用户名: 密码: 验证码:
中间盐法石煤灰渣酸浸提钒工艺的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钒具有优异的物理化学性质,在国防、冶金、化工和医学等行业有着广泛的应用,目前,国际、国内钒冶金行业发展迅速。国外提钒工业受提钒原料及提钒工艺所限,钒产量提高能力有限。国内市场主要依靠钒钛磁铁矿生产钒产品,钒产能受到钢铁产品产能的限制。石煤是我国另外一种重要的含钒矿物,但开发利用难度较大。为满足国际国内市场对钒产品日益增长的需求,必须加大对石煤钒矿资源的开发利用。
     石煤提钒技术工艺较多,但大多数都存在着污染严重、回收率低。资源浪费严重等问题。在对现有的石煤提钒工艺进行对比分析后,提出中间盐法石煤灰渣酸浸提钒工艺,具体为:石煤灰渣硫酸浸取→酸浸液提取铵明矾→结晶中间盐→中间盐溶解→萃取→反萃取→氨法沉钒→热解脱氨→V2O5产品。
     石煤灰渣浸取阶段使用硫酸作为浸出剂,合理的酸浸工艺条件为:硫酸浓度6mol/L、酸浸温度115℃、浸取时间4h、液固比3:1条件下,V2O5酸浸效率达到85.52%。对浸出过程动力学分析表明,灰渣中V2O5浸出过程处于固膜扩散控制过程,酸浸温度对提高V2O5酸浸效率有显著的作用。本工艺中提出用强酸溶液中结晶铵明矾的技术方法来除去溶液中绝大部分的Al3+离子。合理的铵明矾结晶工艺条件为:在硫酸铝浓度150-200 g/L,铵/铝摩尔比1.2左右,冷却速度15℃/h左右,结晶温度5℃左右条件下,铵明矾结晶率达到89.52%,酸浸液中的Al2O3浓度下降至5g/L左右。
     本文中提出中间盐结晶技术方法,从强酸溶液中提取V2O5。溶液温度140℃、酸度9mol/L、添加剂C、添加剂比例系数0.3等条件下,V2O5结晶率达到96.72%,溶液中V2O5浓度为0.37g/L。将滤液(返酸)返回酸浸阶段循环使用,可以节约51%的新酸投入。。中间盐晶体中V2O5含量4-6%,是灰渣含钒量的3-5倍。
     中间盐是一种水溶性较强的晶体,在温度95℃、液固比2:1、溶解时间4h的条件下,中间盐溶解效率达到99.63%。中间盐溶解液经还原、中和后,进行萃取,反萃取,反萃液氨法沉钒,多钒酸铵热解得到V2O5,V2O5产品纯度99.34%。
     中间盐法石煤灰渣湿法提钒工艺小试试验取得了圆满成功,全流程V2O5总回收率为82.80%。为验证小试试验所得工艺参数的合理性,检验提钒工艺的适用性,在小试试验获得成功后,我们对本工艺进行了放大规模的中试实验研究。
     中试实验规模为日处理灰渣700Kg,中试实验采用小试试验所得工艺参数,中试实验共分为三个阶段:新酸浸取实验、返酸浸取实验、中间盐溶解至热解脱氨实验,单个阶段依次进行,每个阶段连续运行48小时以上,中试实验共获得V205产品2530.7g。中试实验取得了与小试试验相同水平的技术指标,全流程V205总回收率为81.46%。中试实验结果说明,小试试验所得工艺参数是正确、合适的,同时证明了中间盐法石煤灰渣湿法提钒工艺在放大规模实验中的适用性,为日后的大规模工业生产提供了可靠的参考依据。
     本文用化学分析、SEM-EDS扫描电镜分析、XPS电子能谱分析、XRD衍射分析等分析手段,对中间盐晶体成分及物相组成进行分析,综合各项分析结果可知,中间盐中的物相组成为:K1.11V3O8、(NH4)(FexV1-x)(SO4)2、(NH4)Al(SO4)2、(NH4)Al(SO4)212H2O等四种。定量分析结果表明,中间盐晶体中K1.11V308含量仅为1.23%。因此,将中间盐晶体定位为一种多金属复合铵盐,其成分表达式可以表示为:(NH4)(AlxFeyVz)(SO4)2·nH2O,其中x+y+z=1,n=0或12。提出了中间盐晶体中含钒物相的生成反应方程式,依据经验公式,对含钒物相的热力学参数进行了估算,对两种含钒物相的生成反应进行了热力学计算,从理论角度对含钒物相的生成反应进行了分析,确定了K1.11V308的生成步骤。
Vanadium has got the extensive application in national defense, metallurgy, chemical and medicine, which leads to the rapid progress of vanadium products price and rapid development of vanadium metallurgy. However, the overseas vanadium throughout is restricted by the resource and technology, the output of vanadium products cannot get greatly raised. As for home market, the output is restricted by the output of iron product. Stone coal is another important mineral resource of vanadium in china..But it is difficult to get full use of the low grade stone coal. In order to fulfill the market demand of vanadium products, it is necessary to develop new technique to extract vanadium from stone coal.
