用户名: 密码: 验证码:
基于GIS的地质灾害风险评估方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地质灾害是包括自然因素或人为活动引发的危害人民生命和财产安全的山体滑坡、崩塌、泥石流、地裂缝等与地质作用有关的灾害。我国是世界上自然灾害最多、损失最严重的国家之一,灾害种类多,分布地域广,造成损失大。应对自然灾害是人类生存与可持续发展不可回避的问题之一,与风险共存,始终做到居安思危、防患于未然,是减灾和灾害管理的基本点和出发点。
     本文研究的基于GIS技术的面向突发性自然灾害应急响应、利用多源数据的地质灾害风险快速评估方法研究,是面向我国政府部门对地质灾害风险管理提出的重大需求,服务于政府及地方社会解决突发性地质灾害损失应急评价中存在的主要技术问题,为各类突发性自然灾害的救灾、减灾等提供信息保障和决策支持。主要内容如下:
     (1)阐述了地质灾害的定义及内涵,探讨了地质灾害风险评估的理论体系,在全面分析、总结国内外研究成果的基础上,分析了灾害评估研究的发展现状、趋势和不足;系统总结了基于GIS技术的地质灾害分析方法与风险评估的方法,主要包括危险性评估、易损性分析和风险评估的建模方法,建立了地质灾害风险评估的指标体系和评估流程,为地质灾害风险评估研究奠定了理论基础。
     (2)基于C#语言和ArcGIS Engine开发平台构建了地质灾害风险快速评估系统,该系统主要是面向突发性自然灾害的、支持基于多源数据的地质灾害风险快速评估技术,主要实现以下功能:①实现了空间分析常用的基本功能,如slope、aspect.curvature等地形属性的提取,栅格计算器,失栅转换,以及mask裁剪等功能;②实现了空间分析、空间统计和可视化表达功能;③实现了坡度、坡向、曲率、相对高差以及地貌类型划分的自动功能;④实现了提取河网的密度,构造密度、灾害点密度以及划分的自动功能;⑤实现了基于信息量模型和专家知识建立的灾害风险评估方法:⑥实现图层的可视化输入功能,以及输出(如:*.bmp、*.tif和*.JEPG)的功能。
     (3)以“4.14”玉树大地震为例,详细分析了震区环境地质条件,地震地质灾害空间分布特征,灾前灾后地质灾害变化监测,建立了震区地质灾害风险评价的指标体系,探讨了基于GIS技术的评估指标的提取和量化方法,完成了基于敏感系数、专家知识和GIS技术的地质灾害危险性评估、易损性分析、风险评估与制图的技术流程,并将灾区地质灾害风险划分为极高、高、中、低和无风险区五个等级,为灾后救灾减灾提供科学的决策支持,并提出了灾后恢复重建的建议和对策。
     (4)对“4.14”玉树震区的地质灾害风险评估结果表明:①地震对震区的破坏有限,但仍然加剧了局部地区次生地质灾害的危害性,滑坡、崩塌、泥石流等灾害大量发生于地震形成的破裂带两侧及周边,应采取充分避让、积极设防的措施来解决由此带来的不安全问题;②社会经济越发达的区域,由于人口、城镇密集,产业活动频繁,承载体的数量多、密度大、价值高,虽然其区域承载能力相对较强,相对损失率低,但绝对损失率和损失密度却较高,因此受灾害时的风险性也就最大。这一现象警示我们重新理解传统脆弱区和发展中的自然、社会、经济脆弱性,完善新形势下的灾害风险管理体制,以利于减少和应对新形势下的灾害风险。
Geological disasters, including landslides, collapses, debris flows and so on, are related to geological processes, which are induced by natural factors or artificial activities and are harmful to people's lives and property safety. China is one of the countries whose natural disasters occur largely and its loss is the most serious in the world, with many kinds of disasters, wide geographical distribution and great loss. It cannot be evaded to cope with natural disasters, which is one of the issues needed to be solved for human survival and sustainable development. Living with risks and always being prepared to take preventive measures are a basic point and starting point for disaster mitigation and disaster management.
     In this paper, to the unexpected natural disaster emergency response, study on the rapid disaster risk assessment method with multi-source data based on GIS, is the major requirements of geological disaster risk management suggested by China's government departments, which would serve to government and local community to solve the major technical problems existing in the loss of geological disasters emergency evaluation, and provide information-assurance and decision-making support for all kinds of unexpected natural disaster response, mitigation, etc. The following major elements:
     (1) The definition and connotation of geological disasters were described. The theoretical system of geological disaster risk assessment was discussed. Based on the analysis and summarizations of researches home and aboard, the dissertation tries to analyze the development status,trends and shortages of geological disaster risk assessment research.Systematic summary of the geological disaster analysis and risk assessment methods based on GIS were executed, including the model technology of hazard assessment, vulnerability assessment and risk assessment. Geological disaster risk assessment index system and evaluation flow were built.It laid the theoretical foundation for the geological disaster risk assessment studies.
