用户名: 密码: 验证码:
小菜蛾对氟虫腈的抗性机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小菜蛾(Plutella xylostella L.)是世界性分布的重要农业害虫,由于其生殖周期短,繁殖量大,适应性广,并且可以长距离迁飞,在热带和亚热带地区成为十字花科蔬菜的主要害虫。长期以来对小菜蛾的防治严重依赖于化学合成杀虫剂,因此小菜蛾也成为最容易在田间产生抗药性的农业昆虫。现在小菜蛾对各种长期使用的常规杀虫剂甚至新型的杀虫剂和生物杀虫剂都已经产生了严重的抗性,这样就为小菜蛾的综合治理带来了难度。因此,为深入了解小菜蛾对新型的苯并吡唑类杀虫剂的抗性机制,本文从生化和分子角度研究了小菜蛾对氟虫腈的抗性机理。
     1 小菜蛾对氟虫腈抗性与交互抗性的研究
     从中国深圳坪山镇菜地采集田间小菜蛾,一部分在室内不接触杀虫剂条件下饲养成为PS对照种群,另一部分经20代氟虫腈筛选得到抗性为352倍的PSF品系。与PS对照种群和ROTH标准敏感品系比较,PSF品系对硫丹和狄氏剂存在明显的交互抗性,与阿维菌素和多杀菌素不存在交互抗性。在PSF品系上,PBO和DEF对氟虫腈没有增效作用。
     2 小菜蛾对氟虫腈抗性的生化机理研究
     采用室内选育的小菜蛾抗氟虫腈品系(PSF)、对照种群(PS)和敏感品系(ROTH),比较了小菜蛾不同品系多功能氧化酶(MFO)、酯酶(EST)和谷胱甘肽-S-转移酶(GST)的活性。结果表明,抗性品系、未筛选的对照种群和敏感品系的MFO、EST和GST活力均没有明显的差异。小菜蛾对氟虫腈的高水平抗性可能是与靶标不敏感性有关,而与解毒代谢增强没有关系。
     3 小菜蛾GABA受体基因克隆与序列分析
     根据已经发表的昆虫GABA受体α亚基基因序列,在保守区域设计简并引物扩增GABA受体基因片段。采用PCR和RT-PCR的方法分别从小菜蛾基因组DNA和cDNA中克隆了171bp的GABA受体基因序列(编码57个氨基酸),氨基酸序列同源性比较显示这个区域高度保守,与多种昆虫GABA受体的同源性都在99%以上。
     分别从ROTH品系、PS种群和PSF品系小菜蛾获得的GABA受体基因片段,显示有两种基因Rdl1和Rdl2。Rdl1存在两个等位基因Rdl1a和Rdl1s,分别对应果蝇
    
    小菜蛾对氟虫睛的抗性机理研究
    o妞A受体Rdl基因的野生型和突变型,在Rdl 1 a 302位发生AlaGCC一>SerTCC突变。
    RdiZ氨基酸序列与Rdl 15相同,但密码子有较大差异。在ROTH品系中发现存在Rdila
    与RdlZ两种类型,而在PS种群与PSF品系中三种类型都存在。
     我们推测在小菜蛾中至少存在两个Rdl基因位点,一个编码Rdl la/RdllS基因,另
    一个编码RdiZ基因。RdlZ基因可能与小菜蛾对氟虫睛的抗性没有关系,而
    Rdl la一>Rdlls的突变可能与小菜蛾对氟虫睛的杭性有关。
The diamondback moth, Plutella xylostella L. (Lepidoptera: Yponomeutidae), is one of the most destructive insects of cruciferous plants throughout the world. The diamondback moth is the first crop pest in the world to develop resistance to DDT, and now the diamondback m oth h as develop r esistance t o n early every c lass o f s ynthetic i nsecticides used against it in the field in many countries. It is also the first insect that had developed resistance to the bacterial insecticide Bacillus thuringiensis in the field.
    Fipronil is a member of the novel phenyl pyrazole insecticide class that is active at the neuron-inhibitory GABA-gated chloride channel, the same target of cyclodiene insecticides (such as dieldrin, endosulfan). The role of the detoxification enzymes and GAB A receptor Rdl gene involved in fipronil resistance was investigated in the present study.
    1. Cross-resistance of fipronil-selected strain of diamondback moth
    A field population collected from Pingshan town of Shenzhen in Dec 2002 was divided into two subpopulations. One subpopulation was reared in the laboratory without exposed to any insecticides and named as PS strain. The PSF strain was derived from another subpopulation after 20 generations of continuous selection with fipronil. The PSF strain developed 352-fold resistance to fipronil and showed obvious cross-resistance to two cyclodiene insecticides dieldrin and endosulfan compared with the PS strain. No cross-resistance to avermectin and spinosad was detected in the PSF strain. Neither piperonyl butoxide (PBO, microsomal oxidase inhibitor) nor S, S, S-tributyl phosphorotrithioate (DBF, esterase inhibitor) reduced the level of resistance to fipronil in the PSF strain.
    2. Biochemical characterization of fipronil resistance in the diamondback moth.
    Detoxication enzyme assays revealed that there were no difference in activities of Glutathione-S-transferases (DCNB, CDNB), general esterase and monooxygenases (ECOD, MCOD, PNOD) among the susceptible Roth, PS and PSF strains. The results suggested that fipronil resistance observed in the PSF strain was most likely attributed to decreased target
    
    
    
    site sensitivity.
    3. Cloning and sequence analysis of a gene fragment encoding the GAB A receptor (Rdl)
    Two Rdl gene fragments Rdll and Rdl2 were cloned from both genomic DNA and cDNA of the diamondback moth by PCR and RT-PCR. The predicted amino acid sequence shares high similarity (>99%) with GABA receptor homologous from various insects.
    Gene fragment Rdll has two alleles, Rdlla and Rdl Is. cDNA sequences and amino acids of Rdlla and Rdlls alleles are identical except for an AlaGCC to SerTCC substitution (homologous to Ala302->Ser mutation in Drosophild). Rdl2 has the same amino acids with Rdlls, but their codon usage is different. Only Rdlla and Rdl2 were detected in the susceptible ROTH strain, however the Rdlla -> Rdlls mutation and Rdl2 were found in both PS population and PSF strain. Rdlla -> Rdlls mutation may play a role in the fipronil resistance of P. xylostella.
引文
[1] 陈言群,杨帆,孙耕芹.艾氏剂环氧化酶及细胞色素P450对小菜蛾抗药性发展的影响,昆虫学报,1994,37(3):280-285.
    [2] 陈之浩,刘传秀.小菜蛾继代繁殖大量饲养方法研究初报,贵州农业科学.1990(4).52-53.
