用户名: 密码: 验证码:
大豆植株氮素动态变化及追施氮肥对其影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验于2002-2003年在东北农业大学香坊试验田进行,土壤为黑土,试验选用高油大豆品种东农47为材料,设四个追肥时期及正常光照、遮阴和黑暗处理,对大豆植株干物质积累 、氮素动态变化以及追肥时期、光照对氮素动态及大豆产量影响等方面进行研究,结果表明:
    大豆植株干物质积累特点是:叶片、叶柄、茎在盛花期至鼓粒初期积累较快,鼓粒期以后干物质集中于荚果。大豆植株不同部位氮素动态变化存在差异。大豆全氮含量表现为:叶片中全氮含量呈单峰曲线变化,叶柄、茎均为平缓下降趋势,荚果是高-低-高走向; 氨态氮含量顺序为:茎>叶片>叶柄,叶片氨态氮含量近似单峰曲线变化,茎、叶柄中氨态氮含量先降低后升高,茎部变化幅度较大;硝态氮含量高低顺序是叶柄>茎,茎、叶柄中硝态氮含量均呈下降走向,叶柄变化幅度大;茎中酰脲含量明显高于叶柄和叶片,R5期荚果中含量比较高,茎中酰脲含量呈降-升-降态势变化,荚果呈迅速下降趋势,叶片、叶柄均为单峰曲线变化,盛荚期(R4)达最高;各部位酰脲含量中,尿囊酸明显高于尿囊素含量。
    不同生育期大豆植株氮素含量日变化动态有一定差异。R2(6月26日)期各部位氨态氮含量呈平滑弧线动态,10至16时含量相对较高,R5(7月22日)期各部位氨态氮含量近似单峰曲线变化,12时达最大值;R2(6月26日)、R5(7月22日)茎、叶柄硝态氮含量在10时达最大值,叶柄变化幅度较大;各部位酰脲含量动态变化相似,R2(6月26日) 期茎酰脲含量急速下降,叶柄、叶片变化较小, 10、14、16时其含量较高,R5(7月22日) 期荚果酰脲含量先降后升,叶片、叶柄及茎部变化不显著。
    光照对大豆植株氮素养分含量有明显的影响,早8时叶片氨态氮含量顺序是:遮阴>正常光照>黑暗,茎部是黑暗>遮阴>正常光照,叶柄、生长点氨态氮含量无明显变化;14时叶片氨态氮动态与早8时相反,茎、生长点部遮光处理的氨态氮含量高于正常光照,叶柄低于正常光照;早8时茎、叶柄硝态氮含量顺序是:遮阴>黑暗>正常光照,荚果部无明显变化,14时叶柄是正常光照>遮阴>黑暗;光照对酰脲及尿囊酸含量影响是:早8时与午后14时荚果及茎部酰脲含量的变化相同,叶柄和叶片酰脲含量变化相反,两时段荚果尿囊酸含量走向相反,其它部位相同。
    不同追肥时期对大豆氮素含量的促控作用不同。 B1(始花期追肥)处理使盛花期茎、叶柄硝态氮及盛荚期叶柄硝态氮含量增加,B2(盛花期追肥)处理使R4期叶柄硝态氮含量增加;B1处理使R2期茎、叶柄氨态氮含量下降,促进R4、R5期各部位氨态氮含量增长,B2处理使R4期除叶片外其它部位氨态氮含量增加,R5期除生长点外均升高;追肥处理使R2期叶片酰脲含量下降,茎、叶柄增加,追肥对R4期各部位酰脲含量无显著影响,追肥使R5期叶片、叶柄酰脲含量增加,茎、荚果含量下降;B1处理使R2期叶片氮素含量增加,叶柄降低,B1、B2处理使R4期叶片、荚果氮素含量升高,对R5期叶片氮素含量作用明显。
    不同追肥时期对大豆不同产量形成的促进作用有明显差异。B1 (始花期追肥)、B2
    
    
    (盛花期追肥)、B3 (盛荚期追肥)处理分别使大豆增产6%、7.3%和0.5%。花期追施氮肥对提高大豆产量最有效。
Studies on the Dynamic Change of Nitrogen of Soybean Plant and the Effect of Additional Nitrogenous Fertilizer on it
    This test went on in the experimental plot of the Northeast Agricultural University in 2002-2003, the soil was the black earth, the test selected high-oil cultivarDN47 material, set up four stages of additional fertilizer with light, shade and dark treatments, studied dry matter accumulation, dynamic change of nitrogen and effect of stage of additional fertilizer and light on dynamic of nitrogen and yield of soybean. The results are as follows:
    Character of dry matter accumulation of soybean plant: The dry matter in leaf, petiole, and stem accumulated fast from flouring flowering to filling, after filling dry matter concentrated on legume. The difference existed in the dynamic change of nitrogen among different positions of soybean plant. The total N content of soybean showed that the nitrogen content in leaf changed as a curve, while in petiole and stem decreased slowly and in legume