用户名: 密码: 验证码:
纳米TiO_2气相/固相光催化降解环境污染物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文简要介绍了纳米TiO_2半导体催化剂的制备及其在环保领域的应用研究的最新进展及国内外研究现状,并主要进行了纳米TiO_2多孔薄膜光催化氧化NO_x及改性纳米TiO_2固相光催化降解聚苯乙烯薄膜两方面的研究。
     以水玻璃为粘贴剂,氟硅酸钠为固化剂,采用涂膜法在钠玻璃板上低温制备了纳米TiO_2光催化薄膜,利用UV-Vis研究了薄膜的紫外吸收性能,SEM观察了其表面形貌,BJH法研究薄膜表面的孔径分布情况。在紫外光照条件下,进行催化薄膜对NO_x的光催化氧化实验,考察了催化剂负载量,反应体系中水蒸气分压以及氧气等因素对NO_x氧化脱除率的影响。实验结果表明:在一定的实验条件下,光照2h后,薄膜对氮氧化物的降解率可达到97.5%,FT-IR法定性分析出反应的最终产物为HNO_3。催化反应后的薄板经水洗后可重复使用,且仍然保持很高的光催化活性。
     实验室的研究已经证明用聚合物接枝改性的纳米TiO_2微粒在非极性溶剂中的分散性能良好,所以本文用聚合物接枝改性的纳米TiO_2颗粒作为催化剂,采用包埋法制备了一种新型的可光催化降解的纳米PS-G-TiO_2复合薄膜,并分别在空气中紫外光照,及太阳光照的条件下进行了薄膜的光催化降解实验。利用UV-Vis,GPC,FT-IR,XPS,SEM等分别对光照前后纯的PS膜及PS-G-TiO_2复合薄膜进行分析表征,所有的实验结果均表明PS-G-TiO_2复合薄膜在空气中能被有效的降解。紫外光照396h后,PS-G-TiO_2复合薄膜比纯的PS膜有更高的光降解失重率,达到了31.9%,平均分子量降低率从18.3%上升到53.1%。太阳光照300h后复合膜的光失重率达到了18.9%,而纯的PS膜为0.53%,这说明在太阳光照的条件下,PS-G-TiO_2复合膜同样能达到很高的降解率。同时我们也初步探讨了PS-G-TiO_2复合膜的光催化氧化机理。
The paper has reviewed the progress on the research of nanometer semiconductor catalysts. The current development of nano-TiOj photocatalyst has been considered including the preparation of catalyst and the application in degrading environment contaminants. In this thesis, we mainly focus on the study on the gas-phase photocatalytic oxidation of NOx with TiO2 nanometer film and the solid-phase phtotocatalytic degradation of PS film with modified nano-TiO2 catalyst.
    The porous titanium dioxide nanometer film was prepared on the glass plate with the water glass as binders and sodium fluorosilicate as solidifying agent. The film surface morphology was studied by scanning electron microscope (SEM), and pores distributing of the film was investigated by Barrett-Joyner-Halenda (BJH) method. The gas-phase photocatalytic oxidation of nitric oxides on the TiO2 composite film was carried out in the TiO2 /UV system. After UV-irradiation for 2 h, the photoxidation rate of NOx reached 97.5%. Some important factors affecting the photo-oxidation were also be considered such as the concentration of TiO2, vapour pressure and oxgen. The final product of the photocatalytic oxidation of NOx was detected to be HNO3 by FT-IR. The partial HNO3 was absorbed on the TiO2 surface, causing catalyst deactivation. But when it was washed by water, the catalyst could be reused without the significant loss of catalytic activity.
    The nano-TiO2 particles were modified by polymer. The photodegradable polystyrene-grafted-Ti02 (PS-G-TiO2) nanocomposite was prepared by embedding the grafted-TiO2 particles into the commercial polystyrene. Solid-phase photocatalytic degradation of the PS-G-TiO2 nanocomposite was carried out in ambient air at room temperature under ultraviolet lamp and sunlight irradiation. The properties of composite films were compared with that of the pure PS films by weight-loss measurement, SEM, gel permeation chromatogram (GPC), X-ray photoelectron spectroscopy (XPS), FT-IR, and UV-Vis spectroscopy etc. methods. The results showed that the photo-induced
    