     There have been so many process for vanadium extraction from stone coal. Due to environment pollution, low recovery rate and serious waste of the resource, clean and efficient process seldom appeared. Comparing and analyzing these existed vanadium extraction process, we propose a new process to extract vanadium from low grade stone coal:vanadium extraction by interim product with sulfuric acid leaching from ash of stone coal. It contains:acid leaching by sulfuric acid, aluminum ammonium sulfate crystallizing from leachate, interim product crystallizing, interim product dissolved by water, solvent extraction, back extraction, vanadium precipitation by ammonia and pyrogenation to be vanadium pentoxide.
     In the leaching phase, high concentration sulfuric acid is used to be leaching solution. The optimal operation conditions are as followed:the concentration of sulfuric acid is 6 mol/L, the leaching temperature is 115℃, the leaching time is 4 hours and the ratio of L/S is 3:1. With these conditions, leaching efficiency is 85.52%. The leaching kinetics of vanadium pentoxide is approached. The result shows that the diffusion through the solid film is the main limited step. Vanadium leaching efficiency is affected by temperature greatly. Aluminum ammonium sulfate crystallization method is proposed to remove the voluminous Al3+ in leachate. The optimal operation conditions are as followed:the concentration of aluminum sulfate is between 150 and 200 g/L, the molar ratio of ammonium to aluminum is about 1.2, cooling rate is about 15℃/h and the crystallization temperature is about 5℃。With the optimal operation conditions, the crystallization efficiency of aluminum ammonium sulfate is 89.52%, the concentration of aluminum sulfate in leachate is just about 5 g/L.
     In this research, interim product crystallizing method is proposed to extract vanadium from high concentration sulfuric acid. The optimal operation conditions are as followed:crystallizing temperature is 140℃, sulfuric acid concentration is over 9 mol/L, addictive is C, and the coefficient is 0.3. With the optimal operation conditions, interim product crystallization efficiency is 96.72%. The concentration of vanadium pentoxide in the filtrate is just 0.37g/L. The filtrate is named back acid and it goes back to the leaching phase. The dosage of sulfuric acid can be reduced by 49%. The content of vanadium pentoxide in interim product contains is between 4% and 6%, as 3to 5 times of ash.
     Interim product crystal can be dissolved by water easily. The optimal operation conditions are as followed:temperature is 95℃, L/S is 3:1, dissolving time is 4 hours. With the optimal operation conditions, the dissolution efficiency is 99.63%. The solution of dissolving interim product is deoxidized and neutralized. After that, the solution is extracted by organic solvent. The next phase is back-extraction, oxidization, precipitation and pyrogenation. The purity of vanadium penoxide is 99.34%.
