用户名: 密码: 验证码:
跨沟缆机轨道拱桥基础结构型式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在水电站工程施工中,通常需要采用缆机垂直运输系统运送混凝土、钢筋或其它材料入仓,缆机可采用平移式或辐射式移动。缆机轨道基础一般位于河谷两岸边坡或山坡的台地上,河谷两岸的边坡常常发育有垂直河谷向的冲沟,在冲沟上修建缆机轨道基础,通常采用重力式结构或排架式结构,工程量大,施工工期长,能否采用更轻型的拱桥结构型式作为缆机轨道跨沟基础呢?
     一般来说,拱桥是一种以承受竖向荷载为主的结构,但即使是常规的铁路、公路拱桥,同样承受一定的水平荷载,如:风荷载、水荷载(尤其是漫水桥)。作为缆机轨道基础的拱桥,从表面看似乎水平荷载大于垂直荷载,但我们将缆机水平活荷载与拱桥自重荷载(恒载)作比较,就可以发现作为缆机轨道基础的拱桥结构承受的水平荷载远远小于拱的自重荷载,并且随着拱的跨度增加,水平荷载(活载)与拱的自重(恒载)的比值也就越小,如:45m跨度拱桥,其值约15~20%,而100m跨度的拱桥,其值大幅度减少,不到自重的5%,我们可利用偏心自重引起的扭矩抵消大部分水平力引起的扭矩,从而使拱桥作为缆机轨道跨沟基础具有可能性。
     本文采用有限元分析的方法研究拱桥作为跨沟缆机轨道基础的可行性,采用国际上广泛使用的ANSYS结构分析软件,对拱桥结构进行各种工况下静力分析和动力分析,论证了其结构可行性;通过对变截面拱桥及等截面拱桥在各种工况下的应力及应变对比分析,以及结构约束条件的进一步优化,从而改善拱桥的受力条件,使得拱桥结构作为缆机轨道基础具有更大的应用范围;通过采用板壳单元及三维实体单元对拱桥结构进行各种工况下静力分析和动力分析,从而验证计算成果的可靠性。
In the project of the power station constructs, we usually need the vertical transportation system of the cable machine to transport the reinforcing bar of concrete or other materials into the storage., the cable machine can be the translation type or the radiation type to move. The track foundation of the cable machine generally lies in two banks of the slope or the platform on the hillside river valleys on the ground, both sides of the river valley often develop ditches which are vertical to the valley. Building the track foundation of the cable machine in the ditch, we usually use the gravity type structure or array structure, but the project amount is great, and construct time is long, can we use more light arched bridge structure pattern as the foundation of the track of the cable machine?
    Generally, the arched bridge is a structure which mainly bear the vertical loads, but even the routine railways , highway arched bridges, bear certain level loads too, for example: The wind loads, water loads (especially overflows bridge). From apparent, it seems that the level loads on the arched bridge which is used as the track foundation of the cable machine are greater than the vertical loads. But if we make a comparison between the live level loads on the cable machine and the deadweights of the arched bridge(permanent loads),we can find that the former is far more greater than the latter, and as the arch span increasing, their ratio becomes smaller. For example: the ratio of the arched bridge whose arch span is 45m is about 15%~20%, but when the span is 100m it becomes more smaller, less than 5% of the deadweights of the arched bridge. We can utilize the torque caused by partial deadweight to offset the torque caused by the most of the level force, thus we can make it possible that the arched bridge can be the foundation of the track of the cable machine.
    In this paper , FEM is used to discuss the feasibility of the arched bridge as the foundation of the track of the cable machine and the ANSYS is used to analysis the static force and the dynamic force of the arched bridge structure in different work conditions. The feasibility of the structure is also be proved. Through the comparison between the stress and the strain of the varied section and constant section of the arched bridge in different work conditions, and through the optimizing the restrain conditions of the structure, the strength condition of the arched bridge is improved, and arched bridge structure as the foundation of the track of the cable machine is used more widely. Through the analysis of the static force and the dynamic force of the arched bridge in different work conditions by using the methods of the shelly unit and three-dimensional entity's unit analysis, the reliability of the results can be proved.