     (2) Geological disaster risk rapid assessment system was built based on C# program and development platform of ArcGIS Engine.The system was mainly served for government departments to facing the unexpected natural disaster emergency response,and with the technology of using multi-source data to assessed risk of geological disaster.The major functions of this system are:①Realize the common basic function of spatial analysis, extraction of terrain property, such as slope, aspect, curvature, raster calculator, vector and raster conversion, and clip with mask, and so on.②Realize the function of spatial analysis, spatial statistic and Visual Expression.③Automatically partition slope factor, slope direction factor, curvature factor, relative relief and geomorphologic information.④Realize the function of extracting drainage density, fracture density, disaster points density and automatically partition.⑤Function of geological disaster risk assessment based on information value methodology and expert knowledge.⑥Function of automatically input and visually output mapping, such as*.bmp,*.tif,*.jepg, and so on.
     (3) A case study in "4.14" Yushu earthquake, this dissertation is detailed analysis of environmental geological conditions, spatial distribution characteristics of earthquake-induced secondary geological disasters, pre-disaster and post-disaster monitoring of geological disasters. Earthquake-induced secondary geological disaster risk assessment index system was built and extraction and quantitative methods of evaluating indexes based on GIS technology were discussed. Technological flow of earthquake-induced secondary geological disaster hazard assessment, vulnerability analysis and risk assessment and mapping based on sensitivity coefficient, expert knowledge and GIS technology were finished. Risk assessment map was categorized into five classes, that is, "very low", "low", "moderate", "high" and "very high" Some suggestions and strategies were given and would provide decision-making support for emergency relief and post-earthquake reconstruction in the area.
     (4) The result of risk assessment of geological disaster induced by Yushu earthquake indicated:①Earthquake intensified hazards of the secondary geological disasters in local areas, although its damage is limited. Landslides, collapses, debris flows disasters mostly occurred on both sides of earthquake rupture zone and its surrounding. Fully avoiding and safety measures should be taken to resolve the insecurity problem.②In socio-economic developed areas,the risk of disasters will be the greatest. This is because the population and the cities are crowded, the industry activity is frequent, and there are many hazard bearing bodies with high density and value.Although their bearing capacity of regional disaster is relatively strong and the loss is relatively low, the absolute loss and its density is actually high. It warns us to understand vulnerable regions of the traditional and the vulnerability of developing nature,society and economy. It is necessary to improve disaster risk management system under the new situation so that disaster risk could be reduced.
引文
②《辞海(1999版)》,上海辞书出版社,2000年。
    [1]A.Gunther, A.Carstensen, W.Pohl.2002. Slope stability management using GIS. Instability-Planning and Management,265-272.
    [2]Adams, J.1995. Risk, University College London Press, London, pp 228.
    [3]Alexander D. Confronting Catastrophe. Oxford:Oxford University Press,2000.
    [4]Anderson J R, Hardy E E,Roach J T. A land use with remote sensor data. Geological survey professional paper 964. U S Government Printing Office, Washington,DC,1976.
    [5]Ayalew L, Yamagishi H.2005. The application of GIS based Logistic regression for landslide susceptibility mapping in the Kakuda Yahiko Mountains, Central Japan. Geomorphology,65(1-2):15-31.
    [6]Ayalew, L. and Yammagishi, H.,2005.The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology,65(1-2):15-31.
    [7]Biswajeet, P. an Saro, L., 2007.Utilization of Optical Remote sensing Data and GIS Tools for Regional Landslide Hazard Analysis Using an Artificial Neural Network Model.Earth Science Frontiers,14(6):143-151.
    [8]Busoni.E, P.S.Snachis, C.Calzolari et al.. Mass Movement and Erosion Hazard Patterns by Multivariate Analysis of Landscape Integrated data:the Upper Orcia River Valley(siena, Italy)case.Catena,1995.
    [9]C.Cheurbini. Probabilistic and fuzzy reliability analysis in stability assessment. INSITABILITY Planing and management:209-217.
    [10]Carrar A.,1983.Multivariate models for landslide hazard evaluation. Mathematical Geology.15(3):403-427.
    [11]Catani F, Farina P, Moretti S, Nico G and Strozzi T.2005.On the application of SAR interferometry to Geomorphological studies:estimation of landform attributes and mass movements. Geomorphology,66(1-4):119-131.
    [12]Chadwick J, Dorsch S, Glenn N, Thackray G, Shilling K.2005.Application of multi-temporal high-resolution imagery and GPS in a study of the motion of a canyon rim landslide. ISPRS Journal of Photogrammetry and Remote Sensing,59(4):212-221.
    [13]Chen R F, Chang K J, Angelier J,et al.2006. Topographical changes revealed by high resolution airborne LiDAR data:The 1999 Tsaoling landslide induced by the Chi Chi earthquake. Engineering Geology,88(3-4):160-172.
    [14]Chen,Z., B.C.Burchrfiel, Y.liu, et al.2000, Global Positioning system measurements from eastern Tibet and their implications for India/Eurasia intercontinental deformation, J.Geophys, Res.,105:16,215-16,227.
    [15]Cheng K S, Wei C and Chang S C.2004. Locating landslides using Multitemporal satellite images. Advances in Space Research,33(3):296-301.
    [16]Chung C.F., Fabbri A.G..1993. The representation of geoscience information for data integration. Nontenewable Resources,2(2):122-228.
    [17]Crichton, D.1999. The risk triangle, in Ingleton, J. (ed.), Natural Disaster Management, Tudor Rose, London, pp 102-103.