     The interim product process of vanadium extraction succeeds in lab scale experiment study. Totally recovery rate of vanadium is 82.80%. To check the rationality of operation conditions conclude from lab experiment and applicability of the process, pilot-scale experiment is presecuted after the lab scale experiment.
     700kg ash was leached in the pilot-scale experiment, operation conditions of pilot-scale experiment is the same as lab scale experiment. Pilot-scale experiment is divided into three phases:sulfuric acid leaching experiment, back-acid leaching experiment and from interim dissolution to pyrogenation experiment. Each phase lasts over 48 hours.2530.7g vanadium penoxide is the main product of Pilot-scale experiment. Technical achievement is comparative to the lab scale experiment. Totally recovery rate of vanadium penoxide is 81.46%. Results of pilot-scale experiment show that operation conditions of lab scale experiment are feasible for large scale experiment. It provide dependable reference to the industry manufacture.
     In this research, interim product is researched by chemical analyze, SEM-EDS analyze, XPS analyze, XRD analyze and etc. for its chemical composition and phase composition. Result of all kinds of analyze show that the phase composition of interim product are K1.11V3O8, (NH4)(FexV1-x)(SO4)2, (NH4)Al(SO4)2, (NH4)Al(SO4)212H2O. Quantification analyzes shows that the content of K1.11V3O8 in the interim product is just 1.23%. So, interim product is named by complicated ammonium salt of kinds of metal. Structural formula of it is (NH4)(AlxFeyVz)(SO4)2·nH2O, which the sum of x, y, z is land n is Oor 12. With the predigestion and hypothesis of chemical reaction of interim product, Chemical equation of interim product was proposed based on the result of all kinds of analyze. By means of empirical equation, thermodynamic parameters of interim product are estimated. Chemical reaction of K1.11V3O8, (NH4)(FexV1-x)(SO4)2 are calculated in the light of thermodynamic function of state Gibbs Free Energy.
引文
[1]中国科学技术情报所重庆分所.国外钒钛资料选辑[M].重庆,1972.22-23.
    [2]廖世明,柏谈论.国外钒冶金[M].北京:冶金工业出版社,1985.11-13.
    [3]中国科学技术情报所重庆分所.国外钒钛[M].重庆,1972.35-36.
    [4]申泮文.钒分族[M].北京:科学技术出版社,1998.386-387.
    [5]席歆.国外钒应用概况[J].世界有色金属,2000,10(2):13-19.
    [6]刘世.钒的应用与展望[J].稀有金属与硬质合金,2006,13(6):23-27.
    [7]文友.钒的资源、应用、开发与展望[J].稀有金属和硬质合金,1996,5(3):51-56.
    [8]朱顺泉,孙娓荣.大规模蓄电储能全钒液流电池研究进展[J].化工进展,2007,26(2):207-211.
    [9]崔艳华,孟凡明.钒电池储能系统的发展现状及其应用前景[J].电源技术,2005,29(11):776-780.
    [10]S F R M. Vanadium Redox Battery:Positive Half-Cell Electrolyte Studies [J]. Journal of Power Sources,2008
    [11]张玲,李青,夏作理等.钒的医学应用研究进展[J].中国药物与临床,2006,6(11):843-845.
    [12]李青仁,王月梅,李晓波.钒的生物学功能及其与疾病的关系[J].微量元素与健康研究,2007,24(2):65-66.
    [13]颜世铭.钒的生理作用及其与健康的关系[J].广东微量元素科学,2008,15(10):28.
    [14]留多果夫斯基[苏].钒[M].北京:地质出版社,1954.63-64.
    [15]Jean B C. Dresler Extraction of Titanum, Vanadium and lorn from Titanomagnetite Deposits at Pipestone Lake,Manitoba,Canada [J]. Minerals Engineering,1995,8(2): 159-168.
    [16]朱保仓.高碳石煤提钒新工艺研究[D].西安;西安建筑科技大学,2007.13-14.
    [17]任学佑.金属钒的应用现状及市场前景[J].世界有色金属,2004,10(2):34-36.