    [3] 陈之浩,刘传秀,李风良等.贵州主要菜区小菜蛾抗药性调查,贵州农业科学,1992(2):15-19.
    [4] 陈之浩,刘传秀,李风良等.杀虫双、杀螟丹选育小菜蛾抗药性的形成及其抗性机制,昆虫学报,1993,36(4):409-417.
    [5] 陈之浩,刘传秀,李凤良,等,小菜蛾幼虫乙酰胆碱酯酶和羧酸酯酶的活性与抗药性关系研究,贵州农业科学,1992(3):1-3.
    [6] 陈宗麒,缪森,杨翠仙,罗开珺,谌爱东,沐卫东.小菜蛾弯尾姬蜂引进及其控害潜能评价.植物保护,2003,29(1):22-24.
    [7] 程罗根 小菜蛾对杀虫双和杀螟丹抗性的现实遗传力1 昆虫学报,2001,44(3):263-267.
    [8] 程罗根 小菜蛾对杀虫双和杀螟丹抗药性遗传的DNA随机扩增多态性研究1昆虫学报,2001,44(1):15-20.
    [9] 程罗根,李凤良,陈之浩等,小菜蛾对杀螟丹抗性遗传的研究,昆虫学报,1999,42(1):12-18.
    [10] 程罗根,李凤良,王荫长 小菜蛾对杀螟丹抗药性的生化遗传研究 南京农业大学学报,1998,21(3):36-40.
    [11] 戴承镛,小菜蛾对苏云金杆菌制剂的抗药性及其对策,生物防治通报,1994,10(2):62-66.
    [12] 冯夏,陈焕瑜,帅应恒等.广东小菜蛾对苏云金杆菌的抗性研究,昆虫学报,1996,39(3):238-244.
    [13] 郭世俭,林文彩,章金明.浙江省主要菜区小菜蛾抗性的研究,浙江农业学报,2003,15(1):19-22.
    [14] 何玉仙,杨秀娟,翁启勇,黄建.小菜蛾对阿维菌素的抗性研究.福建农业学报.2002,17(3):155-158.
    [15] 黄剑,吴文君 小菜蛾抗药性研究进展 贵州大学学报 2003,20:97-104.
    [16] 李凤良 小菜蛾对溴氰菊酯的抗性遗传分析 西南农业学报,2000,13(4):62-66.
    [17] 李凤良,程罗根,韩招久等,小菜蛾对杀虫双的抗性遗传研究,植物保护学报,1998,25(4):345-350.
    [18] 李腾武 小菜蛾对阿维菌素的抗性遗传方式和相对适合度研究 昆虫学报,2000,43(3):255-263.
    [19] 梁谊,陈宗麒,小菜蛾抗性研究现状,云南农业大学学报,2000,15(4):367-371.
    [20] 刘传秀 李凤良 韩招久 陈之浩 溴氰菊酯抗性小菜蛾对不同杀虫剂的交互抗性及治理对策 贵州农业科学 1994,3:25-29.
    [21] 刘传秀,李凤良,韩招久等,小菜蛾对溴氰菊酯抗性选育及抗性机理,植物保护学报1995,22(4):409-417.
    [22] 唐振华,韩罗珍,张朝远,抗马拉硫磷淡色库蚊不同基因型的自然内禀增长率及其对抗性演化的影响,昆虫学报,1990,33(4):385-392.
    [23] 唐振华,周成理,解毒酯酶在小菜蛾幼虫抗药性中的作用,昆虫学报,1993,36(1):8-13.
    [24] 唐振华,周成理,抗性小菜蛾的乙酰胆碱酯酶敏感性,昆虫学报,1992,35(4):385-391.
    [25] 唐振华,周成理,吴世昌等,上海地区小菜蛾的抗药性及增效剂的作用,植物保护学报,1992,19(2):179-184.
    [26] 王维专,广州、深圳地区小菜蛾对定虫隆、Bt的抗性监测,植物保护学报,1993,20(3):273-276.
    [27] 王香萍,方宇凌,张钟宁.小菜蛾性信息素研究及应用进展.植物保护,2003,29(5):5-9.
    
    
    [28] 吴刚,尤民生,赵士熙,抗性和敏感小菜蛾谷胱甘肽-S-转移酶和谷胱甘肽的比较 福建农业大学学报 2000,29(4):478-481.
    [29] 吴刚,宫田正,酰胺酶在小菜娥对抑太保抗性中的作用,福建农业大学学报,1998,27(1):92-95.
    [30] 吴青君,朱国仁,赵建周,张兴,高希武.小菜蛾对定虫隆抗性种群的选育及交互抗性研究.昆虫学报,1998,41(增刊):34-41.
    [31] 吴青君,张文吉,张友军,徐宝云,朱国仁.表皮穿透和GABA_A受体不敏感性在小菜蛾对阿维菌素抗性中的作用.昆虫学报,2002,45(3):336-340.
    [32] 吴士雄等.中国昆虫学会第六次全国代表大会及学术讨论会论文摘要集.1997.176.
    [33] 闫艳春,乔传令,钱传范,小菜娥抗药性研究进展,昆虫知识,1997,34(5):310-314.
    [34] 杨平,刘南欣,林锦英.应用昆虫病原线虫防治小菜蛾的研究.昆虫天敌.1999,21(3):107-112.
    [35] 余德亿,占志雄,汤葆萍,小菜蛾对Bt的抗性及其治理,昆虫天敌,1999 21(1):21-27.
    [36] 袁静,温以军,小菜蛾人工饲养和几种药剂的毒力测定,辽宁农业科学,2001,(1):44-45.
    [37] 张敏玲,庞雄飞.赤眼蜂防治小菜蛾问题 生态科学,1995,2:84-87.
    [38] 赵建周,朱国仁,吴世昌,小菜蛾抗性及其治理的研究,世界农业,1991,(9):30-32.
    [39] 周成理,唐振华,张丽妹 小菜蛾幼虫对拟除虫菊酯类杀虫剂的抗药性与多功能氧化酶的关系 植物保护学报,1993,20(1):91-95.
    [40] 朱树勋,司升云,周芳,等,武汉地区小菜蛾田间抗药性监测,植物保护 1995(2):29-30.
    [41] 朱树勋,司升云,周芳,小菜蛾的抗药性回复,中国蔬菜,1999(1):20-22.
    [42] Abd Elghafar SF, Abo Elghar GE, Knowles CO. Fenvalerate penetration, metabolism, and excretion in pyrethroid-susceptible and resistant Heliothis virescens(Lepidoptera: Noctuidae). J. Econ. Entomol. 1994, 87: 4, 872-878.