    [18]Dai, C.F. and Lee, C.F.,2002.Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology,42(3-4):213-228.
    [19]De La Cruz-Reyna, S.1996. "Long-Term Probabilistic Analysis of Future Explosive Eruptions", pp.599-629 in R. Scarpa and R.I. Tilling (eds.),1996, Monitoring and Mitigation of Volcano Hazards, Springer-Verlag Berlin Heidelberg New York.
    [20]Defries, R.S, and Townshend, J.R.G..1994. NDVI-derived land cover classifications at aglobal scale. International Journal of Remote Sensing,15:3567-3586.
    [21]Demoulin A and Chung C.2007. Mapping landslide susceptibility from small datasets: A case study in the Pays de Herve (EBelgium).Geomorphology,89(3~4):391-404.
    [22]Du J C and Teng H C.2007.3D laser scanning and GPS technology for landslide earthwork volume estimation. Automation in Construction,16(5):657-663.
    [23]Farina P, Colombo D, Fumagalli A, Marks F, Moretti S.2006.Permanent Scatterers for landslide investigations:outcomes from the ESA-SLAM project. Engineering Geology, 88(3-4):200-217.
    [24]Fell R, Lacasse S, Leroi E.2005. A framework for landslide risk assessment and management. In:F. Hungr, Couture & Eberhardt (Editor), The International Conference on LandslideRisk Management A. A. Balkema Publishers, Vancouver, Canada, pp. 3-26.
    [25]Fourniadis I G, Liu J G and Mason P J,2007. Landslide hazard assessment in the Three Gorges area, China, using ASTER imagery:Wushan—Badong. Geomorphology, 84(1-2):126-144.
    [26]Glenn N F, Streutker D R, Chadwick D J, Thackray G D, Dorsch SJ.2006. Analysis of LiDAR-derived topographic informationfor characterizing and differentiating landslide morphology and activity[J]. Geomorphology,73(1-2):131-148.
    [27]Guzzetti,F., Malamud,B.D., Turcotte,D.L. et al..2002. Power-law correlations of landslide areas in central Italy. Earth ang Planetary Science Letters,195(3-4):169-183.
    [28]Helm, P.1996. Integrated risk management for natural and technological disasters: Tephra,15(1),4-13.
    [29]Hervas J, Barredo JI, Rosin P L, Pasuto A, MantovaniF,Silvano,S.2003. Monitoring landslides from optical remotely Sense dimagery:the case history of Tessina landslide, Italy. Geomorphology,54(1-2):63-75.
    [30]IPCC (2001) Climate change 2001:Impacts, Adaptation and Vulnerability, Summary for Policymakers, WMO.
    [31]Jones, R. and Boer, R.2003. Assessing current climate risks Adaptation Policy Framework:A Guide for Policies to Facilitate Adaptation to Climate Change, UNDP, in review, see http://www.undp.org/cc/apf-outline.htm).
    [32]Kramer,S.L..1996. Geotechnical Earthquake Engineering. Orentice-Hall, Upper Saddle River, NJ.653 pp.
    [33]Lambin E.F. Ehrlich D. Combing vegetation indices and surface temperature for land-covermapping at broad spatial scales. International Journal of Remote Sensing, 1995,16(03):573-579.
    [34]Lee S and Lee M J.2006. Detecting landslide location using KOMPSAT 1 and its application to landslide—susceptibility mapping at the Gangneung area, Korea. Advancesin Space Research,38(10):2261-2271.
    [35]Lin W T, Chou W C, Lin C Y,et al.2005. Vegetation recovery monitoring and assessment at landslides caused by earthquake in Central Taiwan. Forest Ecology and Management,210(1-3):55-66.
    [36]Longhurst R. The assessment of community in hazard prone area. Disaster,1995,19(3): 269-270.
    [37]Meisina C, Zucca F, Fossati D, et al.2006. Ground deformation monitoring by using the Permanent Scatterers Technique:The example of the Oltrepo Pavese (Lombardia,Italy). Engineering Geology,88(3-4):240-259.
    [38]Metternicht G, Hurni L, Gogu R.2005. Remote sensing of landslides:An analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments. Remote Sensing of Environment,98(2-3):284-303.
    [39]Michael-Leiba, M., Baynes, F., and Scott, G.2000, Quantitative landslide risk assessment of Cairns, Australia, in E. Bromhead., N. Dixon and M-L. Ibsen (eds.), Landslides in Research, Theory and Practice,3 volumes, Proceedings of VIII International Symposium on Landslides, Cardiff, Wales,26-30 June 2000, Thomas Telford, London 2, pp1059-1064.
    [40]Mollerhaug S. Useful vulnerability assessment Information Security Technical Report. 2003,8(4):78-84.
    [41]Morgan, M. G. and M. Henrion.1990. Uncertainty:A guide to dealing with uncertainty in quantitative risk and policy analysis. New York:Cambridge University Press.
    [42]Nichol J E, Shaker A and Wong M S.2006. Application of high resolution stereo satellite images to detailed landslide hazard assessment.Geomorphology,76(1-2):68-75.
    [43]Noferini L, Pieraccini M, Mecatti D,et al.2007. Using GB-SAR technique to monitor slow moving landslide. EngineeringGeology,95(3-4):88-98.
