用户名: 密码: 验证码:
福建省开发建设项目水土流失研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国民经济建设速度的加快,因开发建设项目而导致的水土流失呈快速增加趋势。但虽然开发建设项目水土流失早已有之,但并未引起人们的足够重视。开发建设项目中的土壤流失量巨大,造成大量泥沙淤积河床水库,降低了水利设施寿命和防洪效率,加剧洪涝灾害,严重危及建设项目和周边人民生命财产的安全,制约着当地经济和社会的可持续发展。与一般的水土流失不同的是,开发建设项目水土流失造成的危害具有多样性、突发性、灾难性的特点;其成因、侵蚀方式、规律等极为复杂,也有别于传统的水土流失规律和过程,导致其治理难度明显高于传统的水土流失。但由于目前我国对开发建设项目水土流失机理和防治研究仍较为缺乏,因而尚难以对开发建设项目水土流失进行科学有效的治理。本文通过对福建省开发建设项目造成的水土流失作用机理、类型、形式、特点、区域分布规律等进行系统研究,为我国开发建设项目水土流失治理提供理论指导,对改善我国的生态环境、实现社会和经济的可持续发展具有重要的现实意义。
     本文通过面上调查福建省各地开发建设项目情况及典型调查不同开发建设项目的水土流失强度,探讨了福建省开发建设项目水土流失的区域分布。在面上调查的基础上,选择松散弃土为研究对象进行定位研究,采用坡面径流小区方法定位研究松散堆积土的水土流失规律,探讨松散堆积土水土流失动态及与降雨因子和植被(种草)的关系,并用标桩法探讨不同混合弃土类型对水土流失量的影响。结果表明:
     (1) 福建省开发建设项目水土流失达17623hm~2,占全省总流失面积的1.18%。开发建设项目水土流失面积以三明市最大。不同开发建设项目水土流失面积中以工矿类(9785hm~2)、城建类(3419.5 hm~2)和交通类(3232.2 hm~2)较大。工矿类水土流失面积所比例以泉州最大(30.88%);城建类水土流失面积所比例则以福州最大(37.53%):交通类水土流失面积所比例则以三明最大(27.9%)。
     (2) 福建省开发建设项目水土流失强度基本均在强度以上,交通类水土流失强度最大,建设期年平均土壤侵蚀模数高达2.57万t/km~2;其次为工矿类的水土流失强度,年平均土壤侵蚀模数为2.23万t/km~2;城建类水土流失强度为1.93万t/km~2居第三,均属剧烈侵蚀强度。松散弃土在开发建设项目中水土流失强度中最大,可达6万t/km~2以上;其次为挖方边坡,而平整地的水土流失强度较小。
     (3) 不同地市中以三明市开发建设项目造成的水土流失最严重,其次为泉州市。全省工矿类、交通类和城建类水土流失量分别达223.3万t、84.4万t和66.5万t,分别占开发建设项目总水土流失量的56.3%、21.3%和16.8%。表明工矿类造成的水土流失是福建省水土保持监督和防治的重点。
     (4) 福建省开发建设项目水土流失的共同特点是:①水土流失量大,建设期与运营期有明显的差别。②影响范围大,甚至是跨流域范围的影响。③引起水土流失的物质成分复杂。④水土流失形式多种多样。⑤诱发性水土流失是主要形式。⑥水资源系统破坏严重。
     (5) 松散堆积土的年水土流失量为4.414万t/(km~2·a),属剧烈水土流失强度等级,是原状裸露地流失量1.470万t/(km2·a)的3.0倍;松散堆积土的年径流量(762.9mm)则
    
    是原状裸露地(443.Slnm)的1.7倍;松散堆积土年径流系数(0.52)亦显著高于原状裸
    露地的(0 .30)。松散堆积土种植宽叶雀稗后,第1年水土流失量为1.066万试kmZ·a),
    比未种草的松散堆积土减小了75.8%,也低于原状裸露地的;年径流深为339.Slnm,比未
    种草的松散堆积土降低了55,5%;年径流系数亦下降至0.23,表明种草可显著降低松散堆
    积土的水土流失量。但松散堆积土种草第1年的土壤流失量仍属极强度流失,而植被保护
    良好的自然坡地年土壤流失量仅为5.938砍mZ,年径流深仅21.4Inm,可见在开发建设项
    目中应尽量减少自然植被的破坏。
     (6)松散堆积土1年中的水土流失主要发生在3一9月,而7一9月则是水土流失的危
    险期。松散堆积土种草的水土流失则主要发生在草还未完全覆盖地表前的3个月,该期土
    壤流失量占其全年的99%以上;而草覆盖地表后,土壤流失则极为轻微。
     (7)松散堆积土土壤流失量与降雨量呈显著的幂函数关系,但相关系数均较小。松
    散堆积土与原状裸露地土壤流失量与降雨强度的相关性高于有植被覆盖的松散堆积土和
    自然坡地。对各小区l年的土壤流失量贡献最大的是大雨,而以小雨的贡献最小。单场降
    雨中土壤流失量松散堆积土和原状裸露地以大雨为最大,暴雨次之,其次为中雨,小雨最
    小;堆积土种草和自然坡地则为暴雨>大雨>中雨>小雨。
     (8)各小区可引起水土流失的最小侵蚀性降雨为自然坡地(8 .83mm)>松散堆积土种
    草(6.90mm)>原状裸露地(6 .75mm)>松散堆积土(4.smm),有植被覆盖的小区比无植
    被覆盖的小区最小侵蚀性降雨更高。
     (9)不同类型弃土所测得的土壤流失量均有所差异,其大小顺序为细质弃土
    24332叭kmZ·a)>底土层弃土23551叭km,·a)>砂粒与土壤混合弃土23257叭kjnZ·a)>碎石
    与土壤混合弃土221 13叭 kmZ·a)。各成份中石粒、砂粒含量大,水土流失量较少。
In course of the accelerated economic development, soil and water loss caused by exploitation projects increased meanwhile. Though it has existed for a long time, it has received little attention. The soil loss caused by exploitation projects is so large that it could fill up rivers and reservoirs, lower the longevity and flood control efficiency and aggravate the flood. Compared with normal form of soil and water loss, the losses induced by exploitation projects are characterized by diversity, abruptness and severity. Due to complexity existed in the formation, style and process of soil and water loss in exploitation projects, prevention and control of this erosion is more difficult. Further, recent research on this respect are scarce in China, thus studies on the mechanism and control measurement of erosion caused by exploitation projects are important and urgent, which will favor eco-environment improvement and sustainable development of society and economy.