    [43] Abdullah Md, Ouab S, Siripan T, Somchai I and Sudawan C. Monitoring Insecticide Resistance Development in Beet Armyworm, Spodoptera exigua(Hübner) (Lepidoptera: Noctuidae). Kasetsart J. (Nat. Sci.)2000, 34: 450-457.
    [44] Ahmad M, Iqbal Arif M, Ahmad Z. Susceptibility of Helicoverpa armigera(Lepidoptera: Noctuidae) to new chemistries in Pakistan. Crop Prot. 2003, 22(3), 539-544.
    [45] Akamatsu M, Ozoe Y, Ueno T, Fujita T, Mochida K, Nakamura, and Matsumura F, Sites of action of noncompetitive GABA antagonists in houseflies and rots: Three-dimensional QSAR analysis, Pestic. Sci. 1997, 49, 319-332.
    [46] Alix P, Grolleau F, and Hue B. Ca~(2+)/Calmodulin-Dependent Protein Kinase Regulates GABA-Activated CT Current in Cockroach Dorsal Unpaired Median Neurons. J Neurophysiol, Jun 2002, 87: 2972-2982.
    [47] Amin J, Weiss DS. Homomeric ρ_1 GABA channels: activation properties and domain. Receptor Channels, 1994, 2: 227-236.
    [48] Andrahennadi R and Gillott C. Resistance of Brassica, especially B. juncea(L.) Czern, genotypes to the diamondback moth, Plutella xylostella(L.). Crop Prot. 1998, 17(1): 85-94.
    [49] Andreev D, Kreitman M, Phillips TW, Beeman RW, Ffrench-Constant RH. Multiple Origins of Cyclodiene Insecticide Resistance in Tribolium castaneum(Coleoptera: Tenebrionidae). J Mol Evol(1999)48: 615-624.
    [50] Ankersmit GW, DDT resistance in Plutella maculipennis(CutisLep,)in Java, Bull. Entomol. Res, 1953, 44: 421-425.
    [51] Anthony NM, Brown JK, Markham PG, Ffrench-constant RH. Molecular analysis of cyclodiene resistance-associated mutations among populations of the sweetpotato whitefly Bemisia tabaci. Pestic.
    
    Biochem. Physiol. 1995, 51: 220-228.
    [52] Anthony NM, Unruh T, Ganser D, Ffrench-Constant RH. Duplication of the Rdl GABA receptor suburtit gene in an insecticide-resistant aphid, Myzus persicae. Mol Gen Genet, 1998, 260: 165-175.
    [53] Ashok M, Turner C, Wilson TG. Insect juvenile hormone resistance gene homology with the bHLH-PAS family of transcriptional regulators. Proc. Natl. Acad. Sci. USA. 1998, 95: 6, 2761-2766.
    [54] Biever KD, Hostetter DL, Kern JR. Evolution and implementation of a biological control-IPM system for crucifers: 24-year case history. American Entomologist. 1994, 40: 2, 103-108.
    [55] Bloomquist JR. Cyclodiene resistance at the insect GABA receptor/chloride channel complex confers broad cross resistance to convulsants and experimental phenylpyrazole insecticides, Arch. Insect Biochem Physiol. 1994, 26:69-74.
    [56] Bloomquist JR, Robinson WH, Rettich F & Rambo G W. Prevalence and magnitude of resistance to cyclodiene and phenylpyrazole insecticides in Blattella germanica and Drosophila melanogaster. Proc. 3rd Internat. Conf. On Urban Pests. Prague, Czech Republic, 19-22 July 1999. Pp. 27-34.
    [57] Bradford WW. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal, Biochem. 1976, 72: 248-254.
    [58] Brooke BD, Hunt RH, Coetzee M. Resistance to dieldrin+fipronil assorts with chromosome inversion 2La in the malaria vector Anopheles gambiae. Med. Vet. Entomol. 2000, 2: 190-194.
    [59] Buckingham SD, Hosie AM, Roush RL, and Sattelle DB, Actions of agonists and convulsant antagonists on a Drosophila melanogaster GABA receptor(Rdl)homo-oligomer expressed in Xenopus oocytes, Neurosci. Lett. 1994, 181: 137-140.
    [60] Cameron PJ; Shelton AM; Walker GP; Tang JD Comparative insecticide resistance of New Zealand and North American populations of diamondback moth, Plutella xylostella(Lepidoptera: Plutellidae), New Zealand Journal of Crop and Horticultural Science, 1997, 25: 2,117-122.
    [61] Casida JE. Insecticide action at the GABA-gated chloride channel: recognition, progress, and prospects. Arch. Insect Biochem Physiol. 1993, 22: 1-2, 13-23.
    [62] Chen JS and Sun CN. Resistance of diamondback moth(Lepidoptera: Plutellidae)to a combination of fenvalerate and piperonyl butoxide. J. Econ. Entomol. 1986, 79: 22-30.
    [63] Cheng EY, Kao CH, Chiu CS. Insecticide resistance study in Plutella xylostella L. X. The IGR-resistance and the possible management strategy. Journal of Agricultural Research of China. 1990, 39(3): 208-220.
    [64] Clark JM, Lee SH, Kim HJ, Yoon KS, Zhang A. DNA-based genotyping techniques for the detection of point mutations associated with insecticide resistance in Colorado potato beetle Leptinotarsa decemlineata. Pest Management Science. 2001, 57: 10, 968-974.
    [65] Cole LM, Nicholson RA and Casida JE, 1993. Action of phenylpyrazole insecticides at the GABA-gated chloride channel. Pestic. Biochem. Physiol. 46(1): 47-54.
    [66] Cole LM, Saleh MA, Casida JE. House fly head GABA-gated chloride channel: [~3H]alpha-endosulfan binding in relation to polychlorocycloalkane insecticide action. Pesticide Science. 1994, 42:1, 59-63.
    [67] Cole LM, Roush RT and Casida JE. Drosophila GABA-gated chloride channel: modified [~3H] EBOB binding site associated with Ala->Ser OR Gly mutants of Rdl subunit. Life Sciences, 1995, 56(10): 757-765.
    [68] Colliot F, Kukorowski KA, Hawkins DW & Roberts DA. 1992. Fipronil: A new soil and foliar broad-spectrum insecticide. Brighton Crop Protection Conference Pests and Diseases 1992, 2-1: 29-34.
    
    
    [69] Dabom P, McCart C, Woods D, and Ffrench-Constant RH. Detection of insecticide resistance-associated mutations in cat flea Rdl by TaqMan-allele specific amplification. Pestic. Biochem. Physiol. 2004, 79(1): 25-30.