    [18]王忠,王军.国内外五氧化二钒市场状况与分析[J].矿冶,2007,16(2):47-49.
    [19]赵立群.近两年钒市场回顾与展望[J].市场分析与预测,2007,26(12):16-19.
    [20]宾智勇.提钒研究进展与五氧化二钒的市场状况[J].湖南有色金属,2006,22(3):16-21.
    [21]孙朝晖.钒产业发展之我见[J].矿产综合利用,2008,6(12):40-44.
    [22]彭声谦,侯兰杰,刘福生.四川广旺石煤提钒焙烧过程中钒价态的变化[J].中国矿业,1999,8(1):69-72.
    [23]冯其明,何东升,张国范.石煤提钒过程中钒氧化和转化对钒浸出的影响[J].中国有色金属学报,2007,17(18):13-19.
    [24]李中军,庞锡涛.淅川钒矿钠化焙烧过程中热学性能,物相变化及钒氧化态变化的研究[J].化工冶金,1993,14(2):123-125.
    [25]贺洛夫.从石煤提取五氧化二钒[J].无机盐化工,1994,15(4):39-41.
    [26]彭声谦,许国镇.石煤提钒中钠盐的作用[J].西南工学院学报,1998,13(1):9-12.
    [27]邓庆云,刘松英.石煤钠化焙烧,酸浸,离子交换提钒新工艺的试验研究[J].稀有金属与硬质合金,1993,20(12):27-31.
    [28]邹晓勇,田仁国.含钒石煤复合添加剂焙烧法生产五氧化二钒工艺的研究[J].湖南冶金,2005,33(5):3-6.
    [29]姬云波,童雄,叶国华.提钒技术的研究现状和进展[J].国外金属矿选矿,2007,9(1):10-13.
    [30]张中豪.钙化焙烧冶炼V205新工艺研究[J].新技术新工艺,1999,15(3):33-36.
    [31]戴文灿.石煤资源清洁利用及固废资源化研究[D].广州;广东工业大学,2002.60-62.
    [32]欧阳昌伦.石煤无盐焙烧萃取提钒工艺浅析[J].稀有金属,2000,15(1):11-15.
    [33]宾智勇.钒矿石无盐焙烧提取五氧化二钒试验[J].钢铁钒钛,2006,27(1):21-24.
    [34]李晓健.酸浸-萃取工艺在石煤提钒工业中的设计与应用[J].中国矿业,2005,16(3):69-72.
    [35]王斌.石煤浸出液离子交换法提钒的研究[J].钢铁钒钛,2007,28(1):22-24.
    [36]张云,范必威,林海玲.D290树脂从石煤酸浸液中吸附钒的工艺[J].矿物岩石,2000,20(4):95-98.
    [37]邹晓勇,欧阳玉祝.含钒石煤无盐焙烧酸浸生产五氧化二钒工艺的研究[J].化学世界,2000,15(3):17-20.
    [38]李中军,庞锡涛.弱酸性铵盐沉钒工艺条件研究[J].郑州大学学报(自然科学版), 1994,26(3):83-86.
    [39]何东升,冯其明,张国范.碱法从石煤中浸出钒试验研究[J].有色金属,2007,20(4):15-18.
    [40]郑祥明.石煤提钒新工艺研究[D].湘潭;湘潭大学,2003.22-24.
    [41]郑祥明,田学达,张小云.湿法提取石煤中钒的新工艺研究[J].湘潭大学自然科学学报,2003,25(1):43-45.
    [42]邴桔,龚胜,龚竹青.从石煤中提取五氧化二钒的工艺研究[J].稀有金属,2007,31(5):670-672.
    [43]向小艳,王明玉,肖连生.石煤酸浸提钒工艺研究[J].稀有金属与硬质合金,2007,35(3):10-13.
    [44]鲁兆伶.用酸法从石煤中提取五氧化二钒的试验研究与工业实践[J].湿法冶金,2002,21(4):175-178.