    [44]Ohlmacher,G.C., Davis,J.C., Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Lansas,USA. Engineering Geology,2003, 69(3-4):331-343.
    [45]Paradise T R.2005. Perception of earthquake risk in Agadir, Morocco:A case study from a Muslim community. Global Environmental Change Part B:Environmental Hazards,6(3):167-180.
    [46]Pradhan,B..2010. Remote sensing and GIS-based landslide hazard analysis and cross-validaton using multivariate logistic regression model on three test areas in Malaysia. Advances in Space Research,45(10):1244-1256.
    [47]R.A. Lohnes, B.H. Kjartanson. Assessment of landslide hazards in Iowa, USA INSTABILITY Planing and management:323-330.
    [48]R.N. Chowdhury, P. fentje, M. Hayne, et al. Strategies for quantitative landslide Hazard assessment. INSTABILITY Planing and management:219-228.
    [49]Raes M E.Foouda Y. Nasr S. GIS assessment of the vulnerability of the Rosetta area,Egypt to impacts of sea rise. Environmental Monitoring and Assessment, 1997,47(1):59-77.
    [50]Rott H and Nagler T.2006. The contribution of radar interferometry to the assessment of landslide hazards. Advances in Space Research,37(4):710-719.
    [51]Rott H, Nagler T.2006. The contribution of radar interferometry to the assessment of landslide hazards. Advances in Space Research,37(4):710-719.
    [52]Royden, L H, Burchfiel, B C, King, R W, et al.Surface deformation and lower crustal flow in eastern Tibet,Science,1997,276(5313):788-790.
    [53]Schulz W H.2007. Landslide susceptibility revealed by LIDAR imagery and historical records, Seattle, Washington. Engineering Geology,89(1-2):67-87.
    [54]Schwab M, Rieke-Zapp D, Schneider H,et al..2007. Landsliding and sediment flux in the Central Swiss Alps:A photogrammetric study of the Schimbrig landslide, Entlebuch. Geomorphology, In Press, Corrected Proof.
    [55]Singhroy V and Molch K.2004. Characterizing and monitoring rockslides from SAR techniques. Advances in Space Research,33(3):290-295.
    [56]Smith, K.1996. Environmental Hazards, Routeledge, London, pp 389.
    [57]Squarzoni C, Delacourt C and Allemand P.2003. Nine years of spatial and temporal evolution of the La Valette landslide observed by SAR interferometry. Engineering Geology,68(1-2):53-66.
    [58]Stenchion, P.1997. Development and disaster management, Australian Journal of Emergency Management,12 (3),40-44.
    [59]Terlien M.T.J., Van Westen, C.J., Van Asch, T.W.J.,1995. Deterministic modeling in GIS-based landslide hazard assessment. In:Carrar, A., Guzzetti, F.(Eds), Geographical Information Systems in Assessing Nature Hazards. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp.57-77.
    [60]Uitto J I. The geography of disaster vulnerability in megacities. Applied Geography, 1998,18(1):7-16.
    [61]UNDHA (1992) Internationally Agreed Glossary of Basic Terms Related to Disaster Management, United Nations Department of Humanitarian Affairs, Geneva.
    [62]UNDRO. Mitigating natural disasters, phenomena, effects and options. A manual for policy makers and planners. New York, UNDRO,1991.
    [63]United Nations (2002) Risk awareness and assessment, in Living with Risk, ISDR, UN, WMO and Asian Disaster Reduction Centre, Geneva,39-78.
    [64]United Nations, Department of Humanitarian Affairs, Internationally agreed glossary of basic terns related to disaster nanagement. DNA/93/36,Geneva,1992.
    [65]Vander Sande C J, de Jong S M, de Roo A P J. A segmentation and classification approach of IKONOS-2 imagery for land cover mapping to assist flood risk and flood damage assessment. International Journal of Applied Earth Observation and Geoinformation,2003,4:217-229.
    [66]Varnes D J. Landslide hazard zonation:A review of principle and practice. UNESCO. Paris,1984.
    [67]Weirich F and Blesius L.2007. Comparison of satellite and airphoto based landslide susceptibility maps.Geomorphology,87(4):352-364.
    [68]Wisner, J. D. and Tan, K. C.2000. Supply Chain M anagement and Its Impact on Purchasing. Journal of Supply Chain Management,36:33-42.
    [69]Wisner, J.D. and W.J. Corney, "Comparing Practices for Capturing Bank Customer Feedback:Internet versus Traditional Banking, " Benchmarking:An International Journal, V.8, No.3,2001, pp.240-250.
    [70]巴雅尔,敖登高娃,沈彦俊,等.地理信息系统支持下spot/vegetation NDVI影像的大尺度神经网络分类.红外与毫米波学报.2005,24(6):427-432.
    [71]毕海良.信息量法在西宁市斜坡稳定性评价中的应用.水文地质工程地质.1998,4:25-27.
    [72]蔡鹤生,周爱国,唐朝晖.地质环境质量评价的专家—层次分析定权法.地球科学—中国地质大学学报,1998,23(3):299-302.
    [73]陈博,李建平.近50年来中国季节性冻土与短时冻土的时空变化特性.大气科学,2008,32(3):432-443.