引文
[1] 中华人民共和国国家标准,混凝土结构设计规范(GB50010-2002),北京:中国建筑工业出版社,2002年
    [2] 中华人民共和国铁道部标准,铁路桥涵钢筋混凝土和预应力混凝土结构设计规范(TB10002.3-99),北京:中国铁道出版社,2000年
    [3] 中华人民共和国交通部标准,公路钢筋混凝土及预应力混凝土桥涵设计规范(JTJ023-85),北京:人民交通出版社,1999年
    [4] CEB-FIP Model Code for Concrete Structure 1990. Comite Euro-International du Beton/Federation International de la Preconstrainte. Paris, 1990
    [5] ACI Committee 209. Prediction of Creep, Shrinkage, and Temperature Effects in Concrete Structure(209-92). American Concrete Institute. Farmington Hills, Mich., 1992
    [6] ACI318-95, Building Code Requirements for Reinforced Concrete (ACI318-95)and Commentary (ACI318R-95)", American Concrete Institute. Farmington Hills, 1995
    [7] AASHTO.美国公路桥梁设计规范(1994),辛济平译,北京:人民交通出版社,1995年
    [8] 项海帆,高等桥梁结构理论,北京:人民交通出版社,2001年
    [9] 范立楚,桥梁工程,北京:人民交通出版社,1987年
    [10] 姚玲森,桥梁工程,北京:人民交通出版社,1985年
    [11] 铁道部教材编辑组选编,桥梁建造与修复,北京:人民铁道出版社,1988年
    [12] 吴昌期,李永译,T型刚构桥,北京:人民交通出版社,1981年
    [13] 俞同华,林长川,郑信光,钢筋混凝土桁架拱桥,北京:人民交通出版社,1984年
    [14] 张燕联,拱桥转体施工方法,土木工程学报16卷第2期,1983年
    [15] 桥梁史话编写组,桥梁史话,上海:上海科技出版社,1979年
    [16] 中国土木工程学会桥梁及结构工程学会论文集,1988年
    [17] T. Y.Lin, Prestressed concrete, 1973
    [18] 杜拱辰,现代预应力混凝土结构,北京:中国建筑工业出版社,1988
    [19] A.E. Naaman, Prestressed Concrete Analysis and Design(Fundamentals), McGraw-Hill Book Company, 1982FIP recommendations, Practical design of reinforced and prestressed concrete structures (based on the CEB-FIP Model Code (MC-78). London: Thomas Telford Limited, 1982
    [20] 中华人民共和国国家标准,混凝土结构设计规范(GBJ10-89).,北京:中国建筑工
    
    业出版社,1990
    [21] 胡聿贤,地震工程学,北京:地震出版社,1988
    [22] 龙驭球,有限元概论,北京:高等教育出版社,1978
    [23] S. Otani, Inelastic Analysis of R/C Frames Structures. Journal of Structural Division, ASCE, Vol. 100, 1974
    [24] 沈聚敏,王传志,江见鲸,钢筋混凝土有限元与板壳极限分析,北京:清华大学出版社,1993
    [25] 沈聚敏,冯世平,周期反复荷载下钢筋混凝土压弯构件的性能,土木工程学报,1982年6月
    [26] 罗小勇,余志武,预应力混凝土结构非线性分析和设计的有限元模型,工程力学,1997.9
    [27] 周朝阳,罗小勇,余志武,无粘结预应力混凝土结构非线性分析,建筑结构学报,1999.4
    [28] H.Muguruma, Seismic Problems of PCI Building Structures with Special Refeerence to Basic Reseath in Japan, Proc. FIP Symposium on Partial Prestressing Buharest, Sept., 1980. pp. 398-406
    [29] 刘南科等,钢筋混凝土框架的非线性分析,土木工程学报,1990年第11期
    [30] 朱伯龙,董振祥著,钢筋混凝土非线性分析,北京:同济大学出版社,1985
    [31] ACI. Reinforced concrete columns: 1981
    [32] R. Park, T. Paulay, Reinforced Concrete Structures, John wiley & sons, 1975
    [33] 陈胜宏,高坝复杂岩石地基及岩石高边坡稳定分析,北京:中国水利水电出版社,2001年
    [34] 中国水利学会地基与基础工程专业委员会编著,水利水电地基与基础工程新技术,天津:天津科学技术出版社,2002年
    [35] 陈胜宏,汪卫明,邹丽春,岩石边坡开挖及加固分析的弹粘塑性块体元方法,岩石力学与工程学报,2002.7
    [36] 沈珠江,岩石破损力学与双重介质模型,水利水运工程学报,2002.4
    [37] 费文平,陈胜宏,水工结构弹粘塑性动力分析的三维力学有限元法,武汉大学学报(工学版),2003.2
    [38] 费文平,陈胜宏,含节理单元的三维p型自适应有限元解法,水利学报,2003.4
    [39] 费文平,陈胜宏,水工结构的三维p型弹粘塑性自适应有限单元法,水利学报,2003.3
    [40] 杨强,张建立,周维桓,三维退化夹层元的弹塑性分析及其在拱坝稳定分析中的应用,水力发电学报,2004.1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700