    [70] Deng YL, Palmer CJ, Casida JE. House fly head GABA-gated chloride channel: four putative insecticide-binding sites differentiated by [~3H] EBOB and [~(35)S] TBPS. Pestic. Biochem. Physiol. 1993, 47(2): 98-112.
    [71] Doichuanngam K and Thornhill RA. Penetration, excretion and metabolism of ~(14)C malathion in susceptible and resistant strains of Plutella xylostella, 1992, 101: 583-588.
    [72] Durham EW, Siegfried BD, Scharf ME. In vivo and in vitro metabolism of fipronil by larvae of the European corn borer Ostrinia nubilalis. Pest Manage. Sci.2002, 58(8): 799-804.
    [73] Dutton R; Gueguen F.A new insecticide from Dow AgroSciences. Proceedings of the Filth International Conference on Pests in Agriculture, Part Ⅰ, Montpellier, France, 7-9 December 1999, 191-200.
    [74] Facknath S, Singh RP, Saxena RC. Application of neem extract and intercropping for the control of cabbage pests in Mauritius. Azadirachta indica A. Juss. 1999, 165-175.
    [75] Farnham AW, Genetics of resistance of houseflies(Musca domestica L.)to pyrethroids. Ⅰ. Knock-down resistance, Pestic. Sci. 1977, 8: 631-636.
    [76] Fauziah I, Wright DJ. Cross-resistance between acylurea insect growth regulators in a strain of PlutelIa xylostella L.(Lepidoptera: Yponomeutidae)from Malaysia. Pestic.Sci, 1991, 33: 359-370.
    [77] Ferré JM, Real D, Rie JV, et al, Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor, Proc. Natl. Acad. Sci. U.S.A. 1991, 88: 5119-5123.
    [78] Ferré JM, Escriche B, Bel Y, et al: Biochemistry and genetics of insect resistance to Bacillus thuringiensis insecticidal crystal proteins, FEMS Microbiology Letters, 1995, 132(1, 2): 1-7.
    [79] Ffrench-Constant RH, Roush RT. Gene mapping and cross-resistance in cyclodiene insecticide-resistant Drosophila melanogaster(Mg). Genetical Research. 1991, 57: 1, 17-21.
    [80] Ffrench-Constant RH, Rocheleau TA, Steichen JC, Chalmers AE. A point mutation in a Drosophila GABA receptor confers insecticide resistance. Nature. 1993a, 363: 6428, 449-451.
    [81] Ffrench-Constant RH, Steichen JC, Rocheleau TA, Aronstein K and Roush RT. A single-aminoacid substitution in a γ-aminobutyric acid subtype A receptor locus is associated with cyclodiene resistance in Drosophila populations. Proc. Natl. Acad. Sci. USA.1993b, 90: 1957-1961.
    [82] Gant DB, Bloomquist JR, Ayad HH. & Chalmers AE. 1990. A comparison of mammalian and insect GABA receptor chloride channels. Pestic. Sci.30: 355-357.
    [83] Gant DB, Chalmers AE, Wolff MA, Hoffman HB, Bushey DF, Kuhr RJ. & Motoyama N. 1998. Fipronil: action at the GABA receptor. In: Pesticides and the Future: minimizing chronic exposure of humans and the environment. Rev. Toxicol. 1998, 2: 147-156.
    [84] Grolleau F and Sattelle DB. Single channel analysis of the blocking actions of BIDN and fipronil on a Drosophila melanogaster GABA receptor(Rd1)stably expressed in a Drosophila cell line. Br. J. Pharmacol, Aug 2000; 130: 1833-1842.
    [85] Hainzl D, Casida JE, Fipronil insecticide: novel photochemical desulfinylation with retention of neurotoxicity, Proc. Natl. Acad. Sci. U.S.A. 1996,93:12746-12767.
    [86] Hama H, Suzuki K, and Tanaka H. Inheritance and stability of resistance to Bacillus thuringiensis formulations in the diamondback moth, Plutella xylostella(Linnaeus)(Lepidoptera: Yponomeutidae).
    
    Appl. Entomol.Zool. 1992, 27:355-362.
    [87] Hama H. Insecticide resistance characteristics of the diamondback moth, In: Talekar N S ed,M anagement of diamondback moth and other crucifer pests,Taiwan:AVRDC,1992,455-463.
    [88] Han MH, Li Y, Yang XL. Desensitizing GABA_c receptors on carp retinal bipolar cells. NeuroReport, 1997, 8: 1331-1335.
    [89] Hatton LR, Hawkins DW, Pearson CJ & Roberts DA, 1988. Derivatives of N-phenylpyrazoles. E.P.Patent295117.
    [90] Heckel DG, Gahan LJ, Tabashnikb E, et al, Randomly amplified polymorphic DNA differences between strains of diamondback moth(Lepidoptera: Plutellidae)susceptible or resistant to Bacillus thuringiensis, Ann Entomol Soc Amer, 1995, 88(4):531-537.
    [91] Holbrook GL, Roebuck J, CB. Moore CB, Waldvogel MG and SCHAL C. Origin and Extent of Resistance to Fipronil in the German cockroach, Blattella germanica(L.)(Dictyoptera: Blattellidae), J. Econ. Entomol. 2003, 96(5): 1548-1558.
    [92] Horoszok L, Raymond V, Sattelle DB, and Adrian J. Wolstenholme.GLC-3: a novel fipronil and BIDN-sensitive, but picrotoxinin-insensitive, L-glutamategated chloride channel subunit from Caenorhabditis elegans. Br. J. Pharmacol. Mar 2001; 132: 1247-1254.
    [93] Hosie AM, Baylis HA, Buckingham SD, Sattelle DB. Actions of the insecticide fipronil on dieldrin-sensitive and resistant GABA receptors of Drosophila melanogaster, Br.J. Pharmacol. 1995, 115: 909-912.
    [94] Hosie AM, Aronstein K, Sattelle DB, Ffrench-Constant RH. Molecular biology of insect neuronal GABA receptors. Trends Neurosci. 1997, 20: 578-583.
    [95] Hosie AM, Buckingham SD, Presnail JK, Sattelle DB. Alternative splicing of a Drosophila GABA recepter subunit gene identifies determinants of agonist potency. Neuroscience, 2001, 102(3): 709-714.
    [96] Hung CF, Sun CN. Microsomal monooxygenases in diamondback moth larvae resistant to fenvalerate and piperonyl butoxide. Pestic. Biochem. Physiol. 1989, 33: 2, 168-175.
    [97] Hung CF, Kao CH, Liu CC, Lin JG, Sun CN. D etoxifying enzymes of selected insect species with chewing and sucking habits. J. Econ. Entomol. 1990, 83: 2, 361-365.