    
    degradation of PS-G-TiO2 composite film is significantly higher than that of pure PS film. The weight loss of composite film reached 31.9%, average molecular weight (Mw) of composite film decreased 53.1%, and the number average molecular weight (Mn) decreased 73.2% after 396 h UV-light irradiation. FT-IR analysis and weight loss result indicated that the benzene rings in PS-matrix of composite film were cleaved during UV-light irradiation. The photocatalytic degradation mechanism of the composite film is briefly discussed.
引文
1.张立德,牟季美.纳米材料和纳米结构,科学出版社,第1版,2001:51-60
    2.韩世同,习海玲等,半导体光催化研究进展与展望,化学物理学报,2003,16(5):339-349
    3. Leland J K, Bard A J. Photochemistry of collioidal semiconducting iron oxide polymorphs. J. Phys. Chem., 1987, 91:5076-5083
    4.郑红,汤鸿霄等,有机污染物半导体多相光催化氧化机理及动力学研究,环境科学进展,1996,4(3):1-18
    5. Takeda K, Fujiwara K. Characteristics on the determination of dissolved organic nitrogen compounds in natural waters using titanium dioxide and platinized titanium dioxide mediated photocatalytic degradation. Water research, 1996,30(2):323-330
    6. Hoffmann M R, Martin S T, Chio W Y, Bahnemann D W. Environmental application of semiconductor photocatalysts. Chem. Rev., 1995, 95:69-96
    7. Choi W Y, Termina A, Hoffmann M R. The role of metal ion quantum-sized TiO_2:
    
    correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem., 1994, 98(51): 13669-13679.
    8.杨海堃等,气相氢氧焰水解法生产超微细二氧化钛,中国粉体技术,2000,1:22-26
    9.符小荣,张校刚,宋世庚等,TiO_2/Pt/glass纳米薄膜的制备及对可溶性染料的光电催化降解.应用化学,1997,14(4):77-79
    10. Dagan G, Tomki E M. TiO_2 arogels for photocatalytic decontamination of aquatic Enviroments. J Phys. Chem., 1993, 97(49): 12651-12655
    11.赵文宽等,用高温热水解法制备高活性TiO_2内米微晶光催化剂.[J].物理化学学报,1998,14(5):424-428
    12.赵文宽,方佑龄,光催化活性TiO_2的低温制备.[J].物理化学学报,2002,18(4):368-371
    13.张立德.超微粉体制备与应用技术.北京,中国石化出版社,2001:103-108
    14.林明,范以宁,刘浏等,高能机械球磨法制备V_2O_5-TiO_2超细微粒催化剂.[J].催化学报,2001,22(6):585-588
    15. Harada H, Ueda T. Photocatalytic activity of ultra-fine rutile in menthanol-water solution and dependence of activity on particle size. Chem. Phys. Lett., 1984, 106: 229-231
    16. Khalil L B, Mourad W E, Rophael M W. Photocatalytic reduction of environmental pollutant Cr(Ⅵ) over some semiconductors under UV/visible light illumination: Appl. Catal. B: Environ., 1998, 17(3): 267-273
    17. Yu G, Zhu W P, Yang Z H, Li Z H. Semiconductor photocatalytic oxidation of Hacid aqueous solution, Chemosphere, 1998, 36(12): 2673-2681
    18. Li D, Haneda H. Photocatalysis of sprayed nitrogen-containing Fe_2O_3-ZnO and WO_3-ZnO composite powders in gas-phase acetaldehyde decomposition. J. Photochem. &Photobiol. A: Chem. 2003, 160(3): 203-212
    19. Reutergardh L B, Isngphssuk M. Photocatalytic decolourization of reactive azo dye: a comparison between TiO_2 and CdS photocatalysis. Chemosphere., 1997, 35(3): 585-596
    