changed as tall-low-tall tendency. The order of the ammonia nitrogen content was: stem>leaf>petiole, the ammonia nitrogen content in leaf changed as a curve, in stem and in petiole decreased first then increased. The N03-N content order: petiole>stem, the N03-N content in stem and in petiole decreased, in petiole the change breadth was large. The ureides content was higher in stem than in petiole and leaf obviously, on Stage R5 in legume had a high content, in stem the ureides content was lower- rise- lower tendency, in legume decreased fast, and changed as a curve in leaf and petiole, maximum being at flourishing fruiting stage, the allantoic acid content was higher than allantoin obviously.
    There was difference in daily changes of the nitrogen content of soybean plant. The ammonia nitrogen content in different positions changed as a smooth curve on Stage R2 (June 26), the content was high at 10-16 o' clock, the ammonia nitrogen content in different positions changed as a curve on Stage R5 (July 22), maximum being at 12 o' clock; maximum of the N03-N content in stem and petiole was at 10 o' clock on Stage R2 (June 26) and R5 (July 22), in petiole the change breadth was large. The dynamic change of the ureides content in every position was similar, the ureides content in stem decreased speedily on Stage R2 (June 26), and in petiole and leaf the content was higher at 10,14,16 o’clock, the ureides content in legume decreased then increased on Stage R5 (July 22), in leaf, petiole and stem the change wasn’t dramatic.
    The effect of light on nitrogen nutrition of soybean plant was dramatic, the order of the ammonia nitrogen content in leaf at 8 a.m. was shade>light>dark, in stem was dark >shade >light, in petiole and apical heart didn’t change obviously. The dynamic of ammonia nitrogen in leaf at 14 p.m. was contrary to 8 a.m., in stem and apical heart with shade treatment the ammonia nitrogen content was higher than light, in petiole was lower than light. The order of the N03-N content in stem and petiole at 8 o'clock a.m. was: shade>dark>light, there wasn’t obvious change in legume, and in petiole at 14 o'clock was:
    
    
    light>hade>ark; the effect of light on ureides and allantoic acid content in legume and stem at 8 a.m. was the same as 14 p.m., the ureides content in leaf and in petiole changed inversely, the allantoic acid content in legume at 8 a.m. and 14 p.m. changed inversely, other positions was the same.
