用户名: 密码: 验证码:
污泥制备陶粒轻集料及其热动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
污泥(sewage sludge)是污水处理过程产生的主要副产物,因其含有大量致病菌和重金属而往往具有长期毒性和不可降解性,对于污泥的处理处置和资源化利用研究一直以来都是深受关注的重大课题。
     本次研究通过X射线衍射分析、傅里叶红外光谱分析、激光粒径分析、氮气静态吸附比表面积测试与孔径分析、原子吸收分光光度法、TG-DSC综合热分析法和量热仪燃料热值分析等技术手段研究污泥、粉煤灰、河道底泥以及陶粒配方坯料球的物理、化学及热反应动力学特性表征;根据描述试样物质主要热反应阶段特征的最概然机理函数,采用二次多项式非线性拟合方法模拟TGA变化趋势。根据正交实验设计方法,结合适宜烧制膨胀型陶粒的最佳原材料化学组成设计坯料配合比实验,通过重复实验找寻烧制污泥陶粒的最佳物料配合比;以正交实验设计方法开展弧叶型旋转窑烧制陶粒轻集料的焙烧工艺参数最优化研究,探索焙烧工艺参数影响陶粒主要产品性能品质的变化规律。
     结合前文研究所得烧制污泥陶粒的最佳原材料质量配合比以及烧制污泥陶粒的弧叶型旋转窑焙烧工艺参数,依托中型弧叶型旋转窑开展烧制污泥陶粒轻集料放大实验实验研究,分析焙烧流程烟道气体产生特征;通过附带X射线微区能谱分析设备的扫描电子显微镜观察陶粒产品表面、剖面的微观结构特征以及产品微区元素含量分析;全面分析了污泥陶粒产品的建材特性品质和环境安全性指标;简要论述了污泥陶粒的应用范畴。
     通过以上各方面的研究得到以下主要结论:
     1)实验用污泥试样的挥发性固体含量约为32.09%;样本的粒径大致呈现正态分布,其粒径处于39.9μm~1002.37μm范围的污泥颗粒物占总量的89.1%,平均粒径为235.793μm;BET比表面积较小,多孔结构不明显。污泥可能包含的官能团物质有:水合结晶物、CO_3~(2-)、酰胺类C=O、SiO_4~(2-)、-CH_3、R_2CH_2和苯环异构体基团物质等;干基污泥的结晶度不高,样本中含有一定量砂粒,含有粘土类矿物质,所含晶体种类主要为α-石英相。
     2)随着升温速率的增大,污泥试样最大失重速率以及最大失重速率对应的转
     化率单调减小,达到最大失重速率的温度单调升高;试样总失重率受升温速率的影响无明显规律可循;污泥试样综合燃尽特性指数随升温速率提高单调减小。试样在空气氛围下的热反应过程遵循独立而又平行开展的简单热反应机理模式;最概然机理函数绘制的模拟TGA曲线能够精确揭示实验TGA曲线的热失重变化过程。污泥试样的干燥无灰基热值约为23.25 MJ/kg,具有燃料价值,能够在一定条件下实现自持燃烧。
     3)实验用粉煤灰的硅、铁、钙等主要元素的百分含量稍高于我国粉煤灰含量的平均值,铝和氧元素的含量以及烧失量低于平均水平;粉煤灰的堆积密度为835.24 kg/m~3,其粒径分布大致呈现正态分布,平均粒径为106.504μm;粉煤灰试样的BET比表面积较小,约为0.56 m~2/g;其BJH平均孔径为7.4982 nm,孔容仅为0.001027 cm~3/g,多孔结构不明显。粉煤灰试样在空气氛围、不同升温速率下存在一个主要的热失重阶段。
     河道底泥主要氧化物含量与粘土背景值比较接近,主要存在碳酸盐、硅酸盐化学基团物质;底泥样本的BET约为13.0893m~2/g,BJH平均孔径为12.39552nm;孔容仅有0.041187cm~3/g,试样多孔结构不明显,样本平均粒径为38.25μm。试样总的热失重率较小且随升温速率的影响变化规律不明显。
     4)实验获得最佳坯料配合比干基(wt%)为:污泥/粉煤灰/河道底泥=25%/15%/60%,最优化工艺参数分别为:预热温度350℃、焙烧终温1190℃、升温速率36K·min~(-1)、保温时间1min以及窑体旋转速率18π·min~(-1);按照坯料配比和最优工艺参数开展烧制污泥陶粒放大实验研究,制得陶粒产品外观呈现浅棕褐色,产品圆润且颗粒大小相对均匀;测得焙烧流程烟道气体最高温度为306.75℃,烟道所含气体浓度极大值分别为:SO_2为30.07mg/m~3,NO为17.93 mg/m~3、NO_2为2.06mg/m~3、CO为88.39mg/m~3;均符合大气污染物综合排放标准(GB16297-1996)之污染物综合排放标准浓度限值规定。
     5)测试了陶粒产品的主要建材品质以及陶粒浸出毒性,结果显示陶粒产品可做建材用且产品符合环境安全性要求;实验试配陶粒混凝土强度等级LC30混凝土标准件,在室温20±2℃,相对湿度为95%以上的标准养护室中养护28天后的抗压强度为30.0MPa,符合LC30强度等级陶粒混凝土要求;干基混凝土试件的导热系数为0.75 W·(m*K)~(-1)保温隔热性能优异。
     6)配方坯料球试样总的热失重率随升温速率的增加而单调减小,DSC曲线峰值温度随升温速率的提高而单调升高,综合燃尽特性指数随升温速率提高单调减小,配方坯料球在空气氛围、不同升温速率下的热反应服从各主要热反应进程独立而平行开展的简单热反应机理模式,模拟TGA曲线准确描述实验TGA曲线变化趋势。陶粒产品主要的物相构成包括石英(SiO_2)、方石英(SiO_2)、蓝晶石(Al_2SiO_5)、高温钠长石(NaAlSi_3O_8)和类似多铝红柱石(Al_6Si_3O_(13))的Al-Si-O结构等;重金属化合物(如铅、锰氧化物等)含量较少,其中石英是陶粒的主要物相构成。
Sewage sludge is a by-product of wastewater treatment plant. It always contained pathogen and heavy metals, the longterm toxicity and non-degradable characters of sewage sldudge is threatening the disposal and further utilization of the sludge. How to properly treat and make use of sewage sludge is becoming a focus.
     In this case, many useful method such as XRD, FT-IR, laser-particle size analyzer, BET surface area, atomic absorption spectrophotometry, Thermogravimetry and differential scanning calorimetric analyzer were employed to study the physical, chemical and thermal characters of sewage sludge, PFA, river sludge and green pellets prepared by sewage sludge, PFA and river sludge. According to the most probable mechanism functions of thermal process, it took a quadratic polynomial nonlinear fitting method to simulate the TGA (thermogravimetry analysis) curves.