    [98] Huang HS, Hu NT, Yao YE, Wu CY, Chiang SW, Sun CN. Molecular cloning and heterologous expression of a Glutathione-S-transferase involved in insecticide resistance from the diamondback moth, Plutella xylostella. Insect Biochem Mole Biol. 1998, 28: 651-658.
    [99] Ikeda T, Zhao XL, Nagata K, Kono Y, Shono T, Yeh JZ, and Toshio Narahashi Fipronil Modulation of γ-Aminobutyric Acid_A Receptors in Rat Dorsal Root Ganglion Neurons. J. Pharmacol. Exp. Ther., Mar 2001; 296: 914-921.
    [100] Ikeda T, Zhao XL, Kono Y, Yeh JZ and Narahashi T. Fipronil Modulation of Glutamate-Induced Chloride Currents in Cockroach Thoracic Ganglion Neurons, Neuro Toxicology, 2003, 24(6): 807-815.
    [101] Iqbal M, Verkerk RH, Eurlong MJ, et al, Evidence for resistance to Bacillus thuringlensis(BT)subsp, Kurstaki HD, BT subsp, aizawai and abamectin in field populations of Plutella xylostella from malaysia, Pestic. Sci, 1996, 48(1): 89-97.
    [102] Iqbal M, Wright DJ. Evaluation of resistance, cross-resistance and synergism of abamectin and teflubenzuron in a multi-resistant field population of Plutella xylostella(Lepidoptera: Plutellidae), Bulletin of Entomological Research, 1997, 87: 481-48.
    [103] Ismail F, Wright DJ. Cross-resistance between acylurea insect growth regulators in a sWain of Plutella
    
    xylostella L.(Lepidoptera: Yponomeutidae)from Malaysia. Pestic. Sci. 1991, 33: 3, 359-370.
    [104] Ismail F, Wright DJ. Synergism of teflubenzuron and chlorfluazuron in an acylurea resistant field strain of Plutella xylostella L.(Lepidoptera: Yponomeutidae). Pestic. Sci. 1992, 34: 3, 221-226.
    [105] Joia BS, Udeaan AS, Chawla RP. Toxicity of cartap hydrochloride and other insecticides to multi-resistant s trains of the diamondback moth, Plutella xylostella(L.), in the Punjab, International Pest Control, 1996, 38: 5,158-159.
    [106] Jones MV, Westbrook GL. The impact of receptor desensitization on fast synaptic transmission. Trends Neurosci, 1996, 19: 96-101.
    [107] Kamijima M and Casida JE. Regional Modification of [~3H]Ethynylbicycloorthobenzoate Binding in Mouse Brain GABAA Receptor by Endosulfan, Fipronil, and Avermectin B_(1a). Toxicology and Applied Pharmacology.2000,163:188-194.
    [108] Kane NS, Hirschberg B, Qian S, Hunt D, Thomas B, Brochu R, Ludmerer SW, Zheng YC, Smith MH, Arena JP, Cohen CJ, Schmatz D, Warmke J, and Cully DF. Drug-resistant Drosophila indicate glutamate-gated chloride channels are targets for the antiparasitics nodulisporic acid and ivermectin Proc. Natl. Acad. Sci. U.S.A., 2000; 97:13949-13954.
    [109] Kao CH, Hung CF, Sun CN. Parathion and methyl parathion resistance in diamondback moth (Lepidoptera: Plutellidae)larvae. J. Econ. Entomol. 1989, 82: 5, 1299-1304.
    [110] Kao CH, Sun CN. In vitro degradation of some organophosphorus insecticides by susceptible and resistant diamondback moth, Pesnc. Biochem. Physiol, 1991, 41: 2, 132-141.
    [111] Kao CH, Cheng EY. Insecticide resistance in Plutella xylostella L. Ⅺ. Resistance to newly introduced insecticides in Taiwan(1990-2001). Journal of Agricultural Research of China. 2001, 50: 4, 80-89.
    [112] Kim GH, Seo YS, Lee JH, Cho KY. Development of fenvalerate resistance in the diamondback moth, Plutella xylostella Linne(Lepidoptera: Yponomeutidae)and its cross resistance, Korean Journal of Applied Entomology, 1990, 29:3,194-200.
    [113] Kim GH, Lee JH, Cho KY. Inheritance of fenvalerate resistance in the diamondback moth, Plutella xylostella Linne(Lepidoptera: Yponomeutidae), Korean J Appl Entomol, 1991, 30: 2, 106-110.
    [114] Kirsch K, Schmutterer H. Low efficacy of a Bacillus thuringiensis(Berl.)formulationin controlling the diamondback moth, Plutella xylostella(L.), in the Philippines. J Appl Entomol, 1988, 105: 249-255.
    [115] Krishnaiah NV, Prasad ASR, Pasalu IC, Kumar KM, Lingaiah T. Development of resistance in rice brown planthopper Nilaparvata lugens(Stai)and green leafhopper Nephotettix virescens(Dist) to Neem formulation. Pesticide Research Journal. 2002, 14(1): 1-7.
    [116] Kolaczinski J, Curtis, C. Laboratory evaluation of fipronil, a phenylpyrazole insecticide, against adult Anopheles(Diptera: Culicidae)and investigation of its possible cross-resistance with dieldrin in Anopheles stephensi. Pest Manage. Sci.2001, 57(1): 41-45.
    [117] Konno Y, Shishido T. Metabolism of fenitrothion in the resistant and susceptible diamondback moth, Plutella xylostella L. Lepidoptera: Yponomeutidae). J. Pestic. Sci. 1996, 21: 1, 17-21.
    [118] Kwon DH, Clark JM, Lee SH. Estimation of knockdown resistance in diamondback moth using real-time PASA. Pestic. Biochem. Physiol. 2004, 78: 39-48.
    [119] Lee SST, Scott JG. Microsomal cytochrome P450 monooxygenases in the housefly(Musca domestica L.): biochemical changes associated with pyrethroid resistance and phenobarbital induction. Pestic. Biochem. Physiol. 1989, 35(1): 1-10.
    [120] Lee HJ, Rocheleau T, Zhang HG, Jackson MB, Ffrench-Constant RH. Expression of a Drosophila
    
    GABA receptor in a baculovirus insect[Spodoptera frugiperda]cell system. Functional expression of insecticide susceptible and resistant GABA receptors from the cyclodiene resistance gene Rdl. FEBS Letters. 1993, 335: 3, 315-318.
    [121] Lin JG, Hung CF, Sun CN. Teflubenzuron resistance and microsomal monooxygenases in larvae of the diamondback moth. Pestic. Biochem. Physiol. 1989, 35: 1, 20-25.
    [122] Liu MY. Diamondback moth resistance to several synthetic pyrethroid. J. Econ. Entomol. 1981, 74: 393-396.
