用户名: 密码: 验证码:
航空铝合金缺陷及应力脉冲涡流无损检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉冲涡流检测技术是近几十年来迅速发展起来的一种无损检测新技术,其宽频谱的激励方式可以在航空铝合金复杂结构件检测中获得较多的材料状态信息,包括航空铝合金结构件缺陷及应力信息,因而成为目前航空无损检测领域的一个研究热点。本文在分析了国内外脉冲涡流无损检测技术研究现状的基础上,开展了脉冲涡流检测技术对航空铝合金缺陷及应力的检测研究,主要研究内容及创新点如下:
     1.圆柱型脉冲涡流探头的优化设计
     根据脉冲涡流探头的几何特征和边界条件,结合数值建模理论,建立了脉冲涡流圆柱型探头的2D数值计算模型。通过提取在不同电导率条件下的脉冲涡流差值信号峰值特征,得出了脉冲涡流差值信号的峰值与电导率的变化成线性关系的结论,首次提出脉冲涡流差值信号的峰值可用于评估航空铝合金电导率的分布;论文深入研究了脉冲涡流探头在不同几何尺寸参数对航空铝合金的灵敏度,即:(1)线圈内径、(2)线圈宽度、(3)线圈高度,提出了脉冲涡流探头的优化设计方法;此外,论文也研究了其他参数(如激励脉冲频率、提离距离、有无铁氧体磁芯等)对航空铝合金灵敏度的影响,为脉冲涡流探头的优化设计提供理论指导。
     2.航空铝合金缺陷脉冲涡流无损检测技术的研究
     论文对航空铝合金表面、亚表面以及由于腐蚀造成的金属厚度减薄缺陷进行了脉冲涡流检测研究。根据实验数据与脉冲涡流检测原理,得出了脉冲涡流检测系统对航空铝合金缺陷深度检测的灵敏度高于缺陷宽度的灵敏度;建立了脉冲涡流检测三种缺陷的深度定量检测模型;在脉冲涡流检测技术对航空铝合金不同类型缺陷定量检测的基础上,重点探讨了脉冲涡流瞬时信号的特征提取技术,频谱幅值为论文在频域里提取的新特征值;并对提取的各种特征进行了最优组合,提出了脉冲涡流检测技术对航空铝合金不同缺陷的最优分类识别算法。
     3.航空铝合金应力脉冲涡流无损检测技术的研究
     为了达到对航空铝合金残余应力的无损评估,论文首先推导了脉冲涡流应力检测原理,基于应力与材料电导率的相关性,提出了脉冲涡流检测技术对航空铝合金应力检测的新型无损检测方法,为脉冲涡流检测技术对航空铝合金残余应力的评估提供帮助。论文在如下几个方面展开了深入研究:
     (1)采用实验的方法,对铝合金AL5083进行了弹性应力拉伸实验,实验结果表明脉冲涡流差值信号的峰值与加载应力的大小成线性关系,结合COMSOL有限元电导率仿真结果,得出了脉冲涡流差值信号的峰值可以用来评估应力的大小以及被测材料电导率的分布的结论。
     (2)为了进一步检测残余应力,对不同塑性变形标准的铝合金材料进行了弹性拉伸实验,脉冲涡流差值信号的峰值与拉伸应力成非线性关系。通过提取“等效弹性系数”,实现了对航空铝合金样本的塑性变形的检测,即脉冲涡流圆型探头与矩形探头横向测量AL2024的“等效弹性系数”随着塑性变形的增加呈单调递减趋势。所有实验均证实脉冲涡流响应对拉伸应力与塑性变形非常敏感。
     (3)为了达到对航空铝合金不同深度应力检测的目的,采用可变的脉冲宽度进行了实验。通过标准的电导率脉冲涡流信号创造性地建立了参考电导率平面,并采用此平面对不同厚度、不同电导率的多层金属进行检测,证实了所建电导率平面的有效性。另外,论文也通过弯曲应力的实验进行了验证,证明了所提出参考电导率平面测量不同深度应力分布的有效性,可以采用参考电导率平面测量导电材料的电导率不均匀分布而逆推出导电材料弯曲应力不同深度的分布。因此,由实验证明这种检测方法可以对航空铝合金不同深度应力分布进行检测。
Pulsed eddy current (PEC) is a new nondestructive testing (NDT) technique developed in recent years. More conductive material information including defects and the stress can be gotten from detection of complex aluminum-alloy structure of aerospace by using wideband exciting, PEC technique has become a hot research area in aviation NDT. On the basis of analyzing the state of the art of the research on PEC technique both inland and overseas, the defects and the stress of aerospace aluminum-alloy are studied in this paper. The brief structure of the research and novel approaches are as follows:
     1. Optimization design of PEC circular probe
     Based on the geometric characteristics and boundary conditions of PEC probe, a 2D finite element model of PEC probe is built. The peak value of the difference signals of PEC is adopted to evaluate electricity conductivity by Finite Element Method. The results show that the peak value of the difference signal is a linear relation with the change of the electrical conductivity, and can be adopted to estimate on the electrical conductivity distribution of the conductivity material. This paper reports an investigation into the sensitivity for a pancake PEC probe to variations in the material conductivity of specimens. Three experimental coil parameters are modeled: (a) coil inner radius; (b) coil width; (c) coil height. The optimization design of PEC circular probe is proposed. This paper also investigates relationship between other parameters including excited frequency, lift-off, the ferrite cores and aerospace aluminum-alloy. It will provide the theory guide of PEC sensor design.