    [45]杨静翎,金鑫.酸浸法提钒新工艺的研究[J].北京化工大学报,2007,34(3):254-256.
    [46]舒型武.石煤提钒工艺及废物治理综述[J].有色金属,2007,21(1):47-49.
    [47]邓志敢,魏昶.石煤提钒传统工艺与氧压酸浸新工艺对比[J].稀有金属,2007,31(2):140-143.
    [48]潘勇,于吉顺,吴红丹.石煤提钒的工艺评价[J].矿业快报,2006,21(4):10-13.
    [49]岑可法,倪明江,骆仲泱等.循环流化床锅炉理论设计与运行[M].北京:中国电力出版社,2002.212-213.
    [50]F H. A short history of hydrometallurgy [J]. Hydrometallurgy,2005,79(1):15-24.
    [51]李洪桂.湿法冶金学[M].长沙:中南大学出版社,1998.53-57.
    [52]Balaz P. Mechanical activation in hydrometallurgy [J]. Mineral Processing,2003, 72(3):341-354.
    [53]Gordon M. Ritcey G. Solvent Extraction in Hydrometallurgy:Present and Future [J]. TsingHua Science and Technology,2006,11(2):137-152.
    [54]王小江,刘武汉,蒲德利.多钒酸铵熔化过程中的钒损失分析及对策[J].四川有色金属,2006,20(12):35-38.
    [55]郭翠香.碱浸一电解法从含铅废物和贫杂氧化铅矿中提取铅工艺及机理[D].上海;同济大学,2008.65-66.
    [56]胡建锋.从废钒触媒中提钒新工艺的研究[D].昆明;昆明理工大学,2006.86-87.
    [57]《有色金属提取冶金手册》编委会.有色金属提取冶金手册·稀有高熔点金属[M].北京:冶金工业出版社,2002.897-890.
    [58]许国镇.石煤中钒的价态及物质组成对提钒工艺的指导作用[J].煤炭加工与综合利用,1989,22(5):5-8.
    [59]F.哈伯斯.冶金原理[M].北京:冶金工业出版社,1978.121-123.
    [60]傅崇悦.有色冶金原理[M].北京:冶金工业出版社,2007.86-89.
    [61]王建华.化学反应工程基本原理[M].成都:成都科技大学出版社,1989.42-43.
    [62]莫鼎成.冶金动力学[M].长沙:中南工业大学出版社,1987.75-76.
    [63]何东升,冯其明,张国范.石煤钠化焙烧料酸浸动力学[J].北京科技大学学报,2008,30(9):977-980.
    [64]胡天觉曾,袁兴中.湿法炼锌废渣中硫脲浸出银的动力学[J].中国有色金属学报,2001,11(5):933-937.
    [65]李浩然,冯雅丽,罗小兵.湿法浸出粘土矿中钒的动力学[J].中南大学学报(自然科学版),2008,39(6):1181-1184.
    [66]佟志芳,毕诗文,李慧莉.高炉铝酸钙炉渣浸出过程动力学[J].过程工程学报,2005,5(4):399-402.
    [67]肖纯,杨声海.硫化锌精矿空气氧化硫酸浸出的动力学研究[J].有色金属(冶炼部分),2008,1):7-10.
    [68]杨声海唐,张凯.高硅硫铁矿烧渣浸出过程动力学机理[J].中南工业大学学报,2001,32(6):583-586.
    [69]占寿祥,郑雅杰.硫铁矿烧渣酸浸反应动力学研究[J].化学工程,2006,34(11):36-39.
    [70]张荣良, 唐淑贞 佘HCl-NaCl浸出铅锑合金氧化吹炼渣过程中锑的浸出动力学[J].过程工程学报,2006,6(4):543-547.
    [71]徐耀兵,施正伦,骆仲泱等.含钒灰渣酸浸提钒工艺酸浸条件试验研究[J].浙江大学学报(工学版),2009,待发表.