    [123] Liu MY, Tzeng YJ, Sun CN. Insecticide resistance in the diamondback moth. J. Econ. Entomol. 1981, 74: 393-396.
    [124] Liu MY, Sun CN, Huang SW. Absence of synergism of DTT by piperonyl butoxide and DMC in larvae of the diamondback moth(Lepidoptera: Ypononeutidae). J. Econ. Entomol. 1982b, 75(6): 964-965.
    [125] Liu MY, Chen JS, Sun CN. Synergism of pyrethroids by several compounds in larvae of the diamondback moth(Lepidoptera: Ypononeutidae). J. Econ. Entomol. 1984, 77(3): 851-856.
    [126] Liu YB, Tabashnik BE. Genetic basis of diamondback moth resistance to Bacillus thuringiensis toxin Cry1C, Resistant Pest Management, 1997, 9(2): 21-22.
    [127] Liu N, Yue X. Insecticide Resistance and Cross-Resistance in the House Fly (Diptera: Muscidae). J. Econ. Entomol. 2000, 93(4): 1269-1275.
    [128] Loretta M. Cole, Richard T. Roush and John E. Casida. Drosophila GABA-gated chloride channel: modified[~3H] EBOB binding site associated with Ala->Ser or Gly mutants of Rdl subunit. Life Sciences, 1995, 56(10): 757-765.
    [129] Luo K, Tabashnik BE, AND Adang MJ. Binding of Bacillus thuringiensis CrylAc Toxin to Aminopeptidase in S usceptible and Resistant Diamondback Moths(Plutella xylostella). Applied and environmental microbiology. 1997, 63(2): 1024-1027.
    [130] Maa CJW, Tseng WP, Huan IC. Preliminary characterization of the larval esterases and the isozymes of diamondback moth, Plutella xylostella(L.). Bulletin of the Institute of Zoology, Academia Sinica. 1990, 29: 3, 181-194.
    [131] Maa CJW, Liao SC. Culture-dependent variation in esterase isozymes and malathion susceptibility of diamondback moth, Plutella xylostella L. Zoological Studies, 2000, 39: 4, 375-386.
    [132] Martinez-Torres D, Devonshire AL, Williamson MS. Molecular studies of knockdown resistance to pyrethroids: cloning of domain Ⅱ sodium channel gene sequences from insects. Resistance '97. Integrated approach to combating resistance. Pestic. Sci. 1997, 51: 3, 265-270.
    [133] Maruyama T, Hama H, Asano S. Establishment and maintenance of high resistance to Bacillus thuringiensis formulations in diamondback moth, Plutella xylostella L, (Lepidoptera: Yponomeutidae), Japanese Journal of Applied Entomology and Zoology, 1999, 43(1): 7-12.
    [134] Mckernan RM, Whiting PJ. Which GABA_A receptor subtypes really occur in the brain? Trends Neurosci, 1996, 19: 139-143.
    [135] Miyata T, Noppun V, and Saito T, Inheritance of resistance to phenthoate and fenvalerate in diamondback moth and management of insecticide resistance, in "Diamondback Moth and Other Crucifer Pests: Proceedings of the Second International Workshop"(N. S. Talekar, Ed.), p. 477-484, Asian Vegetable Research and Development Center, Taiwan, (1992).
    [136] Moffat AS. New chemicals seek to outwit insect pests. Science Washington. 1993, 261:550-551.
    [137] Mohan M, Gujar GT. Local variation in susceptibility of the diamondback moth, Plutella xylostella
    
    (Linnaeus)to insecticides and role of detoxification enzymes. Crop Prot. 2003, 22: 495-504.
    [138] Morallo Rejesus B, Inocencio EL, Eusebio JE. Comparative effectiveness of IPM-DBM technology versus farmers' control practice for diamondback moth, Plutella xylostella(L.) control. Philippine Entomologist. 1996, 10: 1, 57-65.
    [139] Morallo Rejesus B, Inocencio EL; Malabanan Manipol J, Eusebio JE, Barroga SF. Technology transfer of Cotesia-based IPM for diamondback moth on lowland elevation crucifers in Luzon. Philippine Entomologist. 2000, 14: 1, 73-87.
    [140] Morishita M. Changes in susceptibility to various pesticides of diamondback moth(Plutella xylostella L.), Japanese Journal of Applied Entomology and Zoology, 1998, 42(4): 209-213.
    [141] Moulton JK, Pepper DA, and Dennehy TM. 2000. Beet armyworm(Spodoptera exigua)resistance to spinosad. Pest Manage. Sci. 56: 842-848.
    [142] Murray E, Jewell C, Rabe C, Segal S. (1993)Toxicological profile for endosulfan TP-91/16.US department os health and human services Washington, DC.
    [143] Ni XY, Tomita T, Kasai S, Kono Y. cDNA and deduced protein sequence of acetylcholinesterase from the diamondback moth, Plutella xylostella(L.) (Lepidoptera: Plutellidae). Appl. Entomol. Zool. 2003, 38: 1, 49-56.
    [144] Noppun V, Saito T, Miyata T. Cuticular penetration of S fenvalerate in fenvalerate resistant and susceptible strains of the diamondback moth, Plutella xylostella(L), Pestic. Biochem. Physiol., 1989, 33: 1, 83-87.
    [145] Noppun V, Miyata T, Saito T. Cross resistance and synergism in fenvalerate-resistant diamondback moth, Plutella xylostella. J. Pestic. Sci. 1989, 14: 2, 203-209.
    [146] Ozoe Y, Yagi K, Nakamura M, Akamatsu M, Miyake T, and Fumio Matsumura. Fipronil-Related Heterocyclic Compounds: Structure Activity Relahonships for Interaction with γ-Aminobutyric Acid-and Voltage-Gated Ion Channels and Insecticidal Action. Pestic. Biochem. Physiol. 2000, 66:92-104.
    [147] Pearce RA. Physiological evidence for two distinct GABA_A responses in rat hippocampus. Neuron, 1993, 10: 189-200.
    [148] Perret P, Sarda X., Wolff M, Wu TT, Bushey D, and Goelder M. Interaction of non-competitive blockers within the g-aminobutyric acid type A chloride channel using chemically reactive probes as chemical sensors for cysteine mutants, J. Biol. Chem. 1999, 274: 25350-25354.
    [149] Perrior TR. Chemical insecticides for the 21st century. Chemistry and Industry London. 1993, 22: 883-887.
    [150] Phlippe B, Christine C. Single-stranded DNA Conformation polymorphism at the Rdl locus in Hypothenemus hampei(Coleoptera: Scolytidae). Heredity, 1996, 76(2): 124-129.