     2. Estimation on defect of the aerospace aluminum-alloy using PEC technique
     To estimate on the defects of aerospace aluminum-alloy, experiments including the surface defects, the subsurface defects and the thickness changes are carried out using PEC technology. Based on the extraction features in time domain and frequency domain, the research results show that the defect depth sensitivity of aerospace aluminum-alloy is higher than the aluminum-alloy defect width. The quantitative model of defect depth is established for the different defects. The peak value of the spectrum is a new feature in frequency domain. All features extracted are selected and combined to identify the three kinds of defects, the research results show that the combination of the peak value of the spectrum in frequency domain and the peak time in time domain can be more efficient to identify three kinds of the defects.
     3. Estimation on stress of aerospace aluminum-alloy using PEC technique
     In order to estimate on the residual stress of aerospace aluminum-alloy, this paper introduces the occuring theory, testing and estimation of the residual stress. Based on the correlation between applied stress and the electrical conductivity, the PEC technique is proposed to estimate on the stress. The brief structure of the research and novel approaches are as follows:
     (1)In order to investigate the relationship between the peak value of the difference signal and the elastic stress, the elastic stress of AL5083 is carried out. The experimental results show that the peak value of the difference signal is a linear with the applied elastic stress. On the other hand, the peak value of the difference signal by COMSOL FEM software simulation is a linear with the electrical conductivity changes. Therefore, the peak value can be adopted to estimate the electrical conductivity distribution and the applied stress distribution.
     (2)In order to estimate the residual stress, flat bar samples made of various aluminum-alloys have been tested with different PEC probes such as circular and rectangular coils. The research results show that the elastic dependencies exhibit non-linearity in many cases. These verify that there are the elastic stress and plastic deformation on aluminum-alloys. The plastic deformation sample on aluminum-alloys can be tested using PEC probe through“equivalent elastic coefficient”extracted.“Equivalent elastic coefficient”of AL2024 is decreased with the plastic deformation increased using the circular probe and rectangular transverse probe. Overall the PEC responses obtained on the tested materials have demonstrated sufficient sensitivities to tensile stress and plastic deformation.
     (3)In order to estimate on the different depth stress, PEC response of variable pulse width excitation has been calibrated with respect to known values of electrical conductivity standards. The obtained calibration dependence in principle component analysis (PCA) space has been used to evaluate electrical conductivities of other test materials. The experimental results show that the electrical conductivity PCA space is very efficient to estimate on the stress of the multi-layer metal materials. To verify the validity of the calibration dependence in PCA space, the experiment of bending AL2024 is also carried out. The experimental results verify our stress profile inspection methods using PCA based PCA. The agreement between theory and experiment shows that the present method can be used to estimate on the stress profile of aerospace aluminum-alloys.
引文
[1]张士林,任颂赞.简明铝合金手册[M].上海:上海科学技术出版社,2001
    [2]万熠.高速铣削航空铝合金刀具失效机理及刀具寿命研究[D].济南:山东大学博士学位论文,2006
    [3]谭晓明,陈跃良,段成美.飞机结构搭接件腐蚀三维裂纹扩展特性分析[J].航空学报,2005, 26(1):66~69
    [4]胡芳友,王茂才,温景林.沿海飞机铝合金结构件腐蚀与防护[J].腐蚀科学与防护技术,2003,15(2):97~100
    [5] Totten G E,Mackenzie D S. Aluminum quenching technology: a review[J]. Materials science Forum,2000,Vols331- 337,pp589-594.