    [72]曾国清.利用轻烧铝土矿粉生产硫酸铝铵的生产工艺流程的研究[J].广东化工,2007,34(6):56-57.
    [73]Matjie.R, Vab H. Extraction of alumina from coal fly ash generated from a selected low rank bituminous South African coal [J]. Minerals Engineering,2005,18(3): 299--310.
    [74]韩效钊,徐超,张兴法.高岭土酸熔法制备硫酸铝和铵明矾的研究[J].非金属矿2002,25(5):26-27.
    [75]田凯,赵剑宇.微波酸化法从高岭土制取铵明矾的研究[J].无机盐工业,2006,38(9):32-34.
    [76]A S. Variation in fly ash properties with milling and acid leaching [J]. Fuel,,2005, 84(1):89-96.
    [77]李汶军,施尔畏,郑燕青.晶体的生长习性[J].人工晶体学报,2000,29(5):24-27.
    [78]杜慧玲,冯世宏,贾太轩.晶体生长机理的研究进展[J].有色矿冶,2004,20(5):48-50.
    [79]李琳.冷却速率对蔗糖连续冷却结晶过程的影响研究[J].中国甜菜糖业,1995,10(5):11-13.
    [80]Arend H,. H J. Crystal Growth in Science and Technology [M]. New York::Plenum Press,1989.115-117.
    [81]董宝霞.含钒多金属氧酸盐的过渡金属配合物修饰化研究[D].长春;东北师范大学,2007.66-67.
    [82]魏念.钽铌酸钾及相关复合材料的制备和机理研究[D].武汉;华中科技大学,2007.53-54.
    [83]钟秦,刘爱民.湿法烟气脱硫中石灰石溶解特性[J].南京理工大学学报,2000,24(6):562-4.
    [84]徐素国 梁,赵阳升.钙芒硝岩盐化学溶解特性实验研究[J].矿业研究与开发,2004,24(2):11-14.
    [85]罗正鸿 李,洪文晶等.黄铜矿在酸性介质中的溶解行为研究[J].现代化工,2007,27(增刊2):153-155.
    [86]何小凤,李运刚,田薇等.SiO2在KCl-NaCl-NaF体系中的溶解度及溶解机理[J].中国有色金属学报,2008,18(5):930-933.
    [87]朱宜,汪裕苹,陈文雄.扫描电镜图象的形成处理和显微分析[M].北京:北京大学出版社,1991.86-90.
    [88]廖乾初,蓝芬兰.扫描电镜分析技术与应用[M].北京:机械工业出版社, 1990.53-57.
    [89]布里格斯D.B.聚合物表面分析;X射线光电子谱(XPS)和静态次级离子质谱(SSIMS)[M].北京:化学工业出版社2001.103-110.
    [90]C. D. Wagner, L. E. Davis. Handbook of X-Ray Photoelectron Spectroscopy [M]. Minnesota:Perkin-Elmer Corporation & Physical Electronics Division,1979.25-30.
    [91]刘芬.X射线光电子能谱数据处理及分峰步骤[J/OL]2005,10-15.
    [92]王英华.X光衍射技术基础[M].北京:原子能出版社1987.7-15.
    [93]马礼敦.近代X射线多晶体衍射;实验技术与数据分析[M].北京:化学工业出版社2004.32-40.
    [94]JCPDS. Powder diffraction file:alphabetical indexes. Inorganic phases [M]. NewYork:International Centre for Diffraction Data,1992.1002-1008.
    [95]JCPDS. Mineral powder diffraction file search manual [M]. NewYork, 1980.1345-1402.
    [96]胡志强.无机材料科学基础教程[M].北京:化学工业出版社,2004.86-87.
    [97]萨克斯纳,邓淦泉.造岩矿物固溶体热力学[M].北京:地质出版社1979.112-113.
    [98]斯庭智,曹荐.Rietveld法定量分析Al2O3-TiC复合陶瓷相含量[J].硬质合金,2007,24(2):115-8.