    The effect of different additional fertilizer treatments on nitrogen content of soybean was different. The N03-N content in stem and petiole on Stage R2 and in petiole on Stage R4 increased by Treatment B1 (additional fertilizer on earlier flowering stage), the N03-N content in petiole on flourishing fruiting stage increased by Treatment B2 (additional fertilizer on flourishing flowering stage). The ammonia nitrogen content in stem and petiole on flourishing flowering stage decreased by Treatment B1, but B1 promoted the ammonia nitrogen content of every position on Stage R4 and R5, B2 made the ammonia nit
引文
白宝璋,丁国华,白嵩,大豆的酰脲及其代谢,中国油料,1995,17(2):76-79
    蔡晓布,钱成,氮肥形态和用量对藏载波南烤烟产量的质量的影响,应用生态学报,2003,14(1):66-70
    陈丽华,李杰,刘丽君,祖伟,马秀峰,大豆蛋白质的积累动态及其与产质量形成的关系,东北农业大学学报,2002,33(2):116-124
    陈雯莉,李阜棣,周俊初,用叶绿素含量评价快生型大豆根瘤菌的共生有效性,华中农业大学学报,1996,15(1) :46-51
    陈新平,周金池,张福锁,应用不同土壤无机氮测试进行冬小麦氮肥推荐的研究,土壤学报,1997,(5):19-21
    程素贞,罗孝荣,大豆对钼和氮、磷、钾的吸收分配动态及相互关系的初步研究,大豆科学,1990,9(3):241-246
    迟凤琴,大豆肥田机制的研究 Ⅲ大豆对耕层土壤含氮物质影响,大豆科学,2001,20(1):35-39
    戴建军,程岩,黑龙江省南部黑土施氮对大豆氮肥利用率的影响,东北农业大学学报,2000,31(2):125-128
    戴建军,程岩,应用15N示踪技术对不同品种大豆三种氮源吸收利用的研究,东北农业大学学报,1999,30(3):225-229
    戴廷波,曹卫星,孙传范,姜东,荆奇,增铵营养对小麦光合作用及硝酸还原酶和谷氨酰胺合成酶影响,2003,14(9):1529-1532
    党廷辉,蔡贵信,郭胜利,郝明德,王百群,用15N标记肥料研究旱地冬小麦氮肥利用率与去向,核农学报,2003,17(40):280-285
    丁洪,郭庆元,张学江,氮肥对大豆不同类型品种结瘤固氮影响的差异性研究,大豆科学,1994,13(3):274-278
    董钻,谢甫绨,土壤水分胁迫对大豆体内硝酸还原酶活性和膜透性的影响,大豆科学,1995,14(4):290-298
    杜维广,大豆生育期间中尿囊素和尿囊酸的分配和运输,植物生理学通迅,1987,6(3):197-202
    冯乃杰,郑殿峰,张玉先,杜吉到,化控种衣剂对大豆叶片叶绿素含量及产量的影响,黑龙江八一农垦大学学报,2002,14(2):5-8
    冯兆忠,王效科,段晓男,冯宗炜,不同氮水平对春小麦光合速率日变化的影响, 生态学杂志,2003,22(4):90-92
    傅金民,张庚灵,史春余,颜环环,苏芳,大豆开花后叶片衰老规律的研究,西北植物学报,2000,20(5):796—801
    何建国,严华,贾金川,王井贵,张永亮,不同氮肥管理对大豆生长及产量的影响,大豆通报,1999,(1):24
    
    胡根海,章建新,唐长青,北疆春大豆生长动态及干物质积累与分配,新疆农业科学,2002,39(5):264~267
    胡明芳,田长彦,马英杰,赵振勇,王林霞,王平,土壤-植株硝态氮含量与棉花产量及其相关因素之间的关系,西北农业大学学报,2002,11(3):128-131
    黄高宝,张恩和,胡恒觉,不同玉米品种氮素营养效率差异的生态生理机制,植物营养与肥料学报,2001,7(3):293-297
    黄绍文,孙桂芳,金继运,何萍,不同氮素水平对高油玉米子粒产量及其营养品质的影响,中国农业科学,2004,37(2):250-25555
    黄维南,徐志伟,刘承宪,四棱豆酰脲相对丰度与固N酶活力的关系植物生理学报,1988,14(3):228~232
    巨晓棠,刘学军,张福锁,小麦苗期施入氮肥在土壤不同氮库的分配和去向,植物营养与肥料学报,2002,8(3):259-264
    巨晓棠,刘学军,张福锁,长期施肥对土壤有机氮组成的影响,中国农业科学,2004,37(1):87-91