    
    20. Liu B J, Torimoto T, Yoneyama H. Photocatalytic reduction of CO_2 using surface-modified CdS photocatalysts in organic solvents. J. Photochem&Photobiol A: Chem., 1998, 113(1): 93-97
    21. Koca A, Sahin M. Photocatalytic hydrogen production by direct sun light from sulfide/sulfite solution. International Journal of Hydrogen Energy. 2002, 27(4): 363-367
    22. Bahneman D W. Kholuiskaya S N. Photodestruction of dichloroacetic acid catalyzed nano-sized TiO_2 particles. Appl. Catal. B: Environ., 2002,36(2): 161-169
    23. Chio W Y., Effect of metal ion dopants on the photocatalytic reactivity of quantum- sized TiO_2 particles Angew. Chem., 1994, 33:1091-1092
    24. Elmorsi T M, Budakowski W R., Photocatalytic degradation of 1,10-dichlorodecane in aqueous suspensions of TiO_2:A reaction of adsorbed chlorinated alkane with surface hydroxyl radicals. J. Environ. Sci. Technol., 2000, 34:1018-1022
    25.胡春,王怡中,汤鸿霄,多相光催化氧化的理论与实践发展,环境科学进展,1995,3(1):55-56
    26. Turchi C S, Ollis D F. Photocatalytic degradation of organic water contaminants mechanisms involving hydroxyl radical attack. J. Catal., 1990, 122:178-192
    27. Sun L, Bolton J R. Determination of the quantum yield for the photochemical generation of hydroxyl radicals in TiO_2 suspensions. J. Phys. Chem., 1996, 100: 4127-4134
    28. Anpo M, Shima T, Kodama S. Photocatalytic hydrogenation of CH_3CCH with H2O on small-particle TiO_2: size quantization effects and reaction intermediates. J. Phys. Chem. 1987, 91: 4305-4310
    29. Mao Y, Schoneich C, Asmus K D. Indentification of organic acids and other intermediate in oxidative degradation of chlorinated ethanes on TiO_2 surfaces en route to mineralization. Acombined photocatalytic and radiation chemical study. J. Phys. Chem., 1991, 95:10080-10089
    30. Sun Y. Kinetica and transport parameters for the fixed-bed catalytic incineration of
    
    volatile organic compounds. Environ. Sci. Technol., 1995, 25:2065-2072
    31. Assabane A, Yahia A I, Tahiri H, Guillard C, Herrmann J M. Photocatalytic degradation of polycarboxylic benzoic acids in UV-irradiated aqueous suspensions of titania: Identification of intermediates and reaction pathway of the photomineralization of trimellitic acid (1,2,4-benzene tricarboxylic acid). Appl. Catal. B: Environ., 2000, 24(2): 71-87
    32. Carrway E R, Hoffman A J, Hoffmann M R. Photocatalytic oxidation of organic acids on quantum-sized semiconductor colloids. Environ. Sci. Technol., 1994, 28: 786-793
    33. Ishibashi K I, Fujishima A, Watanabe T, Hashimoto K. Quantum yields of active oxidative species formed on TiO_2 photocatalyst. J. Photochem&Photobio. A: Chem., 2000, 134:139-142
    34. Sabate J, Anderson M A. Aromatization of n-Hexane by platinum-containing molecular sieves. Ⅱ n-Hexane reactivity. J. Catal., 1992, 134:360-369
    35. Harstricka K, Heinzl E E. TiO_2-assisted degradation of environmentally relevant organic compounds in wastewater using a novel fluidied bed photoreaction. Environ. Sci. Technol., 1996, 30:817-826
    36.魏宏斌,严煦世,二氧化钛膜光催化氧化苯酚,上海环境科学,1995,10:30-34
    37.王怡中,符雁,汤鸿霄,二氧化钛悬浆体系太阳光催化降解甲基橙研究,环境科学学报,1999,19(1):63-67
    38.王怡中,符雁,汤鸿霄,平板构型太阳光催化反应系统中甲基橙降解脱色研究,环境科学学报,1999,19(2):142-146
    39. Wu T X, L iu G M. Photoassisted degradation of dye pollutants. Ⅴ. Selfphotosensitized oxidative transformation of Rhodamine B under visible light irradiation in aqueos TiO_2 dispersions. J. Phys. Chem. B, 1998, 102:5845-5851
    40.张桂兰,全燮等,染料废水在旋转式光催化反应器中的降解研究,环境科学,1999.3:79-81
    41. Awati P S, Awate S V, Shah P P, Ramaswamy Ⅴ. Photocatalytic decomposition of
    