    The regional pattern of soil and water loss caused by the exploitation projects in Fujian was studied through an integrate survey on loss area, intensity and types. Based on this, the erosion mechanism of loosely piled soil was studied in the runoff plot scale. In addition, the marked stake method was applied to assess the effects of the makeup of discarded soil on soil loss.
    The erosion area caused by exploitation projects in Fujian is up to 17623hm2, being 1.18% of the total erosion area, and the Sanming City is the first contributor. The erosion area caused by the mineral, urban and traffic projects is 9785hm2, 3419.5 hm2 and 3232.2 hm2, the first culprit of which is Quanzhou City, Fuzhou City and Sanming City, respectively.
    The erosion intensity of the soil and water loss caused by exploitation projects is usually higher than the hard-erosion class, and can be ranked as traffic projects (2.57x104t/km2)>mineral projects (2.23x104t/km2)>urban projects (1.93x104t/km2). The loosely-piled discarded soils has the highest erosion intensity (6x104t/km2), followed by the digging-induced side slopes and the level-up lands.
    Sanming City had the highest amount of soil erosion in Fujian, followed by Quanzhou City. The mineral, traffic and urban projects had an amount of soil erosion of 223.3, 84.4 and 66.5x104t, respectively, being 56.3%, 21.3% and 16.8% of the total soil erosion that caused by the exploitation projects.
    The common characteristics of soil erosion that caused by exploitation projects are: a) high soil erosion that differed between the construction and carry-out
    
    
    stages; b) large incidence inside and outside of an area; c) complexity in erosion substrate; d) diversity in erosion pattern; e) dominance of induced-erosion; and f) serious destruction of water resources.
    The annual erosion and runoff of loosely-piled discarded soils was up to 4.414xl04t/(km2 a) and 762.9 mm, being 3.0 times and 1.7 times as high as those of intact bare-land (1.470xl04t/(km2 a) and 443.8 mm), respectively. When loose-piled soil is covered with grass, water and soil loss decreased significantly, with decreased proportions of 75.8% and 55.5% for amount of soil loss and runoff respectively.
    The soil erosion of loosely-piled soil occurred mainly during March to September, and July to September are the most risk period of erosion. As for the loosely-piled soil with seeding treatment, 99% of the annual erosion occurred during the period before grasses fully-covered the land, that is, 3 months after seeding.