    甘银波,陈静,Ineke Stulen,大豆不同生长阶段施用氮肥对生长结瘤及产量的影响,大豆科学,1997,16(2) :125-130
    甘银波,涂学文,田任久,大豆的最佳氮肥施用时期研究,大豆科学,1998,17(4):287-291
    顾志权,钱卫飞,曹洪生,王金虎,小麦分蘖期快速营养诊断技术的应用及改进,铁道师范学院,1994,11(4):56-59
    关兴照,李成泰,张朝清,石桂芳,大豆施氮肥接种根瘤菌效果研究 ,黑龙江农业科学,2000,(4):20-21
    李彩凤,马凤鸣,赵越,李方华,氮素形态对甜菜氮粮代谢关键酶活性及相关产物的影响,作物学报,2003,29(1):128-132
    李豪喆,大豆叶片硝酸还原酶活力的研究,植物生理学通迅,1986,(4):30-32
    李和生,尿囊素对玉米幼苗的生物效应,宁波大学学报,1999,12(3):54-56
    李雪梅,张利红,任娟,王森林,去叶对不同生长习性大豆固氮作用的影响,植物生理学通讯,2002,38(3) :33-35
    李雪梅,朱长甫,苗以农,大豆植株发育过程中不同部位的硝态氮含量和硝酸还原酶活力变化,植物生理学通讯,1993,29(4):263-265
    李永孝,李佩珽,底肥量追肥期对夏大豆产量性状的影响,大豆科学,1995,14(2):119-125
    李志宏,易小琳,王兴仁,应用植株快速诊断确定春小麦的追肥量,北京农业大学学报,1995,21(增刊):42-46
    廖晓勇,张杨珠,刘学军,陈新平,张福锁,农田生态系统中土壤氮素行为的研究现状与展望,西南农业学报,2001,14(3):94-98
    刘鹏,杨玉爱,硼、钼胁迫对大豆叶片硝酸还原酶与硝态氮的影响,浙江大学学报 (农业与生命科学版 ),2000,26(2):151-154
    
    刘晓冰,金剑,张秋英,杨恕平,王光华,李艳华,不同大豆基因型氮素积累运究简报,大豆科学,2001,20(4):298-30
    吕世华,罗秦,刘学军,张福锁,四川盆地小麦氮素营养的快速诊断方法的研究,中国农业大学学报,1997,3(3):268-274
    吕晓波,鹿文成,刘英华,闫洪,大豆保护性施氮技术及其应用前景,大豆科学,2001,20(2):138
    倪竹如,陈俊伟,阮美颖,氮肥不同施用技术对直播水稻氮素吸收及其产量形成的影响,核农学报,2003,17(2):123-126
    沈润平,王中孚,郭进耀,丁堃,连楚楚,氮磷钾营养对春大豆产量品质效应的研究,江西农业大学学报,1998,20(1):51-55
    南京农学院,史瑞和,鲍士旦,土壤农化分析,北京:农业出版社,1980,57-58
    石岩,位东斌,于振文,余松烈,施肥深度对旱地小麦氮素利用及产量的影响,核农学报,2001,15(3):180-18341
    宋海星,王萍,申斯乐,闫石,陶丹,冉彦中,大豆共生固氮与叶片全氮含量之间关系的研究,吉林农业科学,2000,26(6) :9-11
    孙传范,戴廷波,曹卫星,不同施氮水平下增铵营养对小麦生长和氮素利用的影响,植物营养与肥料学报,2003,9(1):33-38
    孙冬梅,陈学昌,黑龙江省土壤有机质与全氮和碱解氮的相关分析,黑龙江八一农垦大学学报,1995,8(2):57-60
    唐树延,孟继武,杨文杰,大豆光合作用叶绿素a、b间能量传递,大豆科学,1985,4(3):285-291
    陶丹,王萍,宋海星,冉彦中,陈玉江,尹田夫,国外早熟大豆冠层粒重分布与产量的关系,大豆科学,2001,20(2):146-148
    王光华,刘晓冰,杨恕平,李艳华,金剑,张秋英,生殖生长期源库改变对大豆子粒产量和品质的影响,大豆科学,1999,16(30):236-241
    王绍华,曹卫星,王强盛,丁艳峰,黄丕生,凌启鸿,水稻叶色分布特点与氮素营养诊断,中国农业科学,2002,35(12):1461-1466
    吴魁斌,沈国清,对大豆氮素利用率及体内分配规律的研究,现代化农业,1998,(12):9-11
    肖焱波,李文学,段宗颜,张福锁,植物对硝态氮的吸收及其调控,中国农业科技导报,2002,4(2):56-59
    徐凤花,崔占利,刘永春,汤树德,保护性施氮对大豆氮素同化影响的研究,土壤报,1998,35(4),536-544
    徐文东,徐志伟,周华新,黄维南,植物酰脲降解代谢酶研究现状,福建农业学报,1999,14(2):60-64
    徐志伟,刘承宪,豆科植物中酰脲含量测定,植物生理学通迅,1986,(40):60
    薛崧,吴小平,冯彩平,张倩,不同氮素水平对旱地小麦叶片叶绿素和糖含量的影响及其与产量的关系,干旱地区农业研究,1997,15(1) :79-83
    
    易小琳,曹一平,王敬国,作为氮素快速营养诊断方法的初探,北京农业大学学报,1995,21(增刊):36-41
    张恒善,程砚喜,王大秋,项淑华,高敏,王雪飞,牛建光,大豆结荚期品种间叶绿素含量差异与产量相关分析,大豆科学,2001,20(4):275-279