     In accordance with the orthogonal design method and the optimal raw materials chemical composition, it designed experiments to carry out optimal mixture ratio. It also used orthogonal design method to arrange experiments to find out the optimal of firing processing parameters, and discover the influence of processing parameters against variation regularity of the main performance of ceramisite.
     A pilot-scale experiment of producing sewage sludge ceramisite was carried out with the optimal mixture ratio and firing processing parameters. The flue gas generated in the firing process was analysed. The microstructure of ceramisite surveyed through SEM and EDS methods. In this study, main building characteristics were tested, and the application category of ceramisite discussed.
     Through the researches above, the findings as follows were obtained;
     1)The volatile solid of sewage sludge is at about 32.09%, the distribution of particle size submit Gaussian distribution, the particles between 39.9μm~1002.37μm were about 89.1% in the samples, the average particle diameter is 235.793μm; the BET surface area was small, and the vesicular structure was not obvious. The probably contained functional group were including hydrate, CO_3~(2-), SiO_4~(2-), -CH_3, R_2CH_2, amide C=O, benzene ring isomer, etc. The crystallinity of sewage sludge were low and sand grain could be seen in it. The main crystal phase of sewage sludge wasα-SiO2.
     2)According to the heating rates increasing, the maximum weightless speed rate and the corresponding conversion rate were monotone decreasing, the temperature of reaching maximum weightless speed rate point was monotone increasing. There were no regularities between the weightlessness and heating rate. The synthesis combustion characteristics of sewage sludge were monotone decreasing with the increasing heating rate. The thermal process of sewage sludge under atmosphere was following a simple thermal reaction mechanism that could describe as individual and paralleled carried out reactions. The numerical simulated TGA curves could describe the change characters of experimental TGA weightlessness well. The dry ash-free basis of sewage sludge possessed heat value was at about 23.25 MJ/kg, this indicated that the sewage sludge could self-support combust in some certain cases.
     3)The main constituent such as Si, Fe, Ca content of PFA used in this study was higher than the average level of PFA in China. The LOI, Al and Oxygen constituent of PFA was lower than the average level. The packing density of PFA was 835.24 kg/m~3, the particle size distribution of PFA was following Gaussian distribution and the average particle size was 106.504μm. The BET surface area was 0.56m~2/g, BJH average pore size was 7.4982nm, pore volume was 0.001027cm~3/g and the vesicular structure was not obvious. There was one main weightlessness course of PFA under atmosphere and different heating rate.
     The oxide of river sludge was familiar with clay and the main chemical group was including carbonas and silicate. The BET surface area of river sludge was 13.0893m~2/g, BJH average pore size was 12.39552nm, pore volume was 0.041187 cm~3/g and the vesicular structure was not obvious. The average particle size was 38.25μm. The total weightlessness of river sludge is relative small. There were no regularities between total weightlessness and heating rate.