    [151] Puia G, Costa E, Vicini S. Functional diversity of GABA-activated Cl currents in Purkinje versus granule neurons in rat cerebellar slices. Neuron, 1994, 12: 117-126.
    [152] Rhne-Poulenc, 1995. Atelier International Fipronil/lutte antiacridienne. Lyon 3-5 May 1995. Unpublished report. Rhne-Poulenc Agrochimie, Lyon, France.
    [153] Rhne-Poulenc, 1996. 'Fipronil' Worldwide Technical Bulletin. Rhne-Poulenc Agrochimie, Lyon, France. 19pp.
    [154] Rufingier C, Pasteur N, Lagnel J, Martin C, Navajas M. Mechanisms of insecticide resistance in the aphid Nasonovia ribisnigri(Mosley)(Homoptera: Aphididae)from France. Insect. Biochem. Mole. Biol. 1999, 29: 385-391.
    
    
    [155] Salgado VL, The modes of action of spinosad and other insect control products, Down to Earth 52 (1997)35.
    [156] Salgado VL, Studies on the Mode of Action of Spinosad: Insect Symptoms and Physiological Correlates. Pestic. Biochem. Physiol. 1998, 60: 91-102.
    [157] Salgado VL, Sheets J J, Watson G B, Schmidt AL. Studies on the Mode of Action of Spinosad: The Internal Effective Concentration and the Concentration Dependence of Neural Excitation. Pestic. Biochem. Physiol. 1998, 60: 103-110.
    [158] Salmeron E, Omoto C. Characterization of Deltamethrin and Chlorpyirifos Resistance in Blattella germanica(L.)(Dictyoptera: Blattellidae)and Cross-Resistance Relationships to Fipronil. Neotrop. Entomol.2003, 32(1): 177-181.
    [159] Sarnthoy O, Li T, Keinmeesuke P, et al, Cross-resistance of Bacillus thuringiensis resistance population of diamondback moth Plutella xylostella(Lepidoptera:Yponomeutidae). Resistant Pest Management. 1997, 9(2): 11-13.
    [160] Sastrosiswojo S. Biological control of the diamondback moth in IPM systems: case study from Asia (Indonesia). Biological control introductions opportunities for improved crop production. Proceedings of an International Symposium Brighton. 1996, 13-32.
    [161] Scharf ME. & Siegfried BD. Toxicity and neurophysiological effects of fipronil and fipronil sulfone on the western corn rootworm(Coleoptera: Chrysomelidae). Arch. Insect. Biochem. Physiol, 1999, 40(3): 150-156.
    [162] Scharf ME, Siegfried BD, Meinke LJ, Chandler LD. Fipronil metabolism, oxidative sulfone formation and toxicity among organophosphate-and carbamate-resistant and susceptible western corn rootworm populations. Pest Manage. Sci. 2000, 9: 757-766.
    [163] Schmutterer H. Properties and potential of natural pesticides from the Neem tree, Azadirachta indica. Ann. Rev. Entomol. 1990, 35: 271-297.
    [164] Schuler TH, Martinez-Torres D, Thompson AJ, Denholm I, Devonshire AL, Duce IR, and Williamson MS. Toxicological, Electrophysiological, and Molecular Characterisation of Knockdown Resistance to Pyrethroid Insecticides in the Diamondback Moth, Plutella rylostella(L.). Pestic. Biochem. Physiol. 1998, 59, 169-182.
    [165] Scott JG, Wen ZM. 1997. Toxicity of fipronil to susceptible and resistant strains of German cockroaches(Dictyoptera: Blattellidae)and houseflies(Diptera: Muscidae). J. Econ. Ent, 90(5): 1152-1156.
    [166] Shelton AM, Robertson JL, Tang JD, Perez C, Eigenbrode SD, Preisler HK, Wilsey WT, and Cooley RJ. Resistance of diamondback moth(Lepidoptera: Plutellidae)to Bacillus thuringiensis subspecies in the field. J. Econ. Entomol. 1993, 86: 697-705.
    [167] Shirai Y, Tanaka H, Miyasono M, et al,Low intrinsic rate of natural increase in Bt resistant population of diamondback moth, Plutella xylostella(L,)(Lepidoptera:Yponomeutidae), Japanese Journal of Applied Entornology and Zoology,1998,42(2):59-64.
    [168] Shotkoski F, Lee HJ, Zhang HG, Jackson MB, Ffrench-Constant RH. Functional expression of insecticide-resistant GABA receptors from the mosquito Aedes aegypn. Insect Molecular Biology. 1994, 3: 4, 283-287.
    [169] Siegfried B D, Mullin C A. Metabolism, penetration, and partitioning of[~(14)C]aldrin in aldrin-resistant and susceptible corn rootworms. Pestle. Biochem. Physiol. 1990, 36: 2, 135-146.
    
    
    [170] Siegler MVS, Pankhaniya RR, Jia XX. Pattern of expression of engrailed in relation to gamma-amino butyric acid immunoreactivity in the central nervous system of the adult grasshopper. Journal of Comparative Neurology. 2001, 440(1): 85-96.
    [171] Singh RP, Saxena R C. (1999): Azadirachta indica A Juss. Oxford & IBH Publishing Co. Pvt. Ltd., Delhi, India.
    [172] Sparks TC, Crouse GD, Durst G. Natural products as insecticides: the biology, biochemistry and quantitative structure activity relationships of spinosyns and spinosoids. Pest Manage. Sci. 2001, 57: 10, 896-905.
    [173] Suenaga A, Tanaka A, Murata M, Horikiri M. Development of a chitin synthesis inhibitor resistance in the diamondback moth, Plutella xylostella(L,) (Lepidoptera:Yponomeutidae), The results of susceptibility tests, Proceedings of the Association for Plant Protection of Kyushu, 1992,38:129-131.
    [174] Sun CN. Insecticide resistance in diamondback moth. In: Talker N S ed. Diamondback Moth and other Crucifer Pests Proceedings of the Second International Workshop, Tainan, Taiwan, Taipei. 1992, 419-426.
    [175] Tabashnik BE, Cushing NL, Finson N, et al, Field development of resistance to Bacillus thuringiensis in diamondback moth(Lepidoptera: Plutellidae), J. Econ. Entomol. 1990, 83: 1671-1676.
    [176] Tabashnik BE. Managing resistance to Bacillus thuringiensis lessons from the diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 1991, 84: 49-55.
    [177] Tabashnik BE, Schwartz JM, Finsonn, et al, Inheritance of Resistance to Bacillus thuringiensis in Diamond back Moth(Lepidotera: plutellidae), J. Econ. Entomol. 1992, 85: 1046-1055.