    [74]陈晓利,祁生文,叶洪.基于GIS的地震滑坡危险性模糊综合评价研究.北京大学学报(自然科学版)网络版(预印本).2007,2(2):1-6.
    [75]陈晓利,冉洪流,祁生文.1976年龙凌地震诱发滑坡的影响因子敏感性分析.北京大学学报(自然科学版).2009,45(1):104-110.
    [76]陈贻源.模糊数学,武汉:华中工学院出版社,1984.
    [77]陈永波,王成华.滑坡发生的危险边坡判断及预测预报分析.山地学报,2000,18(6):559-562.
    [78]陈玉,蔺启忠,王钦军.区域地质灾害评价模型综述.全国突发性地质灾害应急处置与灾害防治技术高级研讨会论文集,中国灾害防御协会,兰州,2010,pp5-8.
    [79]程丽莉.基于时序NDVI的区域土地覆被分类方法探讨.硕士学位论文,安徽师范大学,2007.
    [80]程凌鹏,杨冰等.区域地质灾害风险评价述评.水文地质工程地质.2001,28(3):75-78.
    [81]程维明,周成虎,柴慧霞等.中国陆地地貌基本形态类型定量提取与分析.地球信息科学学报,2009,11(6):725-736.
    [82]陈文凯,何少林,张景发等.利用遥感技术提取震害信息方法的研究进展.西北地震学报,2008,30(1):88-93.
    [83]褚洪斌,母海东等.层次分析法在太行山区地质灾害危险性分区中的应用.中国地质灾害与防治学报,2003,14(3):125-129.
    [84]柴贺军,刘汉超等.一九三三年叠溪地震滑坡堵江事件及其环境效应.地质灾害与环境保护,1995,6(1):7-17.
    [85]董颖,张丽君,徐为等.地质灾害风险评估理论与实践.北京:地质出版社,2009.
    [86]杜军,杨青华,严嘉等.基于GIS与信息量模型的汶川次生地质灾害危险性评价.地球科学——中国地质大学学报.2010,35(2):324-330.
    [87]杜灵通,李国旗.基于SPOT-VGT的宁夏盐池县近8年生态环境动态监测.北京林业大学学报.2008,30(5):46-51.
    [88]樊杰等.国家汶川地震灾后重建:规划资源环境承载能力评价.北京:科学出版社,2009
    [89]樊杰等.玉树地震灾后重建:资源环境承载能力评价.北京:科学出版社,2010.
    [90]范建容,田兵伟,程根伟等.基于多源遥感数据的5.12汶川地震诱发堰塞体信息提取.山地学报.2008,26(3):257-262.
    [91]范运晓,罗云,陈庆寿.区域承载体脆弱性评价指标体系研究.现代地质,2001,15(1):113-116.
    [92]方创林,Yehua Dennis Wei河西地区可持续发展能力评价及地域分异规律.地理学 报,2001,56(5):561-569.
    [93]冯夏庭,王泳嘉,卢世宗.边坡稳定性的神经网络估计.工程地质学报.1994,3(4):54-61.
    [94]傅文杰.GIS支持下基于支持向量机的滑坡危险性评价.地理科学.2008,28(6):838-841.
    [95]高庆华,马宗晋,张业成等.自然灾害评估.北京:气象出版社,2007.
    [96]高永利,费贤俊,马占琴.基于ahp-Fuzzy的地质灾害危险性评价研究.中国煤炭地质.2009,21(A01):29-31.
    [97]光磊.基于GIS的信息量法在滑坡危险性评价中的应用.地质与资源.2005,14(3):231-233.
    [98]国家科委国家计委国家经贸委自然灾害综合研究组,中国自然灾害区划研究进展.北京:海洋出版社,1998.
    [99]韩坤英,丁孝忠,范本贤等.基于GIS的区域地质编图方法.中国地质,2005,32(4)713-717.
    [100]何必等.地理信息系统原理教程.北京:清华大学出版社,2010,
    [101]何欣年,阎守.重大自然灾害的遥感实时监测、灾情评估及其预警系统.中国自然灾害灾情分析及减灾对策.武汉:湖北科学技术出版社,1990
    [102]胡德勇,李京,陈云浩等.GIS支持下滑坡灾害空间预测方法研究.遥感学报,2007,11(6):852-859.
    [103]黄崇轲,李浩川.中华人民共和国1:50万数字地质图和空间元数据.中国地质.2001,28(2):43-48.
    [104]黄玲娟,林孝松.滑坡与降雨研究.湘潭师范学院学报(自然科学版).2002,24(4):55-62.
    [105]黄润秋,向喜琼,巨能攀.我国区域地质灾害评价的现状及问题.地质通报.2004,23(11):1078-1082.
    [106]黄润秋,许强,沈芳等.基于GIS的地质灾害区域评价与危险性区划系统研究.第三届海峡两岸三地环境灾害研讨会论文集.台北,2001,177-182.
    [107]黄铁青,张琦娟.自然灾害遥感监测与评估的研究与应用.遥感技术与应用,1998,13(3):66-71.
    [108]江鸿彬.GIS支持下的地质灾害实时动态预测评估体系架构研究.中国地质灾害与预防学报.2007,18(4):19-23.