    [6]李家伟,陈积慰.无损检测手册[M].北京:机械出版社,2002年
    [7]《美国无损检测手册》译审委员会译.美国无损检测手册:电磁卷[M].上海:世界图书出版公司,1999年
    [8]任吉林,林俊明,高春法.电磁检测[M].北京:机械工业出版社,2000年
    [9]任吉林.电磁无损检测[M].北京:航空工业出版社,1989年
    [10]石井勇五郎,吴义等译.无损检测学[M].北京:机械工业出版社,1986年
    [11] D Simonet, G Ithurralde, JP Choffy. Non-destructive testing inspection environment[J]. Proceedings of the15th WCNDT,Oct. 2000,Rome
    [12] Hoshikawa Hiroshi. A new eddy current surface probe without lift-off noise [J]. Proceedings of the 10th APCNDT, Sept.2001, Brisbane, Australia
    [13]徐可北,周俊华.涡流检测[M].北京:机械工业出版社,2004
    [14]唐磊.涡流无损检测中体积分方程法及缺陷重构智能系统研究[D]. [博士学位论文],西安交通大学,1997年9月
    [15]陈德智.涡流无损检测中数值模拟与信号处理的研究[D]. [博士学位论文],西安交通大学, 1998年
    [16]黄平捷.多层导电结构厚度与缺陷电涡流检测若干关键技术研究[D]. [博士学位论文],浙江大学,2004年6月
    [17]杨宾峰.脉冲涡流无损检测若干关键技术研究[D]. [博士学位论文],2006年10月
    [18] D.Hagemaier. Eddy current depth of penetration[J]. Materials Evaluation, 2004,62(10): 1028-1029
    [19] S.Sullivan, D.L.Atherton, T.R.Schmidt. Comparing a one-dimensional skin effect equationwith through transmission eddy current phenomena[J]. British journal of NDT, 1990, 32(2):71-75
    [20] F.Thollon, N.Burais. Geometrical optimization of sensors for eddy currents non-destructivie testing and evaluation[J]. IEEE Transactions on Magnetics, 1995, 31(3):2026-2031
    [21] Z.Mottl. The quantitative relations between true and standard depth of penetration for air-cored probe coils in eddy current testing[J]. NDT International, 1990,23(2):11-18
    [22] B. A. Lepine, B. P. Wallace, D. S. Forsyth, et al. Pulsed eddy current method developments for hidden corrosion detection in aircraft structures[J]. PACNDT’98
    [23] X.-W. Dai, R.Ludwig, R.Palanisamy. Numerical simulation of pulsed eddy-current nondestructive testing phenomena[J]. Magnetics, IEEE Transactions on, Vol.26, Issue 6, Nov. 1990:3089-3096
    [24] T.Chady, M.Enokizono, R.Sikora. Signal restoration using dynamic neural network model for eddy current nondestructive testing[J]. IEEE Transactions on Magnetics, 2001,37(5):3737-3740
    [25] L.Q.Li, K.Tsukada, K.Hanasaki, et al. Fusion of multi-frequency eddy current signals by using wavelet analysis method[J]. Proceedings of the Fifth International Conference on Information Fusion, 2002:108-113
    [26] P.Crowther. Non-destructive evaluation of coatings for land-based gas turbines using a multi-frequency eddy current technique[J]. Insight: Non-Destructive Testing and Condition Monitoring, 2004, 46(9):547-549
    [27] T.Chady, M.Enokizono, R.Sikora. Neural network models of eddy current multi-frequency system for nondestructive testing[J]. IEEE Transactions on Magnetics, 2000, 36(4):1724-1727
    [28] Z.Liu, D.S.Forsyth, M.S.Safizadeh, et al. Quantitative interpretation of multi-frequency eddy current data by using data fusion approaches[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2003,5046:39-47
    [29] V.Sundararaghavan, K.Balasubramaniam, N.R.Babu et al. A multi-frequency eddy current inversion method for characterizing conductivity gradients on water jet peened components[J]. NDT and E International, 2005, 38(7):541-547
    [30] B.Vandenbos, S.Sahlen, J.Andersson. Automatic scanning with multi-frequency eddy current on multi-layered structures[J]. Aircraft Engineering and Aerospace Technology, 2003, 75(5):491-496
    [31] T.Chady, M.Enokizono, R.Sikora, et al. Natural crack recognition using inverse neural model and multi-frequency eddy current method[J]. IEEE Transactions on Magnetics, 2001, 37(4):2797-2799
    [32] P.Xiang, S.Ramakrishnan, X.Cai, et al. Automated analysis of rotating probe multi-frequency eddy current data from steam generator tubes[J]. International Journal of Applied Electromagnetics and Mechanics, 2000, 12(3-4):151-164
    [33] M.V.Kreutzbruck, K.Allweins, T.Ruhl, et al. Defect detection and classification using a SQUID based multiple frequency eddy current NDE system[J]. IEEE Transactions on Applied Superconductivity, 2001, 11(1):1032-1037
    [34] T.Chady, M.Enokizono. Multi-frequency exciting and spectrogram-based ECT method[J]. Journal of Magnetism and Magnetic Materials, 2000, 21(5):700-703