    张红缨,王书锦,张宪武,大豆植株木质部汁液中氮素运输特征的研究,大豆科学,1988,7(1):19-24
    张军,王庆成,牛玉员,王忠孝,徐庆章,黄淮海平原玉米矿质营养综合诊断指标及决定因素,玉米科学,1993,1(4):57-61
    张树兰,同延安,梁东丽,吕殿青,Ove Emteryd,氮肥用及施用时间对土体中硝态氮移动的影响,土壤学报,2004,41(2):270-277
    赵双进,张孟臣,杨春燕,追肥时期对夏大豆植株养分和株型性状及产量的影响,中国农业科学,1999,32(增刊):112~116
    郑淑琴,钾对大豆生理效应及产量和品质的影响,黑龙江农业科学,2001,(4):1-4
    朱保葛,柏慧侠,张艳,李社荣,陈修文,大豆叶片净光合速率、转化酶活性与子粒产量的关系,大豆科学,2000,19(4):46-50
    朱长甫,苗以农,刘学军,许守民,野生大豆酰脲含量与根瘤固氮活力的关系,植物生理学报,1995,21(3):307-312
    朱云集,崔金梅,王晨阳,郭天财,夏国军,刘万代,王永华,小麦不同生育期施氮对重穗花发育和产量的影响,中国农业科学,2002,35(11):1325-1329
    Alloush G A, LeBot J, Sanders F E etal Mineral nutrition of chickpea plants supplied with NO-3-N and NH4+-N J Plant Nutr, 1990,13:1575-1590
    Beathgen, W E and Alley, M M, 1989b Optimizing soil and fertilizer nitrogen use by intersively managed winter wheat: critical level and optimums rates of nitrogen fetilizer, Agron J 81:120-125
    Beusichem V, Kirkby E A, Bass R Influence of nitrate and ammonium nutrition on the uptake assimilation and distribution of nutrients in Ricinus communist Plant Physiol, 1988, 86:914-921
    Binford, G D, Blckmer, A M ELH out N M Tissue test for excess nitrogen during corn production [J] Agron J 1990, (82): 124-12983 Buttry B R, R I Buzzell, W I Finalay Relation among photosynthetic rate, bean yield and other characters in field growh cultivars of soybean Can J Plant Sci 81, (61): 191-198
    Eichel K D Berger, R J Lambert F Eef af Divergent phenotypic recurrent selection for nitrate leductase activity in maizeⅡEfficient use of fertilizer nitrogen Crop Sci 1989,29(6):1398-1402
    Elliott D E, Reuter D J, Growden B etal Improved strategies for diagnosising and correcting nitrogen deficiency in spring wheat J Plant Nutr, 1987, 10(9-16): 1761-1770
    Engel, R E and Zubriski, J C, 1982 Nitrogen concentration in spring wheat at several
    
    
    growth stages Commun Soil Sci Plant Anal 15(7): 531-544
    Fieuw S, Willerbrink J Sugar transport and sugar metabolizing enzymes in sugar beet storage roots Plant Physiol, 1990,137(2): 216-223
    Follett, R H and Follett, R F, 1992 Use of a cholorophyll memter to evalute N status of dry land winter wheat, Commun Soil Sci Plant Anal 23(7-8): 687-697