     4)Here came out the optimal mixture ratio of green pellets in dried basis (wt%) was sewage sludge/PFA/river sludge equal to 25%/15%/60% through experiments, and the optimal firing processing parameters were the pre-heat temperature 350℃, final temperature 1190℃, heating rate 36K?min-1, holding time 1 mins and the rotary speed 18π?min-1. In accordance with the optimal mixture ratio and firing processing parameters, a pilot-scale experiment carried out. The results showed that the ceramisites appearance was light brown and the shape was uniform. The maximum temperature of flue gas during the firing process was about 306.75℃, and the gas composition analyzed results could describe as following (maximum content): SO2 was 30.07mg/m~3, NO was 17.93mg/m~3, NO2 was 2.06mg/m~3 and CO was 88.39mg/m~3. The results showed that the flue gas generated in firing process could fit the Chinese Integrated emission standard of air pollutants.
     5)The extraction toxicity and building material characters of ceramisite were tested, and the results showed that the ceramisite could be used as building materials, the ceramisite and its manufactures could fit environmental safety requirements. Try producing light concrete with ceramisite at the intensity level of LC30, by standard curing after 28 days to test the compression strength and coefficient of heat conductivity of the light concrete. The testing results showed that light concrete compression strength could fit the quality requirement of LC30 light concrete and coefficient of heat conductivity of the light concrete is significantly lower than normal concrete.
     6)The total weightlessness of pellets prepared by sewage sludge, PFA and river sludge was monotone decreasing with the increasing of heating rate. The DSC curves main peaks temperature was monotone rising with the increasing of heating rate, the synthesis combustion characteristics of pellets was monotone decreasing with the increasing of heating rate. The pellets thermal reactions under atmosphere with different heating rate could described as a simple thermal reaction mechanism that indicated the main thermal process submit individual and paralleled thermal mechanisms. The simulated TGA curves could discover the experimental TGA curves variation trend exactly. The main phase composition of ceramisite was including quartz (SiO2), cristobalite (SiO2), kyanite (Al2SiO5), albite (NaAlSi3O8), mullite (Al6Si3O13) and so on. The heavy metal compounds such as oxide of Pb and Mn were less, and quartz is the main phase composition in ceramisite.
引文
[1]张增强,薛澄泽.城市污水污泥的堆肥化和资源化[J].环境保护, 1997. 1(7): 12-15.
    [2]邓晓林,王国华,任鹤云.上海城市污水处理厂的污泥处置途径探讨[J].中国给水排水, 2000. 16(5): 19-22.
    [3]林云琴,周少奇.我国污泥处理、处置与利用现状[J].能源环境保护, 2004. 18(6): 15-18.
    [4]余杰,田宁宁,王凯军.中国城市污水处理厂污泥处理、处置问题探讨分析[J].环境工程学报, 2007. 1(20): 82-86.
    [5]董文茂.污泥农用:引发土壤污染风险[J].环境保护, 2007.15(3): 65-67.
    [6]李媛.焚烧工艺在污水厂污泥处理中的应用[J].中国环保产业, 2004(11): 32-33.
    [7] Flynn J H. Therochim. Acta. [J]. 1992. 203(1): 519-526.
    [8] S, Vyazovkin, Wight C A. Int. Reviews in Physical Chemistry[J]. 1998. 17(3): 407-433.
    [9]陈镜泓,李传儒.热分析及其应用[M]. 1985,科学出版社:北京.
    [10]王培铭,许乾慰.材料研究方法[M]. 2005,科学出版社:北京.
    [11] Kissinger H E, Chem. Anal[J]. 1957. 29(11): 1702-1706.
    [12] Achar B N, Brindley G W, Sharp J H. Anal. Chem[J]. 1966. 41(14):2060-2062.
    [13] Friedman H L. J. Macromolecular Sci. (Chem.)[J]. 1967.41:57
    [14] Reich L, Levi W. Macromolecular Reviews[J]. New York: Wiley-Interscience, 1968: 173.
    [15] Freeman E S, Carroll B. Phys. Chem.[J]. 1958(62): 394.
    [16] Phadnis A B, Deshpande V V. Thermochim, in Acta[J]. 1983. p. 361-367.
    [17] Coats A W, Redfern J P. Nature[J]. 1964. 201(4914): 68-69.
    [18] Ozawa T, Bull., Chem. Soc.[J]. Jpn., 1965. 38(11): 1881-1886.
    [19] Flynn J H, Wall L A. Polym. Sci. Part B, Polymer Letters[J]. 1966. 4(5): 323-328.
    [20] , Gorbatchev V M.J. Therm. Anal.[J]. 1975. 8(2): 349-350.
    [21] Maccallum J R, Tanner J. Eur. Polymer J[J]. 1968(4): 333.
    [22] Hu R Z, Yang Z Q, Ling Y J. thermochim. Acta[J]. 1988. 123:135.