    [35]林俊明.声脉冲/多频涡流检测仪的研制[J].华北电力技术,2000,(5): 23~24
    [36] Y. Sun., L. Udpa, S. Udpa, et al. A novel remote field eddy current technique for inspection of thick-walled aluminium plates[J]. Materials Evaluation, Jan. 1998:94-97
    [37] S. M. Haugland. Fundamental analysis of the remote-field eddy-current effect[J]. Magnetics, IEEE Transactions on, Vol.32, Issue 4, Jul. 1996: 3195-3211
    [38] Y. Sun, Jiatun Si, et al. Efforts towards gaining a better understanding of the remote field eddy current phenomenon and expanding its applications[J]. Magnetics, IEEE Transactions on, Vol.32, Issue 3, May 1996: 1589-1592
    [39] D. Kim, L. Udpa, S. Udpa. Remote field eddy current testing for detection of stress corrosion cracks in gas transmission pipelines[J]. Materials Letters, 2004, 58(15): 2102-2104
    [40] M. Yasunishi, Y. Ohtsuka, M. Nishikawa. Testing of circumferential discontinuities using remote magnetic field analysis[J]. Materials Evaluation, 2005, 63(3): 335-338
    [41] A. Teitsma, S. Takach, J. Maupin, et al. Remote-field eddy-current inspection of unpiggable pipelines[J]. Pipeline World, 2005, (9): 5-12
    [42] J. J. Jeng, S. J. Wu. A study of the extent that support plates affect the accuracy of results of remote field eddy current inspection[J]. Insight: Non-Destructive Testing and Condition Monitoring, 2002, 44(2): 104-108
    [43] J. J. Jeng, S. J. Wu. Tube inspection using the remote field eddy current method: Development of a mathematical model to predict the relationship between the phase and the depth of defect[J]. Insight: Non-Destructive Testing and Condition Monitoring, 2001, 43(10): 683-687
    [44] Y. K. Shin, J. H. Lee, Y. T. Lee, et al. Signal characteristic observed in the remote field eddy current testing experiments[J]. Key Engineering Materials, 2004, 270-273 (I):567-572
    [45]曲民兴,司家屯,孙雨施等.采用复式激励的新型远场涡流探头[J].电工技术学报,1997, 12(3): 11-18
    [46] Yeseph Bar-Cohen. Emerging NDE Technologies and C霍尔enges at the Beginning of the 3 rd Millennium--- Part I[J]. Materials Evaluation, Jan., 2000:17-30
    [47] Yeseph Bar-Cohen. Emerging NDE Technologies and C霍尔enges at the Beginning of the 3 rd Millennium--- Part II[J]. Materials Evaluation, Jan., 2000:141-149
    [48] Gros X.E. NDT Data Fusion, http://www.riam.kyushuu.ac.jp/fracture/xav16.htm ISBN:0340676485 Arnold, London, UK(1996)
    [49] Gui Yun Tian, Yong Li, and Catalin Mandache. Study of Lift-Off Invariance for Pulsed Eddy-Current Signals[J]. IEEE Transactions on Magnetics, Vol.45, No.1, January 2009, pp.184-191
    [50] Smith R A, Hugo G R. Deep corrosion and crack detection in aging aircraft using transient eddy current NDE[J]. Review of Progress in Quantitative NDE, 1999:pp.1401-1408
    [51] Smith R A, Hugo G R. Transient eddy current NDE for ageing aircraft - capabilities and limitations[J]. Insight: Non-Destructive Testing and Condition Monitoring 43 (1), 2001:pp. 14-25
    [52] J.A.Bieber, S.K.Shaligram, J.H.Rose, et al. Time-gating of pulsed eddy current signals for defect characterization and discrimination in aircraft lap-joints[J]. Review of progress in QNDE, 1997, 16B:pp.1915-1921
    [53] J.C.Moulder, J.A.Bieber. Pulsed eddy current measurements of corrosion and cracking in aging aircraft[J]. Materials Research Society Symposium Proceedings of Nondestructive Characterization of Materials in Aging Systems, 1998, 503:pp.263-268
    [54] W.D.Rummel, J.R.Bowler. Integrated quantitative nondestructive evaluation (NDE) and reliability assessment of aging aircraft structures[J]. Final Report for The United States Air Force Office of Scientific Research 27, April, 2001
    [55] B.A.Lepine, J.S.R.Giguere, D.S.Forsyth, et al. Applying pulsed eddy current NDI to the aircraft hidden corrosion problem[J]. Review of Progress in QNDE, 2000,(11):pp.449-456
    [56] S.Giguere, B.A.Lepine, J.M.S.Dubois. Pulsed eddy current technology: characterizing material loss with gap and lift off variations[J]. Res Nondestr Eval, 2001,(13):pp.119-129
    [57] C.Mandache, J.H.V.Lefebvre. Transient and harmonic eddy currents: Lift-off point of intersection[J]. NDT&E international, 39(2006):pp.57-60