    methylene blue using nanocrystalline anatase titania prepared by ultrasonic technique. Catal. Commun. 2003, 4(8): 393-400
    42. Houas A, Lachheb H, et al. Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B: Environ., 2001, 31(2): 145-157
    43.程沧沧,胡德文,太阳光的光催化降解耐大红染料的试验,上海环境科学,1998,17(8):36-40
    44.游道新,鲍明亮,亲水性染料日光催化脱色的初步研究,水处理技术,1992,18(2):90-99
    45. Ollis D F, Serpone N. Photocatalyzed destruction of water contanants. Environ. Sci. Technol., 1991, 25:1523-1528
    46. Calza P, Minero C, Pelizzetti E. Photocatalytic transformation of chlorinated methanes in the presence of electron and hole scavengers. J. Chem. Soc., Faraday, 1997, 93(2): 3765-3771
    47. Maira A J, Yeung K L, Lee C Y, Yue P L, Chan C K. Size Effects in Gas-Phase Photo-oxidation of Trichloroethylene Using Nanometer-Sized TiO_2 Catalysts. J. Catal., 2000, 192(1): 185-196
    48. Fan J F, Yates J. Mechanism of photooxidation of trichloroethylene on TiO_2: Detection of intermediates by infrared spectroscopy. J. Am. Chem. Soc., 1996, 118: 4686-4692.
    49. Tahiri H, Ichou Y A, Herrmann J M. Photocatalytic degradation of chlorobenzoic isomers in aqueous suspensions of neat and modified titania. J. Photochem. & Photobiol. A: Chem., 1998, 114(3): 219-226
    50. Guillard C, Disdier J, Monnet D, et al. Solar efficiency of a new deposited titania photocatalyst: chlorophenol, pesticide and dye removal applications. Appl. Catal. B: Environ., 2003, 46(2): 319-332
    51.岳林海,稀土元素掺杂二氧化钛催化剂光降解久效磷的研究,上海环境科学,1998,17(9):17-19
    52.郑巍,刘维屏,附载TiO_2光催化降解咪蚜胺农药,环境科学,1999,20(1):73-76
    
    
    53.陈士夫,赵梦月,陶跃武,玻璃纤维附载TiO_2光催化降解有机磷农药,环境科学,1996,17(4):33-35
    54. Horikoshi S, Watanabe N, Onishi H, et al. Photodecomposition of a nonylphenol polyethoxylate surfactant in a cylindrical photoreactor with TiO_2 immobilized fiber glass cloth. Appl. Catal. B: Environ., 2002, 37(2): 117-129
    55. Hidaka H, Asai. Y, et al. Photoelectrochemical decomposition of surfactants on a TiO_2/TCO particulate film electrode assembly. J. Phys. Chem., 1995, 99 (20): 8244-8248
    56.钟萍,孔令仁,冯建芳等,水体系中正癸烷和正癸烯的光催化降解,中国环境科学,2003,23(2):122-126
    57.方佑龄,赵文宽,赵国华,用浸涂法制备飘浮负载型TiO_2薄膜光催化降解辛烷,环境化学,1997,16(5):413-417
    58.徐安武,刘汉钦,李玉光,NO_x气相光催化氧化降解研究,高等学校化学学报,2000,21(8):1252-1256
    59.高濂,郑珊,张青红,纳米氧化钛光催化材料及应用,化学工业出版社,2002:282-284

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700