    [109]蒋永军,况明生.区域易损性分析、评估及易损度区划.灾害学,2001,16(3):59-64.
    [110]柯学,丁孝忠,韩坤英等.基于MAPGIS建立地质图数据的方法,中国地质学报.2008,14(2):186-192.
    [111]兰恒星,王岑涓,周成虎.地理信息系统支持下的滑坡灾害分析模型研究.工程地质学报,2002,10(4):421-427.
    [112]兰恒星,伍法权,周成虎等.GIS支持下的降雨型滑坡危险性空间分析预测.科学通报,2003,48(5):507-512.
    [113]李家存,李京,Jasmi.2007基于概率指数模型的区域滑坡危险性评价.中国图像图形学报.12(8):1471-1475.
    [114]李剑萍,官景得,韩颖娟等.基于SPOT/VEGETATION数据的陕甘宁退耕还林区植被分类.安徽农业科学,2009,37(27):13324-13326,13351.
    [115]李景宜,周旗,严瑞.国民灾害感知能力测评指标体系研究.自然灾害学报,2002,11(4):129-134.
    [116]李军,周成虎.基于栅格GIS滑坡风险评价方法中网格大小选取分析.遥感学报, 2003,7(2):86-92.
    [117]李祥根.中国新构造运动概论.北京:地震出版社,2003.
    [118]李雪平,唐辉明,陈实.基于GIS的Logistic回归在区域滑坡空间预测中的应用.公路交通科技.2005,22(6):152-155.
    [119]李雪平,唐辉明.基于GIS的分组数据Logistic模型在斜坡稳定性评价中的应用.吉林大学学报.2005,35(3):361-365.
    [120]李智毅,等.工程地质学基础.武汉:中国地质大学出版社,1982.
    [121]林爱文.武汉地区断裂构造研究.武汉测绘科技大学学报,1992,17(3):69-76.
    [122]刘传正.区域滑坡泥石流灾害预警理论与方法研究.水文地质工程地质.2004,31(3):1-6.
    [123]刘凤民,张立海,刘海青等.中国地震次生地质灾害危险性评价.地质力学学报,2006,12(2):127-131.
    [124]刘伟韬,宋传文,张国玉等.底版突水的专家评分—层次分析预测与评价.工程勘察2002(1):22-25.
    [125]刘希林,莫多闻.泥石流易损性评价.地理研究,2002,21(5):569-577.
    [126]刘希林,唐川.泥石流危险性评价.北京:科学出版社,1995.
    [127]刘星,胡光道.应用MORPOS系统证据权重法进行多元信息成矿预测.地质与勘探,2003,39(4):65-68.
    [128]刘行架,杨卫中.GIS在地质灾害防治规划中的应用.湖北地矿,2002,16(4):92-96.
    [129]柳家航,杨建峰,魏成阶等.震害遥感信息获取技术历史、现状和趋势.自然灾害学报,2004,13(5):46-52.
    [130]鲁道洪.基于ahp的模糊综合评判法在公路地质灾害的危险性评价.四川地质学报.2009,29(3):357-360.
    [131]陆守一.地理信息系统.2004,北京:高等教育出版社.
    [132]罗元华,张梁,张业成.地质灾害风险评估方法.北京:地质出版社,1998.
    [133]马保东,陈绍杰,吴立新等.基于SPOT-VGT NDVI的矿区植被遥感检测方法.地理与地理信息科学.2009,25(1):84-87.
    [134]马寅生,张业成,张春山等.地质灾害风险评价的理论与方法,地质力学学报,2004,10(1):7-18.
    [135]孟令超,卢晓仓,史晨晓等.基于信息量模型的达曲库区滑坡危险性评价.灾害学.2009,24(2):31-34.
    [136]聂洪峰,祁生文,孙进忠等.重庆市区区域稳定性层次分析模糊综合评价.工程地质学报,2002,10(4)408-414.
    [137]宁宝坤,曲国胜,张宁IKONOS卫星影像在城市防震减灾及震害评估中的应用.地震地质,2004,26(1):161-169.
    [138]乔建平.低山区滑坡危险度区划与预测研究——以三峡库区开县为示范.成都:四川大学出版社,2009.
    [139]乔建平.滑坡减灾理论与实践.北京:科学出版社,1997.
    [140]任玉环,刘亚岚,魏成阶等.汶川地震道路震害高分辨率遥感信息提取方法探讨.遥感技术与应用.2009,24(1):52-58.
    [141]阮沈勇,黄润秋.基于GIS的信息量法模型在地质灾害危险性区划中的应用.成都理工学院学报,2001,28(1):89-92.
    [142]阮沈勇,黄润球.基于GIS的信息量法模型在地质灾害危险性区划中的应用.成都理 工大学学报.2001,28(1):89-92.
    [143]沈芳,黄润秋,苗放等.地理信息系统与地质环境评价.地质灾害与环境保护,2000,11(1):6-10.
    [144]沈芳,黄润秋,苗放等.区域地质环境评价与灾害预测的GIS技术.山地学报,1999,17(4):338-342.
    [145]石菊松,石玲,吴树仁.滑坡风险评估的难点和进展.地质评论,2007,53(6):797-806.