    [99]王育华.固体化学[M].兰州:兰州大学出版社,2008.86-90.
    [100]鲍景旦.实用热化学[M].上海:华东化工学院出版社,1989.53-55.
    [101]傅鹰.化学热力学导论[M].北京:科学出版社,1963.132-135.
    [102]刘国强,曾潮流, 杨.钒酸捏化合物的制备和性能[J].无机材料学报,2002,17(6):1163-1166.
    [103]刘进,张泽志,兰尧中.固相配位法制备低结晶度钒酸锂电极材料[J].电源技术,2006,130(7):552-554.
    [104]Zhan X C, Li X H. Large-scale synthesis of Li1.2V3O8 as a cathode material for lithium secondary battery via a soft chemistry route [J]. Materials Research Bulletin, 2009,44(10):472-477.
    [105]兰正学.化学热力学计算[M].西安:陕西科学技术出版社1986.95-98.
    [106]林平娣.无机化学热力学[M].北京:北京师范大学出版社,1986.172-178.
    [107]曾宪诚,张元勤.化学反应热动力学理论与方法[M].北京:化学工业出版社2003.32-35.
    [108]Glashan. 化学热力学[M].中国计量出版社 1989.81-85.
    [109]Willy B S..Additive rules for the estimation of thermochemical properties [J]. Chem Review,1969,69(3):279-324.
    [110]洪广言.无机固体化学[M].科学出版社,2002.21-22.
    [111]G. K. Moiseev, Jean S. Some calculations methods for estimation of thermodynamical and thermochemical properties of inorganic compounds [J]. Prog Crystal Growth and Charact,1995,30(1):23-81.
    [112]郭培民赵.双参数模型估算复合氧化物的标准生成焓[J].钢铁研究学报,2007,19(5):26-28.
    [113]温元凯,邵俊,王三山.含氧酸盐及矿物生成热的简单计算法[J].金属学报,1979,15(1):1-12.
    [114]温元凯邵,陈德炜.含氧酸盐矿物生成自由能的计算[J].地质科学,1978,5(4):348-356.
    [115]伊赫桑.巴伦,程乃良,牛四通.纯物质热化学数据手册[M].北京:科学出版社,1989.348-356.
    [116]叶大伦,胡建华.实用无机热力学数据手册[M].北京:冶金工业出版社,2002.357-369.
    [117]I. Barin O K. Thermochemical properties of inorganic substances [M]. New York Springer-Verlag,1973.853-870.
    [118]林传坤,白正华,张哲儒.矿物及有关化合物热力学数据手册[M].北京:科学出版社,1985.212-220.
    [119]Kuhaschewski. An emprirical of the heat capcities of inorganic com pounds [J]. High temperatures-high pressures,1977,9(4):1-12.
    [120]李小斌李,刘祥民.复杂硅酸盐矿物Gibbs自由能和焓的一种近似计算法[J].硅酸盐学报,2001,29(3):232-237.
    [121]Leitener J. Estimation of heat capacities of solid mixed oxides [J]. Thermochimica Acta,2003,395(1):27-46.
    [122]山口乔,邢文彬,董洪哲.化学热力学入门[M].北京:冶金工业出版社, 1985.86-90
    [123]钱逸泰.结晶化学导论[M].合肥:中国科学技术大学出版社2005.19-23.
    [124]施尔畏,陈之战,元如林等.水热结晶学[M].北京:科学出版社,2004.5-7.
    [125]周志朝.结晶学[M].杭州:浙江大学出版社1997.124-126.
    [126]杨佼庸,刘大星.萃取[M].北京:冶金工业出版社,1988.135-150.
    [127]高宏成焦姜.关于中性磷类萃取体系微乳现象的研究[J].北京大学学报(自然科学版),1999,35(6):745-749.
    [128]Ritcey G M. Solvent Extraction in Hydrometallurgy:Present and Future [J]. TsingHua Science and Technology,2006,11(2):137-152.