    [23]杨正权,胡荣祖,梁燕军,等.物理化学学报[J]. 1986. 2(1): 13-21.
    [24] Starink M.J. Thermochim. Acta[J]. 1996. 288(1-2): 97-104.
    [25] Ozawa T. Thermochim. Acta[J]. 1992. 203(1): 159-165.
    [26] Sestak J., Malek J.Solid State Ionics[J]. 1993. 63(63): 245.
    [27] Malek J., Smrcka V. Thermochim. Acta[J]. 1991. 186(1): 153-169.
    [28] Malek J., Thermochim. Acta[J]. 1992. 200(1): 257-269.
    [29] F, Lee Y, Dollimore D. The identification of the reaction mechanism in rising temperature kinetic studies based on the shape of the DTG curves[J]. Thermochim.Acta., 1998. 323: 75-81.
    [30] W Wilburn F, Dollimore D. Non-isothermal kinetics: a different approach[J]. Thermochim.Acta., 2000. 357/358: 141-145.
    [31]李海波,柳青,孙铁珩,等.中国城市污泥资源化利用研究进展[J].三峡环境与生态, 2008. 1(2):42-47.
    [32]许国仁,邹金龙,孙丽欣.污泥作为添加剂制备轻质陶粒的试验研究[J].哈尔滨工业大学学报, 2007. 39(04): 557-560.
    [33]黄德志,何少先,江映翔.污水处理厂脱水污泥制作轻质陶粒添加剂的研究[J].环境科学学报, 2000.(S1): 129-132.
    [34]王兴润,金宜英,等.污泥制陶粒技术可行性分析与烧结机理研究[J].环境科学研究, 2008. 16(06): 80-84.
    [35]王兴润,金宜英,杜欣,等.城市污水厂污泥烧结制陶粒的可行性研究[J].中国给水排水, 2007. 2(07): 11-15.
    [36]金宜英,王兴润,杜欣,等.城市生活污水处理厂污泥烧结制陶粒技术可行性研究[J].有色冶金设计与研究, 2007(Z1): 210-214.
    [37] Wang Xingrun, Jin Yiying, et al. Development of lightweight aggregate from dry sewage sludge and coal ash[J]. Waste Management, 2009. 29(4): 1330-1335.
    [38]罗晖,钱觉时,陈伟,等.污水污泥页岩陶粒烧胀特性[J].硅酸盐学报, 2010. 19(07): 1247-1252.
    [39]杨雷,罗树琼,张印民.利用城市污泥烧制页岩陶粒[J].环境工程学报, 2010. 4(05): 1177-1180.
    [40]李寿德,刘蓉,高隽,等.利用污泥生产膨胀陶粒的试验研究与生产中的几个问题[J].砖瓦, 2011. 29(01): 52-55.
    [41]钱觉时,罗晖,陈伟,等.污水污泥页岩陶粒的烧成工艺与性能[J].材料科学与工艺, 2010. 25(06): 852-856.
    [42]邓成,陈伟,范英儒,等.原状脱水污泥复合页岩制备砖和陶粒的前景[J].三峡环境与生态, 2010. 11(05): 35-37+46.
    [43]齐元峰, ,岳钦艳,岳敏,等.用于水处理填料的超轻污泥-粉煤灰陶粒的研制[J].功能材料, 2010. 47(06): 1097-1101+1105.
    [44]严捍东.生活污泥改性烧制超轻陶粒的研究[J].环境污染与防治, 2005. 27(01):63-66+1-2.
    [45]李玉林.利用城市污水厂污泥制备陶粒的试验研究[J].中国环保产业, 2008. 7(03): 32-35.
    [46] Wang li-ao, et al., Sintering condition of sewage sludge for artificial lightmass aggregate[J]. Journal of Central South University of Technology, 2009.(S1): 270-275.
    [47] Xu, G. R., J. L. Zou, G. B. Li. Stabilization of heavy metals in ceramsite made with sewage sludge[J]. Journal of Hazardous Materials, 2008. 152(1): 56-61.
    [48]黄川,黄晶,王里奥,等.采用配方均匀设计法利用脱水污泥制备陶粒的研究[J].环境工程学报, 2010. 39(04): 919-925.
    [49] Chiou, Ing-Jia. Lightweight aggregate made from sewage sludge and incinerated ash[J]. Waste Management, 2006. 26(12): 1453-1461.
    [50]岳敏,岳钦艳,李仁波,等.城市污水厂污泥制备陶粒滤料及其特性[J].过程工程学报, 2008. 29(05): 972-977.
    [51]杨健,赵丽敏,陈巧燕,等.石英砂和陶粒蚯蚓生物滤池的污泥减量化效果比较[J].中国给水排水, 2008. 3(07): 12-15.
    [52]韩术鑫.新型填料—污泥粉煤灰陶粒在生物滤池中处理合成废水的效果研究[D]. 2010,山东大学硕士学位论文.