    [146]石菊松,吴树仁,石玲.遥感在滑坡灾害研究中的应用进展.地质评论,2008,54(4):145-155.
    [147]石菊松,张永双,董诚等.基于GIS技术的巴东新城区滑坡灾害危险性区划.地球学报,2005,26(3):275-282.
    [148]宋杨,范湘涛,陆现彩.利用多时相遥感影像与DEM数据的滑坡灾害调查.安徽师范大学学报(自然科学版).2006,29(3):276-280.
    [149]宋怡,马明国.基于SPOT VEGETATION数据的中国西北植被覆盖变化分析.中国沙漠.2007,27(1):89-93.
    [150]苏凤环,刘洪江,韩用顺.汶川地震山地灾害遥感快速提取及其分布特点分析.遥感学报,2008,12(6):956-963.
    [151]孙崇绍,蔡红卫.我国历史地震时滑坡崩塌的发育及分布特征.自然灾害学报,1997.6(1):25-30.
    [152]孙尚拱,潘恩沛.多元统计分析.北京:科学出版社,1990.
    [153]谭万沛,王成华等.暴雨泥石流和区域与预报.成都:成都科技大学出版社,1994.
    [154]汤国安,杨昕.ArcGIS地理信息系统空间分析实验教程.北京:科学出版社,2009.
    [155]汤国安,刘学军等.数字高程模型及地学分析的原理与方法.北京:科学出版社,2006.
    [156]唐川,朱大奎.基于GIS技术的泥石流风险评价研究.地理科学,2002,22(3):300-304.
    [157]唐川,朱静.城市泥石流风险评价探讨.水科学进展,2006,17(3):383-388.
    [158]唐川,朱静.基于GIS的山洪灾害风险区划.地理学报,2005,60(1):87-94.
    [159]唐川,朱静等.云南滑坡泥石流研究.北京:商务印书馆,2003.
    [160]汪洋,郭跃,赵纯勇等.基于3S技术的地质灾害易损性面评价研究.灾害学,2003,18(4):17-23.
    [161]王昂生,孙石沿,夏德刚等.台风、暴雨预报警报系统和减灾研究.北京:气象出版社,1996.
    [162]王椿镛,吴建平,楼海等.青藏高原东缘地壳结构与地球动力学问题的讨论.中国地球物理学会地十二届年会论文集,2005.
    [163]王继川,郭志钢Logisitic回归模型——方法与应用.北京:高等教育出版社,2001.
    [164]王劲峰等.空间分析[M],北京:科学出版社,2006
    [165]王巨川,王刚.多指标模糊综合评判.昆明理工大学学报:理工版.1998,23(4):69-71.
    [166]王丽琴,赖天文,栾红.工程地质.中国水利水电出版社,2008.
    [167]王平.中国农业自然灾害综合区划的理论与实践.博士学位论文,北京师范大学研究生院,1999.
    [168]王世新,周艺,魏成阶等.汶川地震重灾区堰塞湖次生灾害危险性遥感评价.遥感学报.2008,12(6):900-907.
    [169]王晓青,王龙,王岩等.汶川8.0极大地震应急遥感震害评估研究.赈灾防御技术.2008,3(3):251-258.
    [170]王岩,王晓青,窦爱霞.面向对象遥感分类方法在汶川地震震害提取中的应用.地震. 2009,29(3):54-60.
    [171]王轶,王慧玲.地质灾害危险性评价与区划及GIS应用研究.勘察科学技术,2004(6):38-40.
    [172]王哲,易成发.我国地质灾害区划及其研究现状.中国矿业.2006,15(10):47-50.
    [173]王志旺,廖勇龙,李端有.基于逻辑回归法的滑坡危险性区划研究.地下空间与工程学报.2006,(2):1451-1454.
    [174]魏成阶,刘亚岚,王世新等.四川汶川大地震震害遥感调查与评估.遥感学报.2008,12(5):673-682.
    [175]魏成阶等.台湾南投"9.21”地震震害卫星遥感监测评估.2000年海峡两岸空间资讯研讨会论文集,台北,2000.
    [176]魏一铭,金菊良,杨存健等.洪水灾害风险管理理论.北京:科学出版社,2002.
    [177]吴彩燕,乔建平.基于GIS与信息量模型的地层因素对三峡库区滑坡发育的影响关系.北京林业大学学报.2009,29(6):138-142.
    [178]吴益平,唐辉明.BP模型在区域滑坡灾害风险预测中的应用.岩土力学,2005,26(9):1409-1413.
    [179]吴益平,殷坤龙.物元模型在滑坡灾害风险预测中的应用.地质科技情报,2003,22(4):96-100.
    [180]乌加敏,孙连英,张德政.空间数据可视化的研究与发展.计算机工程与应用,2002(10):85-88.
    [181]向喜琼,黄润秋.基于GIS的人工神经网络模型在地质灾害危险性区划中的应用.中国地质灾害与防治学报,2000,11(3)23-27.
    [182]谢先德,朱照宇,覃慕陶等.广东沿海地质环境与地质灾害.广州:广东科技出版社,2003.
    [183]谢晓娟.地质环境条件及诱发因素在地质灾害易发分区中定量化评价初探.探矿工程,2003(增刊):93-95.