    Amount and intensity of rainfall are two key factors influencing soil and water loss. Relation between rainfall amount and soil loss are more significant in uncovered land than that in covered land. Compared with the relation between rainfall amount and soil loss, the relation between rainfall intensity and soil loss is more significant. This holds true for the relation between soil loss and uncovered and covered lands respectively. Soil erosion caused by a rain event can be ranked as: downfall > rainstorm > medium rain > sprinkle. The minimum erosive rainfall are in the
引文
[1] 焦居仁主编.开发建设项目水土保持.北京:中国法制出版社,1998.
    [2] 黄建初.水土保持法第三讲:水土流失的预防.中国水土保持,1992(1):50~52.
    [3] 陈永宗等.我国水土流失现状和亟待解决的几个问题.中国水土保持,1991(5):
    [4] 汪仁杰.城市建设水土流失的防治探讨.水土保持研究,1999,5(2):9~11.
    [5] 柴宗新.长江、珠江上游地区水土流失的特点及其潜在威胁.中国水土保持,1988(8):2~4.
    [6] 甘枝茂,孙虎,甘锐.黄土高原地区城市化对侵蚀环境的负面影响及防治对策.西北大学学报.1999,29(4):348~352
    [7] 柯瑞明,林明添.三明市城市水土保持生态环境建设及其效益分析.水土保持研究,2000,7(3):17~18.
    [8] 陈群香.中国水土保持生态环境建设现状与社会经济可持续发展对策.水土保持通报,2000(3):1~4.
    [9] 邵颂东 王礼先 周金星.水土保持科技情报.2000,(1):32~36
    [10] 冯绍元 丁跃元 姚彬.用人工降雨和数值模拟方法研究降雨入渗规律.水利学报.1998(11):17~20,25
    [11] 石生新.高强度人工降雨条件下地面坡度、植被对被面产沙过程的影响.山西水利科技.1996,8(3):77~80
    [12] Hudson N.W.哈德逊.土壤保持.北京:科学出版社.1975
    [13] 江忠善 宋文经 李秀英.黄土地区天然降雨雨滴特性研究.中国水土保持.1983,(3):32~36
    [14] 谢小立 王凯荣.红壤坡地雨水产流及其土壤流失的垫面反应.水土保持学报.2002,12(4):37~40
    [15] 王占礼 邵明安 王庆瑞.黄土高原降雨因素对土壤侵蚀的影晌.西北农业大学学报 1998,26(4):101~105
    [16] 吴擢溪.杉木幼林地水土流失与降雨特性关系研究福建林学院学报.1996,16(4):304~309
    [17] 李甚悟 李君莲.降雨及土壤湿度对水土流失的影响.土壤学报.1992,29(1):94~103
    [18] 王万忠 焦菊英.中国的土壤侵蚀因子定量评价研究.水土保持通报.1996,16(5):1~20
    [19] J. Schmidt, Berlin.降雨侵蚀数学仿真模型.水土保持科技情报.1997(3):38~40
    [20] 范修其 郑春明.重点工程建设水土流失防护初探.浙江水利科技.2001,4:16~17
    [21] 李夷荔 林文莲.论工程侵蚀特点及其防治对策.福建水土保持.2001(13),3:27~31
    [22] 奚成刚 杨成永等.铁路工程建设中重塑坡面单元产流产沙规律研究.土壤.2003,1:48~52.
    [23] 吴长文.开发平土区治理措施优化配置研究.中国水土保持.2001.4:27~28
    [24] 吴长文 杨耕.城市化开发的侵蚀模数及流域淤积量研究.南昌大学学报.1997(19),1:37~41
    [25] 吴长文 王富永等.城市化开发场平工程沉沙池设计的原理与方法.水土保持学报.2002(16),4:155~158
    [26] 李金海 杨莉琳.国道112线丰宁县城至千松梁段扩建水土流失的影响及对策.水土保持通报.2001(21),3:32~34
    
    
    [27] 刘敬军 田素平.铁路建设工程水土流失预测分析研究.中国水土保持.1999.7:32~33
    [28] Wishmeier W. H., Smith D.D. Predicting rainfall erosion losses: A guide to conservation planning. Agric. Handb. No.537, 1978
    [29] 江忠善,李秀英.黄土高原土壤流失方程中降雨侵蚀力和地形因子的研究.中国科学院西北水土保持研究所集刊,1988,(7):40~45
    [30] 谢云,刘宝元,章文波.侵蚀性降雨标准研究.水土保持学报.2000,14(4):6~11
    [31] 高峰,詹敏,战辉.黑土区农地侵蚀性降雨标准研究.中国水土保持,1989,(11):19-21
    [32] 杨玉盛著.杉木林可持续经营研究.中国林业出版社,1998
    [33] 魏天兴.黄土残塬沟壑区降雨侵蚀分析.水土保持学报,2001,15(4):47~50
    [34] Wischmeier W H,Smith D D.predicting rainfall erosion losses:A guide to conservation planning.U.S.Department Agriculture, Agriculture Handbook No.537,1978
    [35] Renard K G. Foster G R.Weesies G A et al. Predicting soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). U.S. Department Agriculture, Agriculture Handbbook.No.703,1997
    [36] Poesen J W, Torri D,Bunte K.Effects of rock fragmental on soil errsion by water at different spatial scales,a review, Camenae, 1993(23): 141~166
    [37] Bunte K, Poesen J W.Effects of rock fragmental covers on erosion and transport of noncobesive sellimental by shallow overland flow. Water Resources Research. 1993,29(5): 1415~1424
    [38] Savabi-MR etc.Application of WEPP and GIS-GRASS to a small watershed in Indiana. Journal-of-Soil-and-Water-Conservation. 1995, 50: 5, 477-483; 23 ref.