    [53] Kangduk, Kim, Kang Seunggu. Impact sound reduction analysis of concrete slab containing artificial lightweight aggregates fabricated using a sewage sludge[J]. Materials Science Forum, 2007. 544-545: 581-584.
    [54]蒋建国,杜雪娟,杨世辉,等.城市污水厂污泥衍生燃料成型的研究[J].中国环境科学, 2008. 13(10): 904-909.
    [55]张长飞,葛仕福,赵培涛,等.污泥合成燃料的研制及燃烧特性研究[J].环境科学学报, 2011. 17(01): 130-135.
    [56]张长飞,葛仕福,赵培涛,等.污泥燃料化技术研究[J].环境工程, 2010. 28(S1): 377-380.
    [57] Buck, P., W. Triebel. Operating experience with sewage sludge co-combustion in the coal-fired power plant in Heilbronn[J]. VGB PowerTech, 2000. 80(12): 56-58.
    [58] Suzuki, Yoshizo, et al. Pressurized fluidized bed combustion of sewage sludge (Energy recovering from sewage sludge by power generation system[J]. JSME International Journal, Series B: Fluids and Thermal Engineering, 2004. 47(2): 186-192.
    [59] Shen Lilly, Dong-Ke Zhang. Low-temperature pyrolysis of sewage sludge and putrescible garbage for fuel oil production[J]. Fuel, 2005. 84(7-8): 809-815.
    [60] Storm, C., H. Spliethoff, K. R. G. Hein. Generation of a gaseous fuel by pyrolysis of biomass and sewage sludge for use as reburn gas in coal-fired boilers[J]. Clean Air, 2005. 6(3): 289-328.
    [61]吴静,姜洁,周红明.我国城市污水处理厂污泥产沼气的前景分析[J].给水排水, 2009. 27(S1): 101-104.
    [62]胡萍,严群,宋任涛,等.蓝藻与污泥混合厌氧发酵产沼气的初步研究[J].环境工程学报, 2009. 38(03): 559-563.
    [63]孟庆杰,沙丽,曾志英,等.我国城市污水厂污泥、沼气产量与综合利用现状及前景[J].中国市政工程, 1996.13(04):50-55.
    [64]康晓鹍,王世和.城市污水处理厂污泥沼气资源化利用[J].中国沼气, 2009. 9(02): 35-37.
    [65]韩伟,陈红,姚欣,等.固定化活性污泥厌氧发酵生物制氢(英文)[J]. Journal of Forestry Research, 2010. 20(04): 509-513+526.
    [66]李永峰,张文启,刘大伟,等.活性污泥制氢系统中发酵细菌的分离与鉴定[J].哈尔滨商业大学学报(自然科学版), 2005. 7(05): 563-565+571.
    [67]杏艳,赵金安,樊耀亭,等.含纤维素类生物质的生物制氢[J].太阳能学报, 2006. 4(07): 656-660.
    [68]朱建良,何世颖.活性污泥降解有机物制氢技术[J].化工时刊, 2003. 1(04): 5-9.
    [69] Dominguez, A., J. A. Menendez, J. J. Pis. Hydrogen rich fuel gas production from the pyrolysis of wet sewage sludge at high temperature[J]. Journal of Analytical and Applied Pyrolysis, 2006. 77(2): 127-132.
    [70] Dominguez, A., et al. Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating[J]. Bioresource Technology, 2006. 97(10): 1185-1193.
    [71]贾斌,刘志华,李小明,等.剩余污泥为燃料的微生物燃料电池产电特性研究[J].环境科学, 2009. 52(04): 1227-1231.
    [72]赵庆良, ,姜珺秋,王琨,等.微生物燃料电池处理剩余污泥与同步产电性能[J].哈尔滨工程大学学报, 2010. 31(06): 780-785.
    [73]方丽,刘志华,李小明,等.微波预处理污泥上清液为燃料的微生物燃料电池产电特性研究[J].环境科学, 2010. 31(10): 2518-2524.
    [74]马培东,王里奥,黄川,等.改性污泥用作垃圾填埋场日覆盖材料的研究[J].中国给水排水, 2007. 10(23): 38-41+45.
    [75]杨石飞,辛伟.改性污泥作填埋场覆盖材料室内试验研究[J].上海地质, 2004. 5(03):19-23.
    [76]张鹏,吴志超,陈绍伟,等.污水厂污泥作填埋场覆盖材料的试验研究[J].环境科学研究, 2002. 13(02): 45-47.
    [77]黄川,马培东,王里奥,等.消化污泥作为垃圾填埋场覆盖材料的研究[J].环境污染与防治, 2007. 11(03): 197-199+225.
    [78]薛澄泽,马芸,张增强,等.污泥制作堆肥及复合有机肥料的研究[J].农业环境保护, 1997. 1(01): 11-15+31+47.
    [79]卢杰,李成江,薛文源.污泥与城市垃圾混合堆肥技术[J].城市环境与城市生态, 1992. 3 (02): 17-20+26.