    [58] B.Lebrun, Y.Jayet, J.C.Baboux. Pulsed eddy current application to the detection of deep cracks[J]. Materials Evaluation, 1995, 53(11):pp.1296-1300
    [59] B.Lebrun, Y.Jayet, J.C.Baboux. Pulsed eddy current signal analysis: application to the experimental detection and characterization of deep flaws in highly conductive materials[J]. NDT&E International, 1997, 30(3):pp.163-170
    [60] Yong Li, Theodoros Theodoulidis, and Gui Yun Tian. Magnetic Field-Based Eddy-Current Modeling for Multilayered Specimens[J]. IEEE Transactions on magnetics, Vol.43, No.11, November 2007, pp. 4010-4015
    [61] Yong Li, Gui Yun Tian and Anthony Simm. Fast analytical modeling for pulsed eddy current evaluation[J]. NDT&E International 41(2008), pp.477-483
    [62] G Y Tian, A Sophian, D Taylor, et al. Pulsed eddy current system for dynamic inspection of defects[J]. Insight, 46(5), 2004:pp.256-259
    [63] G Y Tian, A Sophian, D Taylor, et al. Wavelet-based PCA defect classification and quantification for pulsed eddy current NDT[J]. IEE Proc.-Sci Meas. Technol, 152(4), 2005:pp.141-148
    [64] Plotnikov Y A, Nath S C, Rose C W. Defect characterization in multi-layered conductive components with pulsed eddy current[J]. Review of Progress in QNDE, 2002, (21A):pp.1976-1983
    [65] G. Panaitov, H.J.Krause, Y.Zhang. Pulsed eddy current technique with HTS SQUID magnetometer for non-destructive evaluation[J]. Physics C, 2002: 278-281
    [66] M.Muck, M.Korn, C.Welzel, et al. Nondestructive evaluation of various materials using a SQUID-based eddy-current system[J]. IEEE Transactions on Applied Superconductivity, 2005, 15(2):733-736
    [67] C.Carr, M.A.Espy, T.G. Abeln, et al. Characterization of stainless steel inertia welds using HTS SQUID NDE[J]. IEEE Transactions on Applied Superconductivity, 2005, 15(2): 719-722
    [68] H.J.Krause, G.Panaitov, Y. Zhang. Conductivity tomography for non-destructive evaluation using pulsed eddy current with HTS SQUID magnetometer[J]. IEEE Transactions on Applied Superconductivity, 2003, 13(2): 215-218
    [69] H.J.Krause. Nondestructive Evaluation of Aircraft Wheels and Fuselage with SQUIDs. In http://www.f-juelich.de/isg/Krause/aircraft.htm,2003
    [70]林俊明.电磁(涡流)检测技术在中国[J].无损检测,2008,30(5):261-266
    [71] C.V.Dodd, W.E.Deeds. Analytical solutions to eddy-current probe-coil problems[J]. Journal of Applied Physics, Vol.39, Num.6, May 1968, pp. 2829-2837
    [72] J.W.Luquire, W.E.Deeds and C.V.Dodd. Alternating current distribution between planar conductors[J]. Journal of Applied Physics,1970, Volume 41,10:3983-3991
    [73] C.C.Cheng, C.V.Dodd, and W.E.Deeds. General analysis of probe coils near stratified conductors[J]. Int.J.Nondestr.Test, 1971, 3:109-130
    [74] A.A.Kolyshikin, A.P.Smolyakov, and Remi Vaillancourt. Analytical solution in eddy-currenttesting of double-layer media with depth-varying magnetic properties[J]. Magnetics, IEEE Transactions on, Vol.28 Issue 2, Mar.1991:4360-4365
    [75] E.Uzal, J.H.Rose. The impedance of eddy current probes above layered metals whose conductivity and permeability vary continuously[J]. Magnetics, IEEE Transactions on, Vol.29, Issue 2, Mar. 1993:1869-1873
    [76] Erol Uzal, John C. Moulder, Screeparma Mitra, and James H.Rose. Impedance of coils over layered metals with continuously variable conductivity and permeability: theory and experiment[J]. Journal of Applied Physics, Vol.74(3), Aug. 1993:2076-2089
    [77] A.A.Kolyshkin, R.Vaillancourt. Analytical solutions to eddy-current testing problems for a layered medium with varying properties[J]. Magnetics, IEEE Transactions on, Vol.33 Issue 4, Jul.1997:2473-2477
    [78] T.P.Theodoulidis, T.D.Tsiboukis, and E.E.Kriezis. Analytical solutions in eddy current testing of layered metals with continuous conductivity profiles[J].Magnetics, IEEE Transactions on, Vol.31 Issue 3, May 1995:2254-2260
    [79] J.Bowler, M.Johnson. Pulsed eddy current response to a conducting half space[J]. IEEE Transactions on Magnetics, 1997,33(3):2258-2264
