 1883-1890.
    [38]D. Wang, N. Kodama, Visible quantum cutting through downconversion in GdPO4:Tb3+ and Sr3Gd(PO4) 3:Tb3+, Journal of Solid State Chemistry,182 (2009) 2219-2224.
    [39]G. Salley, R. Valiente, H. Gdel, Cooperative Yb3+-Tb3+ dimer excitations and upconversion in Cs3Tb2Br9:Yb3+, Physical Review B,67 (2003) 134111.
    [40]G. Blasse, B. Grabmaier, Luminescent Materials,1994, Springer-Verlag, Berlin.
    [41]D. Dexter, A theory of sensitized luminescence in solids, The Journal of Chemical Physics,21 (1953) 836.
    [42]G. Blasse, Energy transfer in oxidic phosphors, Physics Letters A,28 (1968) 444-445.
    [43]A. Huignard, V. Buissette, A. Franville, T. Gacoin, J. Boilot, Emission processes in YVO4:Eu nanoparticles, J. Phys. Chem. B,107 (2003) 6754-6759.
    [44]P. Dorenbos, The 5d level positions of the trivalent lanthanides in inorganic compounds, Journal of Luminescence,91 (2000) 155-176.
    [45]R. Reisfeld, C. J rgensen, Lasers and excited states of rare earths, Springer-Verlag Berlin, 1977.
    [46]苏锵,稀土化学,河南科学技术出版社,1993.
    [47]X. Gao, Y. Wang, D. Wang, B. Liu, Luminescent properties of KGdl-x(WO4)2:Eux3+ and KGd1-x(W04)2-y(Mo04)y:Eu3+ phosphors in UV-VUV regions, Journal of Luminescence,129 (2009) 840-843.
    [48]W. Strk, A. Bednarkiewicz, P. Dere, Power dependence of luminescence of Tb3+-doped KYb (WO4) 2 crystal, Journal of Luminescence,92 (2001) 229-235.
    [49]李小侠,Eu3+, Tb3+离子在三种硼酸盐中的VUV-Vis范围的发光性质研究,兰州大学,2007.
    [50]W. Zhang, P.-Xie, C. Duan, K. Yan, M. Yin, L. Lou, S. Xia, J. Krupa, Preparation and size effect on concentration quenching of nanocrystalline Y2SiO5:Eu, Chemical Physics Letters,292 (1998)133-136.
    [51]H. Zhang, Y. Wang, Y. Tao, W. Li, D. Hu, E. Feng, X. Nie, Visible Quantum Cutting in Tb-Doped BaGdBO via Downconversion, Journal of The Electrochemical Society,157 (2010) J293.
    [52]A. Huignard, V. Buissette, G. Laurent, T. Gacoin, J. Boilot, Synthesis and characterizations of YVO4: Eu colloids, Chem. Mater,14 (2002) 2264-2269.
    [53]Q. Zhang, C. Yang, Y. Pan, Cooperative quantum cutting in one-dimensional (YbxGd1-x) Al3 (BO3)4:Tb3+ nanorods, Applied Physics Letters,90 (2007) 1107.
    [54]D. Chen, Y. Wang, Y. Yu, E. Ma, Influence of Yb3+ content on microstructure and fluorescence of oxyfluoride glass ceramics containing LaF3 nano-crystals, Materials Chemistry and Physics,101 (2007)464-469.
    [55]L. Xie, Y. Wang, H. Zhang, Near-infrared quantum cutting in YPO4:Yb, Tm via cooperative energy transfer, Applied Physics Letters,94 (2009) 061905.
    [56]Q. Zhang, G. Yang, Z. Jiang, Cooperative downconversion in GdAl3 (BO3)4:RE3+, Yb3+(RE= Pr, Tb, and Tm), Applied Physics Letters,91 (2007) 1903.
    [57]S. Ye, B. Zhu, J. Chen, J. Luo, J. Qiu, Infrared quantum cutting in Tb, Yb codoped transparent glass ceramics containing CaF nanocrystals, Applied Physics Letters,92 (2008) 141112.
    [58]X. Liu, S. Ye, Y. Qiao, G. Dong, B. Zhu, D. Chen, G. Lakshminarayana, J. Qiu, Cooperative downconversion and near-infrared luminescence of Tb3+-Yb3+codoped lanthanum borogermanate glasses, Applied Physics B:Lasers and Optics,96 (2009) 51-55.
    [59]C. Jing-Xin, Y. Song, W. Xi, Q. Jian-Rong, Cooperative quantum cutting of nano-crystalline BaF2:Tb3+, Yb3+ in oxyfluoride glass ceramics, Chinese Physics Letters,25 (2008) 2078.
    [60]A. Stevels, Ce Luminescence in Hexagonal Aluminates Containing Large Divalent or Trivalent Cations, Journal of The Electrochemical Society,125 (1978) 588.
    [61]徐叙瑢,苏勉曾,发光学与发光材料,化学工业出版社,2004.
    [62]S. Faulkner, S. Pope, Lanthanide-sensitized lanthanide luminescence:terbium-sensitized ytterbium luminescence in a trinuclear complex, J. Am. Chem. Soc,125 (2003) 10526-10527.
    [63]B. van der Ende, L. Aarts, A. Meijerink, Near-Infrared Quantum Cutting for Photovoltaics, Advanced materials,21 (2009) 3073-3077.
    [64]G. Lakshminarayana, J. Qiu, Near-infrared quantum cutting in RE3+/Yb3+ (RE= Pr, Tb, and Tm):GeO2-B2O3-ZnO-LaF3 glasses via downconversion, Journal of Alloys and Compounds,481 (2009) 582-589.
    [65]Q. Zhang, X. Liu, S. Ye, B. Zhu, Y. Qiao, G. Dong, B. Qian, D. Chen, Q. Zhou, J. Qiu, Cooperative Quantum Cutting in Yb3+-Tb3+ Codoped Borosilicate Glasses, IEEE Photonics Technology Letters,21(2009) 1169-1171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700