    [39] Tiscareno-Lopez-M etc. An approach to representing spatial variability when evaluating model uncertainty in process-based watershed models. Effects of scale on interpretation and management of sediment and water quality. 1995, 199-206; 8 ref
    [40] USDA Water Erosion Prediction Project. NSER1. No.2. National Soil Erosion Research Laboratory[Z]. USDA-ARS. West Lafayette.47907
    [41] Sidorchuk A. Dynamic and static models of gully erosion. Special Issue: Soil Erosion Modeling at the Catchment Scale[J].Catena. 1999,37(3~4):393~399
    [42] 于辉 孟繁斌等.开发建设项目新增水土流失量的预测方法研究.水电站设计.2001(17),4:48~50
    [43] 牛京芳.山地铁路建设与水土流失预测及其防治对策.科技交流.2000,30(1):84~89
    [44] 郭锐 薛志敏等.开发建设项目水土流失预测易出现的问题及其对策——以公路建设项目为例.中国水土保持.2000,2:36~37
    
    
    [45] 高国雄 高保山等.国外工矿区土地复垦动态研究.水土保持研究.2001,8(1):98~103
    [46] 徐嵩龄.采矿地的生态重建和恢复生态学.见:持续发展与生态学——全国第一届持续发展与生态学学术讨论会论文汇编.中国科学技术出版社.北京:中国科学技术出版社.1993:145~150;
    [47] 代宏文.澳大利亚矿山复垦现状[C].工矿山废地复垦与绿化.中国林业出版社.1995,194~204
    [48] Cermak-P etc. Problems of erosion processes on superelevated dumping sites of the North Bohemian Brown Coal Mining District. Rostlinna-Vyroba. 1994, 40: 1, 53-61; 4 ref
    [49] 周树理.刘仁英.国外复旦经验简介[C].矿山废地复垦与绿化.中国林业出版社.1995,213~216
    [50] Dadhwal KS etc. Studies on placing and mixing of a normal soil in limestone mine spoil on the performance of two tree spices[J]. Indian-Forester, 1993(119), 12: 1011~1019
    [51] 李宗禹.前苏联林业土地复垦[C]。矿山废地复垦与绿化.中国林业出版社,1995:205~212
    [52] Schuman GE etc. Revegetation bentonite mine-spoils with sawmill by-products and gypsum[C]. Agriculture utilization of urban and industrial by-products proceeds, 1995: 261~274
    [53] Suchman GE etc. Short term effects of surface-applied gypsum on revegetated sodic bentonite spoils[J]. Soil Science Society of America Journal. 1993,57(4): 1083~1088
    [54] Feldmann F etc. Recultivation degraded fallow lying areas in central Amazonian with equilibrate ploy culture: Response of useful plants to inoculation with VAM fungi[J].Symposium on Tropical nuts Pflanzen. 1995(69):3~4:111~118
    [55] Gould AB etc, Relationship of Mycorrhizae activity to lime following reclamation of surface mine lands in west Kentucky[J]. Canadian-Journal-of-Botany. 1996,74:247~261
    [56] Biro B etc. Symbiont effect of Rhizobium bacteria and vesicular arbuscular Mycorrhizae fungi on pisum satirum in recultivated mine spoils[J]. Geomicrobiology Journal, 1993(11),3~4:275~284
    [57] Jha PK etc. Suitability of rbizobia-inoculateal wild legumes argy rolobium flaccidum[J]. Plant and Soil. 1995(177),2:139~149
    [58] Malajczuk N etc. Role of ectomycorrhizal fungy in mine site reclamation[J]. Mycorrhizae and health. 1994:83~100
    [59] Huang JW etc. Lead phyto extraction:species variation in lead up take and translocation[J]. New Physiologist. 1996(134), 1: 75~84