    [80] Fangwei Fu and John Bowler. Transient Eddy-Current Driver Pickup Probe Response Due to a Conductive Plate[J]. IEEE Transactions on magnetics, Vol.42, No.8, August 2006. pp.2029-2037
    [81] Theodoros Theodoulidis. Developments in Calculating the Transient Eddy-Current Response From a Conductive Plate[J]. IEEE Transations on magnetics, Vol.44, No.7, July 2008, pp.1894-1896
    [82]雷银照.时谐电磁场解析方法[M].北京:科学出版社.2000:120-194
    [83]雷银照,马信山.涡流线圈的阻抗计算[J].电工技术学报.1996.11(1):17-20
    [84]于亚婷,杜平安,李代生.电涡流传感器线圈阻抗计算方法[J].机械工程学报. 2007.43(2):pp.210-214
    [85] Mengbao Fan, Pingjie Huang, Bo Ye,et al. Analytical modeling for transient probe response in pulsed eddy current testing[J]. NDT&E International, Volume 42, Issue 5, July 2009, pp. 376-383
    [86] B.Allen, N.Ida and W.Lord. Finite Element Modeling of Pulsed Eddy Current NDT Phenomena[J]. IEEE Transactions on Magnetics, Vol. Mag 21, No.6, November 1985, pp. 2250-2253
    [87] Ludwig R, Dai X. W. Numerical and Analytical Modeling of Pulsed Eddy Currents in a Conducting Half-space[J]. IEEE Transactions on Magnetics. 1990. 26(1):pp.299-307
    [88] M.Tanaka, H.Tsuboi, F.Kobayashi, et al. Transient Eddy Current Analysis by the Boundary Element Method Using Fourier Transforms[J]. IEEE Transactions on Magnetics, Vol.29, No.2, March 1993: pp.1722-1725
    [89] J.Pavo. Numerical Calculation Method for Pulsed Eddy-Current Testing[J]. IEEE Transactions on Magnetics, Vol.38, No.2, March 2002:pp.1169-1172
    [90] Hajime Tsuboi, Norio Seshima, Imre Sebestyen,et al. Transient Eddy Current Analysis of Pulsed Eddy Current Testing by Finite Element Method[J]. IEEE Transactions on Magnetics, Vol.40, No.2, March 2004:pp.1330-1333
    [91] L.Xuan, B.Shanker, Z.Zeng and L.Udpa. Element-free Galerkin method in pulsed eddy currents[J]. International Journal of Applied Electromagnetics and Mechanics 19(2004): pp.463-466
    [92] Netter Denis, Leveque Jean, Masson Philippe, et al. Monte Carlo Method for transient eddy-current calculations[J]. IEEE Transactions on Magnetics, 2004, 40(5):pp.3450-3456
    [93] Martin Dadic, Darko Vasic, Vedran Bilas. A system identification approach to the modeling of pulsed eddy-current systems[J]. NDT&E International, 2005, 38(2):pp.107-111
    [94] Martin Dadic. Enhanced Time-stepping FEM Simulation using Digital Signal Processing. Simulation, Vol.84, Issue 4, April 2008:pp.169-178
    [95]幸玲玲,王恩荣.脉冲涡流检测中系统冲激响应的快速计算[J].中国电机工程学报. 2005,25(20):pp.147-150
    [96]吴鑫,李方奇,石坤等.脉冲涡流测厚技术理论与应用[J].北京交通大学学报.2009, 33(1):pp.20-23
    [97] Zhenmao Chen and Kenzo Miya. A New Approach for Optimal Design of Eddy Current. [J] Journal of Nondestructive Evaluation. Vol.17, No.3, 1998: 105-116.
    [98] Theodoros P.T, Epameinondas E.K. Impedance Evaluation of Rectangular Coils for Eddy Current Testing of Planar Media [J]. NDT & E international. 35(2002): 407-414.
    [99] Tomasz Chady and Ryszard Sikora. Optimization of Eddy-Current Sensor For Multifrequency Systems[J]. IEEE Transactions on Magnetics, Vol.39, No.3, May 2003: 1313-1316
    [100] Young-Kil Shin, Dong Myung Choi, Young-Joo Kim, et al. Signal characteristics of differential-pulsed eddy current sensors in the evaluation of plate thickness[J]. NDT&E International, 42, 2009:pp.215-221
    [101] Buvat F, Pichenot G, Premel D, et al. Eddy-Current Modeling of Ferrite-Cored Probes [C]. Proceedings of AIP Conference. 760(2005): 463-470.
    [102] Li Shu, Huang Songling, Zhao Wei. Development of differential probes in pulsed eddy current testing for noise suppression[J]. Sensors and Actuators A: Physical, Volume 135,Issue 2, 15 April 2007, pp. 675-679
    [103] Fava J.O, Marta C.R. Calculation and Simulation of Impedance Diagrams of Planar Rectangular Spiral Coils for Eddy Current Testing [J]. NDT & E International. 39(2006): 414-424.
    [104] Fava J.O,Liliana Lanzani, Marta C.R. Multilayer Planar Rectangular Coils for Eddy Current Testing: Design Considerations[J]. NDT&E International, 42 (2009), pp.713–720
    [105]黄小秋,丁天怀,付志斌.简化目标函数的电涡流传感器线圈参数优化设计法[J].传感器技术. 11(2000): 3-5.
    [106]王军平,王安,樊文侠.电涡流传感器线圈参数对传感器性能的影响[J].自动化仪表. 2001. 22(12): 22-24.
    [107]黄浩,陆继明,毛承雄等. Rogowski线圈结构参数仿真研究[J].电力系统及其自动化学报. 3(2004): 72-75.