    Fujihara S, Yamamoto K, Yamaguchi M 1977,A possible role of allantoin and influence of nodulation on its production in soybean plants Plant Soil 48:233-242
    Fukita, K T morita and H Nobuyasu, Effect of pod removal on absorption and reduction of nitrate in soybean, Soil Sci Plant Nutr 1997,43(1): 63-73
    Herridge D, F, 1982, Relative abundance of ureides and nitrate in plant tissues of soybean as a quantitative assay of nitrogen fixation Plant Physiol, 70:1
    Miflin BJ, Lea PJ Aminoacid metabolism Annual Review of Plant Physiol 1977,28:299-329
    Patterson T.G. and Larue T.A 1983, N2 fixation (C2H2) and ureide content of soybean: Enviromental effects and source sink manipulations Crop Sci 23(5): 819
    Prasad, M and Spiers, T M, 1984 Evalution of arapid method lf plant sap nitrate analysis Commun Soil Sci Plant Anal 15:673-679
    Roth, G W, and Fox, R H, 1989 Tissue test for predicting nitrogen fertilizer requirement of winter wheat, Agron J, 81: 502-507
    Schonbeck, M W, F, C Hsu and T M Carlsen, Effect of pod number on dry matter and nitrogen accumulation and distribution in soybean, Crop Sci 1986,26:7683-7688
    Serrese, Calmes J, Viala G, etal 1985 Ureides and asparagine in 2field-grown soybean (Glycinemax)varieties:Amounts in the stem and utilization Agronomie (Paris),5(10): 899~904
    Tanaka A Fujita K and Okumura M 1982,Effect of partial removal of leaves, pod and nodules on dinitrogen-fixing activities in soybean In Abstr Jpn Soil Sci Plant Nutr 28:88(in Japanese)
    Thomas R J, Schrade L E 1981 Ureide metabolism in higher plants Phytochem, 20:361-371
    Завалин. А.А. Хассан ГарбаКонтагораДуханинаТ.М.АзубековЛ.Х. Продуктивность кукурузы на силос при использований биопрепаратов и азотного удобрения.// Агрохимия.2002.№11.с.27-36
    ИкитишенВ.И.ЛичкоВ.И.Амелин.А.А.Факторы среды определяющие доступность растениям остаточного азота удобрения // Агрохимия. 2002.№1.с.22-30
    Булгакова.Н.Н. Большакова Л.С. Ниловская Н.Т. Влияние дозы азота при разных условиях выращивания пшеницы на усвоение нитрата запасного фонда листа.// Агрохимия.2002.№6.с.59-65

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700