    [80]陈玲,赵建夫,李宇庆,等.城市污水厂污泥快速好氧堆肥技术研究[J].环境科学, 2005. 37(05): 192-195.
    [81]赵丽君,杨意东,胡振苓.城市污泥堆肥技术研究[J].中国给水排水, 1999. 21(09): 58-60.
    [82] Fang, M., et al. Changes in biological parameters during co-composting of sewage sludge and coal ash residues[J]. Bioresource Technology, 1998. 64(1): 55-61.
    [83] Zorpas, Antonis A., et al. Compost produced from organic fraction of municipal solid waste, primary stabilized sewage sludge and natural zeolite[J]. Journal of Hazardous Materials, 2000. 77(1-3): 149-159.
    [84] Sanchez-Arias, Virginia, et al. Enhancing the co-composting of olive mill wastes and sewage sludge by the addition of an industrial waste[J]. Bioresource Technology, 2008. 99(14): 6346-6353.
    [85] Fernandez, Jose M., et al. Acid-base properties of humic substances from composted and thermally-dried sewage sludges and amended soils as determined by potentiometric titration and the NICA-Donnan model[J]. Chemosphere, 2007. 69(4): 630-635.
    [86] Cheng, Hefa, et al. Application of composted sewage sludge (CSS) as a soil amendment for turfgrass growth[J]. Ecological Engineering, 2007. 29(1): 96-104.
    [87] Tarrason, D., et al. Differences on nitrogen availability in a soil amended with fresh, composted and thermally-dried sewage sludge[J]. Bioresource Technology, 2008. 99(2): 252-259.
    [88] Aggelides S. M, P. A. Londra. Effects of compost produced from town wastes and sewage sludge on the physical properties of a loamy and a clay soil[J]. Bioresource Technology, 2000. 71(3): 253-259.
    [89]王里奥,陶玉,罗书鸾,等.利用城市污泥堆肥及建筑弃土种植麦冬研究[J].环境工程学报, 2010. 4(10): 2367-2372.
    [90]曹仁林,霍文瑞,贾晓葵,等.园林绿地施用污泥堆肥对环境影响研究[J].环境科学研究, 1997. 10(03): 46-50.
    [91]张增强.污泥堆肥在园林绿地的利用[J].农业环境保护, 1996. 15(01): 36-40.
    [92]张增强,唐新保.污泥堆肥化处理对重金属形态的影响[J].农业环境保护, 1996. 15(04):188-190.
    [93]吕彦,马利民.快速堆肥对污泥中重金属的影响[J].东华理工学院学报, 2005. 28(01): 30-33.
    [94] Oleszczuk, Patryk. The evaluation of sewage sludge and compost toxicity to Heterocypris incongruens in relation to inorganic and organic contaminants content[J]. Environmental Toxicology, 2007. 22(6): 587-596.
    [95]金燕,李艳霞,陈同斌,等.污泥及其复合肥对蔬菜产量及重金属积累的影响[J].植物营养与肥料学报, 2002. 8(03): 288-291.
    [96]李国学,黄焕忠,黄铭洪.施用污泥堆肥对土壤和青菜(Brassica chinensis)重金属积累特性的影响[J].中国农业大学学报, 1998. 2(01): 113-118.
    [97]郭兰,田若涛,王雁卿,等.城市污泥和污泥垃圾堆肥作为肥源对作物重金属积累的影响[J].农业环境保护, 1995. 14(02):67-71.
    [98]陈同斌,李艳霞,金燕,等.城市污泥复合肥的肥效及其对小麦重金属吸收的影响[J].生态学报, 2002. 22(05): 643-648.
    [99] Wei Yongjie, Yangsheng Liu. Effects of sewage sludge compost application on crops and cropland in a 3-year field study[J]. Chemosphere, 2005. 59(9): 1257-1265.
    [100]陶玉,王里奥,黄川,等.稻草调理剂的掺量对污泥堆肥的影响研究[J].中国给水排水, 2010. 26(21): 98-101.
    [101]陈大勇,王里奥,林登发,等.复合微生物菌剂对污泥堆肥营养学指标的影响[J].中国给水排水, 2010. 26(01): 20-23.
    [102]朱建平,常钧,芦令超,等.利用城市垃圾、污泥烧制生态水泥[J].硅酸盐通报, 2003.(02): 57-61.
    [103]杨力远,杨俊,马军涛.利用污水厂污泥配料煅烧水泥熟料研究[J].武汉理工大学学报, 2007. 29(11): 11-13+24.
    [104]范方禄,陈益民.论利用城市污泥烧制水泥的迫切性[J].中国建材, 2005.29 (06): 76-79.
    [105] Valls, S., E. Vazquez. Stabilization and solidification of sewage sludges with Portland cement. Cement and Concrete Research[J], 2000. 30(10): 1671-1678.