    [60] Panago poulos T etc. Early growth of Pinus nigra and Robinia pseudoaeacia stands[J]. Landscape and urban planning. 1995(32), 1: 19~29
    [61] Jaffre T etc. Revegetation mining sites in New Caledonia[J]. Bois-et-Forests-des-Tropiques. 1994,42:45~57
    [62] Soni P etc. Revegetation abandoned limestone mine Mussoorre hills[J]. Advance in Forestry Research in
    
    India. 1994, 11: 25~38
    [63] Kaar E etc. Dependence of reonln aracaon conditions[J]. Mests and asliknd-urimused. 1992(124): 135~142
    [64] Gentcheva-kostadinova S etc. Reclamation of coal mining lands: UK and Bulgaria[J]. Industry and Environment. 1993(16),3:36
    [65] Soni P etc. Revegetation and ecological monitoring of an open cast rock phosphate mine[C]. Proceedings of the conference. 'Reclamation a global perspective'. Calgary, Alberta. 1989(1):327~332
    [66] Haywood JP etc. Survival and growth of trees and shrubs different lignite mine soils in Louisiana[J]. Tree Plant Notes. 1993,44(4):166~171
    [67] Ram Prasad etc. Effect of pit on the growth performance of same important species on the overburdens of mined out area of coal[J].Vaniki-Sandesh. 1992(16),3:3~5
    [68] Nordin A. R. Bioengineering to ecoengineering. Part one: the many names. International Group of Bioengineers Newsletter No.3,1993
    [69] Morgan R.R.C. and Rickson R.J. Slope stabilitation and Erosion Control: A Bioengineering Approach. E and EN Spon, London. 1995: 274
    [70] 周跃.土壤植被系统及其坡面生态工程意义.山地学报.1999(17),3:224~229
    [71] 王代军 胡桂馨等.公路边坡侵蚀及坡面生态工程的应用现状.草原与草坪.2000,3:22~24
    [72] 张科利.细山田健三.人工防蚀生草膜保持及改良土壤作用的研究[J].土壤侵蚀与水土保持学报.1997,3(4):20~24
    [73] 广东省水利厅水电科学研究所.北江上游水土流失治理[J].水土保持研究.1991,4(3):45~48
    [74] 李文银 王治国等.工矿区水土保持.科学出版社.1996,8
    [75] 艾晓燕 高玉华等.水工程水土保持方案分析和探讨.黑龙江水利科技.2000,2:98~99
    [76] 周淑兰 杨文利等.城市引水工程水土保持方案研究——以深圳市东部供水水源工程水土保持方案设计为例.水保持研究.2001,8(1):79~81
    [77] 于杰 马良军等.涩宁兰输气管道工程水土流失量预测及其防治.青海科技.2001,6:41~42
    [78] 刘震 蔡建勤 姜德文.开发建设项目水土流失防治技术研究.中国标准出版社.1999,3:40~46
    [79] 黄炎和 陈明华 黄鑫金.土壤侵蚀量的标签定位测定法初探.福建水土保持.1998(2):51~53
    [80] 刘朝太.三明市人为水土流失的现状及防治对策.中国水土保持.1999,(2):32~33
    [81] 江淼华.不同土地利用方式水土流失与降雨特性的关系.福建农林大学(硕士论文).20030401
    [82] 卢程隆.闽东南花岗岩侵蚀区土壤侵蚀与治理.福建农学院学报,1989,18,(4):504~509)
    [83] 叶翠玲.铁路施工期水力侵蚀规律与预测方法研究.北方交通大学(硕士论文).20020101
    [84] 黄炎和 林敬兰等.影响福建省水土流失主导因子的研究.水土保持学报.2000,14(2):36~40,54
    
    
    [85] 王占礼 邵明安 王庆瑞.黄土高原降雨因素对土壤侵蚀的影晌.西北农业大学学报.1998,26(4):101~105
    [86] 郭耀文.雨滴侵蚀特征分析.中国水土保持.1997,(4):15~17
    [87] 李长宝 太史怀远.降雨特性对土壤侵蚀影响的研究分析.水土保持学报.1990,4(3):63~70
    [88] 张汉雄,王万忠.黄土高原的暴雨特性及分布规律.水土保持通报.1982,2(1):35~44
    [89] 尹忠东,周心澄,朱金兆.影响水土流失的主要因素研究概述.世界林业研究.2003,16(3):32~36)
    [90] 王万忠.黄土地区降雨特性与土壤流失关系的研究Ⅲ.水土保持通报.1984,(2):12~15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700