    [184]邢秋菊,赵纯勇,高克昌等.基于GIS的滑坡危险性逻辑回归评价研究.地理与地理信息科学.2004,20(3):49-51.
    [185]许强,黄润秋,向喜琼.地质灾害发生时间和空间的预测预报.山地学报,2000,18(增刊):112-117.
    [186]许强,张一凡,陈伟.西南山区城镇地质灾害易损性评价方法——以四川省丹巴县城为例.地址通报,2010,29(5):729-738.
    [187]严俊平.灾害地理学.西安:陕西师范大学出版社,1990.
    [188]杨育武,汤杰,麻素庭.脆弱生态环境指标库的建立及其定量评价.环境科学研究,2002,15(4):46-49.
    [189]易文斌,唐宏,杨晋科.面向对象的灾害信息遥感提取框架及应用.自然灾害学报.2009,18(5):157-162.
    [190]殷坤龙,柳源.滑坡灾害区划系统研究.中国地质灾害与防治学报.2000,11(4):28-32.
    [191]殷坤龙,朱良峰.滑坡灾害空间区划及GIS应用研究.地学前缘(中国地质大学,北京),2001,8(2):279-284.
    [192]殷坤龙.滑坡灾害预测预报.武汉:中国地质大学出版社,2004.
    [193]于嵘.基于遥感时间数据的中国陆地植被覆被变化分析研究.博士学位论文,中国科学院遥感应用研究所,2006.
    [194]于树梅,刘景时,袁金国.基于SPOT-VGT NDVI的西藏羊卓雍错流域地表覆被变化 研究.光谱学与光谱分析.2010,30(6):1570-1574.
    [195]曾群华,赵纯勇.物元理论在危岩滑坡灾害社会经济易损性评价中的应用.中国地质灾害与防治学报,2004,15(3):111-148.
    [196]曾涛,杨武年,简季等.汶川特大地震灾后多源遥感影像处理技术及信息提取方法.地域研究与开发.2009,28(6):141-144.
    [197]张春山,张业成,马寅生.黄河上游地区崩塌、滑坡、泥石流地质灾害区域危险性评价.地质力学学报2003,9(2):143-153.
    [198]张风华,谢礼立.城市防震减灾能力指标权数确定研究.自然灾害学报,2002,11(4):23-29.
    [199]张景发,谢礼立,陶夏新.建筑物震害遥感图象的变化检测与震害评估.自然灾害学报,2002,11(2):59-64.
    [200]张俊峰,何政伟,汪宙峰.基于GIS的信息量法在天山公路地质稳定性评价系统中的应用.测绘科学.2008,33(2):170-179.
    [201]张俊福,邓本让,朱玉仙等.应用模糊数学(修订版).北京:首都经济贸易大学出版社,1998.
    [202]张俊香,黄宗福.自然灾害区划与风险区划研究进展.应用基础与工程科学学报.2004,增刊:55-61.
    [203]张丽,张广杰,周志广等.基于灰色聚类的区域地质灾害危险性分区评价.自然灾害学报.2009,18(1):164-168.
    [204]张梁,张业成.关于地质灾害涵义及其分类分级的探讨,中国地质灾害与防治学报,1995,5(增刊):398-401.
    [205]张庆合,曹邦功,姜兰.1:50万地质图数据库的研建.中国地质,2002,29(2):208-212.
    [206]张业成,胡景江,张春山.中国地质灾害危险性分析与灾变区划.海洋地质与第四纪地质,1995,15(3):55-67.
    [207]张永双,马寅生,胡道功等,玉树地震地表破裂调查与灾后重建避让选址研究(内部资料).2010.4.
    [208]张震宇,王文楷.自然灾害区划若干理论问题的探讨.自然灾害学,1993,2(2):1-7.
    [209]张征等.环境评价学.北京:高等教育出版社,2004.
    [210]赵改栋,彭德福,王克忠.煤炭开采潜在土地破坏程度的指标体系及指标权重的确定——以山西省为例.中国土地科学.1998,12(3):26-30.
    [211]赵英时.遥感应用分析原理与方法.北京:科学出版社,2003.
    [212]赵源,刘希林.人工神经网络在泥石流风险评价中的应用.地质灾害与环境保护,2005,16(2):135-138.
    [213]赵作权,高岩松.灾害区划研究的现状、存在的问题与发展趋势.灾害学,1996,11(3):1-4.
    [214]郑明新,王兰生.分形理论在区域地质灾害预测中的应用.地质灾害与环境保护.1998,9(3):1-4.
    [215]周爱国,蔡鹤生.地质环境质量评价理论与应用.武汉:中国地质出版社,1998.
    [216]周成虎,程维明,钱金凯,等.数字地貌遥感解析与制图.北京:科学出版社,2009.
    [217]周幼吾,郭东信,程国栋,等.中国冻土.北京:科学出版社,2000.
    [218]朱良峰,吴信才,殷坤龙,刘修国.基于信息量模型的中国滑坡灾害风险区划研究.地球科学与环境学报,2004,26(3):52-56.
    [219]朱照宇,周厚云,黄宁生等.广东沿海陆地地质灾害区划.地球学报,2001,22 (5):453-458.
    [220]邹铭,范一大,杨思全等.自然灾害风险管理与预警体系,北京:科学出版社,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700