    [106] Pan Shih-Cheng, Dyi-Hwa Tseng, Chau Lee. Use of sewage sludge ash as fine aggregate and pozzolan in portland cement mortar[J]. Journal of Solid Waste Technology and Management, 2002. 28(3): 121-130.
    [107] Onaka T. Sewage can make Portland cement: A new technology for ultimate resue of sewage sludge[J]. Water Science and Technology, 2000. 41(8): 93-98.
    [108] Malliou O., et al. Properties of stabilized/solidified admixtures of cement and sewage sludge[J]. Cement and Concrete Composites, 2007. 29(1): 55-61.
    [109]李庆斌,张心耳,李微,等.活性污泥制砖[J].环境科学, 1986. 7(02): 56-58+93.
    [110]林子增,孙克勤.城市污泥为部分原料制备黏土烧结普通砖[J].硅酸盐学报, 2010. 38(10): 1963-1968.
    [111] Anderson M., R. G. Skerratt. Variability study of incinerated sewage sludge ash in relation to future use in ceramic brick manufacture[J]. British Ceramic Transactions, 2003. 102(3): 109-113.
    [112]张君,谷晋川,张蔓.磷酸活化法制备污泥含碳吸附材料的研究[J].化工科技, 2009. 17(04): 5-8.
    [113]张蔓,谷晋川,张君,等.剩余污泥制备吸附材料的条件探讨[J].云南化工, 2009. 36(05): 1-4.
    [114] Zhai Yun-Bo, et al. Adsorbent prepared from sewage sludge by chemical activation and its application to sulfur dioxide adsorption[J]. Transactions of Nonferrous Metals Society of China (English Edition), 2004. 14(SUPPL.): 122-126.
    [115] Bashkova, Svetlana, et al. Adsorption of SO2 on sewage sludge-derived materials[J]. Environmental Science and Technology, 2001. 35(15): 3263-3269.
    [116] Pietrzak, Robert, Teresa J. Bandosz. Reactive adsorption of NO2 at dry conditions on sewage sludge-derived materials[J]. Environmental Science and Technology, 2007. 41(21): 7516-7522.
    [117] Rio, S., et al. Structure characterization and adsorption properties of pyrolyzed sewage sludge[J]. Environmental Science and Technology, 2005. 39(11): 4249-4257.
    [118] Jindarom, Charothon, et al. Surface characterization and dye adsorptive capacities of char obtained from pyrolysis/gasification of sewage sludge[J]. Chemical Engineering Journal, 2007. 133(1-3): 239-246.
    [119]曲波,刘俊新.溶解氧对活性污泥合成可生物降解塑料—PHB的影响[J].环境工程学报, 2008. 2(12): 1585-1588.
    [120]王红,周浩生,孙学信,等.应用TGA-FTIR研究污泥与煤的热解规律[J].华中理工大学学报, 1999. 27(09): 38-40.
    [121]王兴润,金宜英,王志玉,等.应用TGA-FTIR研究不同来源污泥的燃烧和热解特性[J].燃料化学学报, 2007. 35(01): 27-31.
    [122] Chen X., S. Jeyaseelan. Study of sewage sludge pyrolysis mechanism and mathematical modeling[J]. Journal of Environmental Engineering, 2001. 127(7): 585-593.
    [123] Thipkhunthod, Puchong, et al. Describing sewage sludge pyrolysis kinetics by a combination of biomass fractions decomposition[J]. Journal of Analytical and Applied Pyrolysis, 2007. 79(1-2 SPEC. ISS.): 78-85.
    [124]蒋旭光,马增益,池涌,等.污泥的异重流化床燃烧机理研究[J].燃料化学学报, 2000. 28(04): 328-331.
    [125] Lu Ji-Dong, et al. Kinetics of sewage sludge combustion[J]. Ranshao Kexue Yu Jishu/Journal of Combustion Science and Technology, 2001. 7(3): 271-274.
    [126] Li Peisheng, et al. Combustion reaction kinetics of sewage sludge/coal mixtures based DTA method[J]. Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2008. 36(6): 119-121.
    [127] Stolarek P., S. Ledakowicz. Thermal processing of sewage sludge by drying, pyrolysis, gasification and combustion[J]. Water Science and Technology, 2001. 44(10): 333-339.
    [128]廖艳芬,马晓茜.城市污水污泥燃烧特性和动力学特性分析[J].燃料化学学报, 2009. 37(03): 296-301.
    [129] Feng Hua, et al. Pyrolysis properties of municipal sewage sludge[J]. Qinghua Daxue Xuebao/Journal of Tsinghua University, 2001. 41(10): 90-92.
    [130] Yue Xiao-Ming, et al. Combustion charcteristics and kinetics of municipal sewage sludge[J]. Zhongguo Kuangye Daxue Xuebao/Journal of China University of Mining and Technology, 2009. 38(5): 741-744.