    [108]杨宾峰,罗飞路,曹雄恒等.脉冲涡流无损检测技术在裂纹定量中的应用[J].无损检测.2005,27(6):pp.291-296
    [109]徐平,罗飞路,张玉华等.基于脉冲涡流检测技术的缺陷定量检测研究[J].工业计量.2006, 16(2):pp.6-10
    [110]杨宾峰,罗飞路.脉冲涡流无损检测技术对不同截面形状裂纹的定量检测研究[J].计量技术.2006,6:pp.5-7
    [111]张玉华,孙慧贤,罗飞路等.基于三维磁场测量的脉冲涡流检测探头的设计[J].机械工程学报. 2009, 45(8):pp.249-254
    [112]何赟泽,罗飞路,胡祥超等.脉冲涡流矩形传感器的多维信号特征分析与缺陷识别[J].2009,22(5):pp.680-683
    [113] Ali Sophian, Gui Yun Tian, David Taylor, et al. A feature extraction technique based on principal component analysis for pulsed eddy current NDT[J]. NDT&E International 36 (2003):pp.37-41
    [114] Gui Yun Tian, Ali Sophian. Defect classification using a new feature for pulsed eddy current sensors[J]. NDT&E International 38 (2005):pp.77-82
    [115]杨宾峰,罗飞路,张玉华等.飞机多层结构中裂纹的定量检测及分类识别[J].机械工程学报. 2006,42(2):pp.63-67
    [116]杨宾峰,罗飞路,曹雄恒等.联合时频分析在脉冲涡流信号识别中的应用[J].2007, 29(12):pp.690-693
    [117] Tianlu Chen, Gui Yun Tian, Ali Sophian, et al. Feature extraction and selection for defect classification of pulsed eddy current NDT[J]. NDT&E International, 41(6), 2008:pp.1-10
    [118] Charles S.Smith. Piezoresistance Effect in Germanium and Silicon[J]. Physical Review, Vol.94, No.1, April 1954:pp.42-49
    [119] Anton I.Lavrentyev, Paul A.Stucky, and William A.Veronesi. Feasibility of ultrasonic and eddy current methods for measurement of residual stress in shot peened metals[J]. Review of Progress in Quantitative Nondestructive Evaluation. American Institute of Physics, 2000:pp.1621-1628
    [120] Mark P.Blodgett and Peter B.Nagy. Eddy Current Assessment of Near-Surface Residual Stress in Shot-Peened Nickel-Base Superalloys[J]. Journal of Nondestructive Evaluation, Vol.23, No.3, September 2004:pp.107-123
    [121] Feng Yu and Peter B.Nagy. Simple analytical approximations for eddy current profiling the near-surface residual stress in shot-peened metals[J]. Journal of Applied Physics, Vol.96, No.2, 2004:pp.1257-1266
    [122] Feng Yu and Peter B.Nagy. Dynamic Piezoresistivity Calibration for Eddy Current Nondestructive Residual Stress Measurement[J]. Journal of Nondestructive Evaluation, Vol.24, No.4, December 2005:pp.143-151
    [123] Feng Yu and Peter B.Nagy. On the Influence of Cold Work on Eddy Current Characterization of Near-Surface Residual Stress Shot-Peened Nickel-Base Superalloys. Journal of Nondestructive Evaluation[J].Vol.25, No.3, September 2006:pp.107-122
    [124] Bassam A.Abu-Nabah, Peter B.Nagy. Iterative inversion method for eddy current profiling of near-surface residual stress in surface-treated metals[J]. NDT&E International 39 (2006):pp.641-651
    [125] Bassam A.Abu-Nabah, Peter B.Nagy. High-frequency eddy current conductivity spectroscopy for residual stress profiling in surface-treated nickel-base superalloys[J]. NDT&E International 40 (2007):pp.405-418
    [126] Bassam A.Abu-Nabah, Feng Yu, Waled T.Hassan, et al. Eddy current residual stress profiling in surface-treated engine alloys[J]. Nondestructive Testing and Evaluation. Vol.24, Issue 1, March 2009:pp.209-232
    [127]孙建民,杨清梅.传感器技术[M].北京:清华大学出版社,北京交通大学出版社. 2005: 1-109.
    [128]陈行禄,吴志鹤.传感器原理[M].北京:航空工业出版社. 1987: 1-153.
    [129]谭祖根,汪乐宇.电涡流检测技术[M].北京:原子能出版社,1986年.
    [130]游凤荷,陈丹,牛龙江.涡流三维磁场测量及实际渗透深度建模[J].仪器仪表学报. 2002. 23(4): 431-434.
    [131] H.R.LOOS. Wirkungsweise und Berechnung von MeBwertaufnehmern auf Wirbelstrombasiszur beru-hrungsfreien Wegmessung[J]. Technisches Messen atm. Heft 7/8, 1976 [132] J.H.V.Lefebvre. Simultaneous conductivity and thickness measurements using pulsed eddy current[D]. Thesis, Faculty of the Royal Military College of Canada, 2003.
    [133] I Zainal Abidin, C Mandache, G Y Tian, et al. Defect depth estimation using pulsed eddy current with varied pulse width excitation[J]. The 47th Annual British Conference on NDT, Cheshire, UK, September 2008
    [134] IIham Zainal Abidin, C. Mandache, G Y Tian, et al. Pulsed eddy current testing with variable duty cycle on rivet joints[J]. NDT&E International 42 (2009). pp.599-605
    [135] A.Sophian, G.Y.Tian, D.Taylor, J.Rudlin. Design of a pulsed eddy current sensor for detection of defects in aircraft lap-joints[J]. Sensors and Actuactors A.2002:92-98
    [136] G.Y.Tian, A.Sophian, D.Taylor, et al. Multiple sensors on pulsed eddy current detection for 3-D subsurface crack assessment[J]. IEEE SENSORS.2005,5(1):90-96
    [138]杨宾峰,罗飞路.脉冲涡流无损检测技术应用研究[J].仪表技术与传感器.2004,8:45-46
    [139]游凤荷,魏莉.材质涡流检测信号处理方法[J].测控技术.2002,21(10):11-13
    [140]叶子郁,朱目成.应用脉冲涡流检测金属表面裂纹的研究[J].计量技术.2005,10:16-18
    [141] J.H.V.Lefebvre, C.Mandache, J.Letarte. Pulsed eddy current empirical modeling [J]. Proc. Vth International Workshop, Advances in Signal Processing for Nondestructive Evaluation of Materials Quebec City (Canada), 2-4 Aug. 2005
    [142]刘涛,杨凤鹏.精通ANSYS[M].北京:清华大学出版社,2002:28~48
    [143] Taguchi G, Konishi S. Orthogonal arrays and linear graphs[M]. Dearborn, MI: AI press; 1987
    [144]张宝裕,刘恒基.磁场的产生[M].北京:机械工业出版社. 1987: 1-116.