    [129JL.J. Lozano, Cel G. Comparative study of solvent extraction of vanadium from sulphate solutions by primene 81R and alamine 336 [J]. Minerals Engineering,2003, 16(3):291-294.
    [130]汪家鼎,陈家镛.溶剂萃取手册[M].北京:化学工业出版社,2001.536-542.
    [131]胡建锋,朱云.P204萃取硫酸体系中钒的性能研究[J].稀有金属,2007,31(3):367-370.
    [132]杨传芳,洪滨,陈家镛.磷酸三丁酯-煤油从浓酸溶液中萃取Zr的第三相行为[J].Chemistry and Adhesion,1995,2):66-69.
    [133]马荣骏.长沙:长沙矿冶研究院,1994.
    [134]周桂英阮,温建康.铜溶剂萃取过程界面乳化的原因分析[J].稀有金属,2006,30(6):756-760.
    [135]刘晓荣邱,胡岳华.稀释剂改性对萃取分相性能的影响[J].湿法冶金,2001,20(1):9-13.
    [136]蒋馥华,张萍.用溶剂萃取法从废催化剂制备高纯五氧化二钒[J].硫酸工业,1996,2):32-36.
    [137]M. Rakib. Geb D. Study of complex formation of vanadium(V) with sulphate ions using a solvent extraction method [J]. Hydrometallurgy,1996,43(2):355-366.
    [138]A. M. Spasic, Nil N. D, Miller D. B. Performance of demulsions:entrainment problems in solvent extraction [J]. Chemical Engineering Science,1997,52(5): 657-675.
    [139]吴淞平.溶剂萃取法从二次资源中回收贵金属金、钯、铂的研究[D].广州;华 南理工大学,2002.53-55.
    [140]彭达平张范.从石煤酸浸液中萃取钒的工艺研究[J].成都理工学院学报,2001,28(1):107-110.
    [141]徐光宪.稀土的溶剂萃取[M].北京:化学工业出版社,1987.60-63.
    [142]朱屯.现代铜湿法冶金[M].北京:冶金工业出版社,2002.15-17.
    [143]陈家镛.湿法冶金手册[M].北京:冶金工业出版社,2005.635-650.
    [144]李中军,庞锡涛,刘长让.弱酸性铵盐沉钒工艺条件研究[J].郑州大学学报(自然科学版),1994,26(3):83-85.
    [145]张传武.硫酸铵沉钒制取高品位五氧化二钒生产实践[J].钢铁钒钛,1981,1):25-30.
    [146]王小江刘,蒲德利.多钒酸铵熔化过程中的钒损失分析及对策[J].四川有色金属,2006,4):35-39.
    [147]付子忠.全逆流混合澄清器在工厂中的应用[J].稀有金属,1998,22(3):219-221.
    [148]刘蒲星.常规混合澄清器与逆流混合澄清器简析[J].不详,不详,37-40.
    [149]宫传文.改进型箱式混合澄清器在提钒新工艺中的应用[J].铀矿冶,2001,30(2):131-134.
    [150]全学军,苏立民,陈家镛.双混合室萃取箱研究Ⅱ:澄清室流型与结构[J].成都理工学院学报,1995,5):15-19.
    [151]赵瑞林.浅谈搅拌设备功率计算公式对推进式搅拌器的适用范围[J].铀矿冶,19(3):185-188.
    [152]伍耀明.大型单级萃取槽的工艺设计[J].中国有色冶金,2005,1):29-33.
    [153]娄成武,司晓悦.我国金属矿产资源可持续利用的问题与对策[J].金属矿山,2003,300(12):1-4.
    [154]王永生.发展循环经济实现我国矿产资源可持续利用[J].中国矿业,2004,13(6):32-34.
    [155]徐晓军,张杰.21世纪我国矿区资源型产业可持续发展的问题[J].矿冶工程,2000,20(3):5-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700