    [131] Xiao Han-min, Xiao-qian Ma, Zhi-yi Lai. Isoconversional kinetic analysis of co-combustion of sewage sludge with straw and coal[J]. Applied Energy, 2009. 86(9): 1741-1745.
    [132]刘龙茂,陈建林,李娣,等.污泥的热解动力学实验研究[J].环境保护科学, 2008. 149(05): 33-35+41.
    [133]刘敬勇,孙水裕,许燕滨,等.造纸工业污泥燃烧特性及动力学实验研究[J].环境工程学报, 2010. 4(03): 693-699.
    [134]何必繁,王里奥,黄川.重庆城市污泥燃烧及动力学特性分析[J].中国电机工程学报, 2010, 30(35): 32-37.
    [135]何品晶,顾国维,李鹜中,等.城市污泥处理与利用[M]. 2003,科学出版社:北京.
    [136]李鸿江,顾莹莹,赵由才,等.污泥资源化利用技术[M]. 2010,冶金工业出版社:北京.
    [137]严继民,张启元,高敬琮,吸附与凝聚[M]. 1986,科学出版社:北京.
    [138]闫金定,崔洪,杨建丽,等.热重质谱联用研究兖州煤的热解行为[J].中国矿业大学学报, 2003. 32(3): 311-315.
    [139]聂其红,孙绍增,李争起,等.褐煤混煤燃烧特性的热重分析法研究[J].燃烧科学与技术, 2001. 7(1): 71-76.
    [140] A, Conesa J, et al. Kinetic study of the pyrolysis of sewage sludge[J]. Waste Management & Research, 1997. 15(3): 293-305.
    [141]宋薇,刘建国,聂永丰,等.含油污泥热解和燃烧的反应过程[J].清华大学学报:自然科学版, 2008. 48(9): 73-77.
    [142]胡荣祖.热分析动力学[M]. 2008,科学出版社:北京.
    [143] W, Cumming J. Reactivity of coals via a weighted mean activation energy[J]. Fuel, 1984. 63(10): 1436-1440.
    [144]杨时元.陶粒原料性能及其找寻方向的探讨[J].建材地质, 1997. 2(4): 14-19.
    [145]袁春林,张金明,段玖祥,等.我国火电厂粉煤灰的化学成分特征[J].电力环境保护, 1998. 14(1): 9-14.
    [146]王恩信.材料化学原理[M]. 1997,东南大学出版社:南京.
    [147]陆佩文.硅酸盐物理化学[M]. 1991,东南大学出版社:南京.
    [148] Trauner, E.J. Sludge ash bricks fired to above and below ash-vitrifying temperature[J]. Envy. Eng. Div. ASCE, 1991. 119(3): 506-519.
    [149]闫振甲,何艳君.陶粒生产实用技术[M]. 2004,化学工业出版社:北京.
    [150]张辰.污泥处理处置技术与工程实例[M]. 2006,化学工业出版社:北京.
    [151] Kato H, Takesue M. Manufacture of artificial fine lightweight aggregate from sewage sludge by multi-stage stream kiln[M]. in Berlin,Germany. 1994. p. 459.
    [152] T Mangialardi. Sintering of MSW fly ash for reuse as a concrete aggregate[J]. Journal of Hazardous Materials, 2001. B(87): 225-239.
    [153] Wainwright P. J., D. J. F. Cresswell. Synthetic aggregates from combustion ashes using an innovative rotary kiln[J]. Waste Management, 2001. 21(3): 241-246.
    [154]郑用熙.分析化学中的数理统计方法[M]. 1989,科学出版社:北京.
    [155]杨时元.陶粒原料性能及其找寻方向的探讨[J].中国非金属矿工业导刊, 1997. 4(4): 14-19.
    [156]刘贵云,奚旦立.利用河道底泥制备陶粒的试验研究[J].东华大学学报, 2003. 29(4): 81-83.
    [157]迟培云,张连栋,钱强.利用淤积海泥烧制超轻陶粒研究[J].新型建筑材料, 2003. 3(15):28-30.
    [158]张明华,张美琴,张子平.煤矸石陶粒的膨化机理及其研制[J].吉林建材, 1999. 4(2): 8-14.
    [159]王征,郭玉顺.粉煤灰高强陶粒烧胀规律的实验研究[J].新型建筑材料, 2002. 2(5): 10-11.
    [160]严捍东.生活污泥改性烧制超轻陶粒的研究[J].环境污染与防治, 2005. 27(1): 63-66.
    [161]贺君,王启山,仁爱玲,等.给水厂与污水厂污泥制陶粒技术研究[J].环境工程学报, 2009. 3(9): 1653-1657.
    [162]王兴润,金宜英,等.应用TGA-FTIR研究不同来源污泥的燃烧和热解特性[J].燃料化学学报, 2007. 35(1): 27-31.
    [163]马雪英,张岩波,韩春来.轻集料混凝土性能分析及工程应用[J].特种结构, 2003. 20(2): 73-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700