    [145]靳亚鹏,智能化数字式涡流检测仪的研制[D],北方交通大学硕士论文,2001
    [146]陈亮,阙沛文,李亮等.巨磁阻传感器在涡流检测中的应用[J].无损检测,2005,27(8):399-401
    [147] Ali Sophian. Characterization of Surface and Sub-surface Discontinuities in Metals Using Pulsed Eddy Current Sensors[D]. Thesis, the University of Huddersfield in partial fulfilment of the requirements for the degree of Doctor of Philosophy (The United Kingdom), 2003
    [148]边肇祺,张学工.模式识别[M].北京:清华大学出版社,2000
    [149]唐磊,陈德智,盛剑霓.涡流无损检测信号的一种分析方法[J].无损检测,1998,20(10):271-273
    [150]陈天璐.海底管道传感器阵列损伤信息的提取和融合研究[D]. [博士学位论文],上海交通大学,2007年
    [151] F.Mokhtarian, A.Mackworth. Theory of multiscale, curvature-based shape representation forplanar curves[J]. IEEE Trans, On pattern analysis and machine intelligence, vol.14, pp.789-805,1992
    [152] M. Morozov, G.Y. Tian and D. Edgar. Comparison of PEC and SFEC NDE Techniques[J].Nondestructive Testing and Evaluation,24(1–2) (2009), pp. 153–164.
    [153] M.N. James,D.J. Hughes,Z. Chen, et al. Residual stresses and fatigue performance [J]. Engineering Failure Analysis,2007,14 (2):pp. 384-395.
    [154] C. Mendibide, P. Steyer, C. Esnouf, et al. X-ray diffraction analysis of the residual stress state in PVD TiN/CrN multilayer coatings deposited on tool steel [J]. Surf. Coat. Technol. 2005 (200): pp.165-169.
    [155] J Lu, D Retraint. A review of recent developments for residual stress studies[J]. J.Strain Analysis Eng. Design, Vol.33, No.20, 1998, pp.127-136
    [156] Harting M. A seminumerical method to determine the depth profile of the three dimensional residual stress state with X-ray diffraction[J]. Acta Mater., Vol.46, No.4, 1998, pp.1427-1436
    [157] M. O. Si-Chaib, H. Djelouah, T. Boutkedjirt. Propagation of ultrasonic waves in materials under bending forces [J]. NDT & E Int. 2005 (38): pp. 283-289
    [158]许占显.用检测残余应力方法预报航空件突变断裂的可行性[J].航空制造技术,2004,5:69-72
    [159] John W. Wilson, Gui Yun Tian, Simon Barrans. Residual magnetic field sensing for stress measurement[J]. NDT & E Int. 2007 (135): pp. 381-387
    [160] Webster, G.A. Development of a standard for the measurement of residual stress by neutron diffraction[J]. ICRS-6, Oxford, UK, 10-12 July 2000, Vol.1, pp.189-196
    [161] Gianni Albertin, et al. Determination of residual stress in materials and industrial components by neutron diffraction[J]. Meas. Sci. Technol. Vol.10, 1999, R56-R73.
    [162] T Gnaupel-Herold, H. J Prask, A V Clarks, et al. A comparison of neutron and ultrasonic determinations of residual stress[J]. Meas. Sci. Technol. Vol.11, 2000, pp.436-444.
    [163] A M Korsunsky, K E Wells, P J Withers. Mapping two-dimensional state of strain using synchrotron X-ray diffraction[J]. Scripta Materialia, Vol.39, No.12, 1998, pp.1705-1712
    [164] R A Owen, P J Withers, P J Webster. Synchrotron stress measurements of laser formed aluminum alloy sheet[J]. In ICRS-6 Conf.Proc., Oxford, United Kingdom, 10-12 July 2000, Vol.1,pp.82-89
    [165] R V Martins, S Grigull, U Lienert, et al. Investigation of the residual strain state in highly plastically deformed AL-MMC torsion samples using high energy synchrotron radiation[J]. In ICRS-6 Conf. Proc., Oxford, United Kingdom, 10-12 July 2000, Vol.1, pp.90-97
    [166] D.E. Grady and M.J. Ginsberg. Piezoresistive effects in ytterbrium stress transducers [J].Journal of Applied Physics, 1977. 48(6): pp.2179-2181
    [167] P.W. Bridgman. The physics of high pressure [M]. 4 ed. 1958, London: G.Bell and sons. 445.
    [168]何家文,徐可为,李家宝.残余应力概况[J].国际学术动态,1998,4:pp.75-76
    [169] Meaden, G.T. Electrical resistance of metals[M]. 1966, London: Heywood Books. 233.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700