    [178] Tabashnik BE, Finson NF, Johnson MW. Two protease inhibitors fail to synergize Bacillus thuringiensis in diamondback moth(Lepidoptera: Plutellidae). J. Econ. Entomol. 1992, 85: 6, 2082-2087.
    [179] Tabashnik BE, Malvar T, Liu YB, FinsonI N, Borthakur D, Shin BS, Park SH, Masson L, Maagd de RA, AND Bosch D. Cross-Resistance of the Diamondback Moth Indicates Altered Interactions with Domain Ⅱ of Bacillus thuringiensis Toxins. Applied and environmental microbiology. 1996, 62(8): 2839-2844.
    [180] Talekar NS and Shelton AM. Biology, ecology and management of the diamondback moth, Ann. Rev. Entomol, 1993, 38: 275-301.
    [181] Tang JD, Gilboa S, Roush RT, et al, Inheritance, stability, and lack of fitness costs of field selected resistance Bacillus thuringiensis in diamondback moth(Lepidoptera: Plutellidae)from florida. J. Econ. Entomol. 1997, 90(3): 732-741.
    [182] Tang J, Usmani KA, Hodgson E, Rose RL. In vitro metabolism of fipronil by human and rat cytochrome P450 and its interactions with testosterone and diazepam. Chemico Biological Interactions.2004.in press.
    [183] Tia S, Wang JF. Kotchabhakdi N, et al. Distinct deactivation and desensitization kinetics of recombinant GABA_A receptors. Neuropharmacology, 1996, 35: 1375-1382.
    [184] Tingle CC, Rother JA, Dewhurst CF, Lauer S and King WJ. Fipronil: environmental fate, ecotoxicology, and human health concerns. Rev Environ ContamToxicol. 2003, 176: 1-66.
    [185] Tomlin, C., ed. (1994) The Pesticide Manual(Crop Protection Publications/British Crop Protection Council, Farnham, U.K.), p. 463.
    [186] Tsai YC. Microsomal cytochrome P450 dependent monooxygenase and insecticide resistance in diamondback moth(Plutella xyostella)M S, Thesis National Chung Hsing University, Taichung Taiwan,
    
    1990, 55.
    [187] Tsukahara Y, Sonoda S, Fujiwam Y, Nakasuji F and Tsumuki H. Molecular analysis of the para-sodiurn channel gene in the pyrethroid-resistant diamondback moth, Plutella xylostella(Lepidoptera: Yponomeutidae). Appl. Entomol. Zool. 2003, 38(1): 23-29.
    [188] Valles SM, Koehler PG. & Brenner RJ 1997. Antagonism of fipronil toxicity by piperonyl butoxide and S, S, S-tributyl-phosphorotrithioate in the German cockroach (Dictyoptcra: Blattcllidae). J. Econ. Entomol. 90(5): 1254-1258.
    [189] Verdoorn TA, Draguhn A, Ymer S, et al. Functional properties of recombinant rat GABA_A receptors depend upon subunit composition. Neuron, 1990, 4:919-928.
    [190] Watson GB. Actions of insecticidal spinosyns on gamma-aminobutyric acid responses from small-diameter cockroach neurons. Pestic. Biochem. Physiol. 2001, 71: 1, 20-28.
    [191] Wei YP, Appel AG, Moar WJ, Liu N. Pyrethroid resistance and cross-resistance in the German cockroach, Blattella germanica(L). Pest Manage. Sci. 2001, 57(11): 1055-1059.
    [192] Wen Z, Scott JG. Genetic and biochemical mechanisms limiting fipronil toxicity in the LPR strain of house fly, Musca domestica. Pestic. Sci. 1999, 10:988-992.
    [193] Wolff MA, Wingate VPM. Characterization and comparative pharmacological studies of a functional gamma-aminobutyric acid(GABA)receptor cloned from the tobacco budworm, Heliothis virescens (Noctuidae: Lepidoptera). Invertebrate Neuroscience. 1998, 3(4): 305-315.
    [194] Wright DJ, Iqbal M, Granero F, et al, A change in a single midgut receptor in the diamondback moth (Plutella xylostella)is only in part responsible for field resistance to Bacillus thuringiensis S ubsp kurstaki and Bacillus thuringiensis Subsp aizawai, Appl. Environ. Microbiol, 1997, 63(5): 1814-1819.
    [195] Wyss CF, Young HP, Shukla J, Roe RM. Biology and genetics of a laboratory strain of the tobacco budworm, Heliothis virescens(Lepidoptera: Noctuidae), highly resistant to spinosad. Crop Prot.2003, 22:307-314.
    [196] Yao MC, Hung CF, Sun CN. Fenvalerate resistance and aldrin epoxidation in larvae of the diamondback moth, Pestic. Biochem. Physiol, 1988, 30: 3,272-278.
    [197] Young HP; Bailey WD; Wyss CF; Roe RM; Sheets JJ; Larson LL; Sparks TC; Dugger P(ed.); Richter D. Studies on the mechanism(s)of tobacco budworm resistance to spinosad(Tracer R). 2000 Proceedings Beltwide Cotton Conferences, San Antonio, USA, 4-8 January 2000: Volume 2. 2000, 1197-1200.
    [198] Young HP, Bailey WD, Roe RM. Spinosad selection of a laboratory swain of the tobacco budworm, Heliothis virescens(Lepidoptera: Noctuidae), and characterization of resistance. Crop Prot. 2003, 22: 265-273.
    [199] Yu SJ. Inheritance of insecticide resistance and microsomal oxidases in the diamondback moth(Lepidoptera: Yponomeutidae), Insecticide Resistance and Resistance Management, 1993, 86: 680-683.
    [200] Yu SJ, Nguyen SN. Detection and biochemical characterization of insecticide resistance in the diamondback moth, Pestic. Biochem. Physiol, 1992, 44: 1, 74-81.
    [201] Zhang HG, Ffrench-Constant RH, Jackson MB. A unique amino acid of the Drosophila GABA receptor with influence on drug sensitivity by two mechanisms. J. Physiol. 1994a, 479, 65-75.
    [202] Zhang ML, Scott JG. Cytochrome b5 involvement in cytochrome P450 monooxygenase activities in housefly microsomes. Arch. Insect Biochem Physiol. 1994b, 27(3): 205-216.
    [203] Zhao JZ, Li YX, Collins HL, Cao J, Earle ED, Shelton AM. Different cross-resistance patterns in the
    
    diamondback moth(Lepidoptera: Plutellidae)resistant to Bacillus thuringiensis toxin CrylC. J. Econ.Entomol. 2001, 94: 6, 1547-1552.
    [204] Zhao JZ, Li YX, Collins HL, Gusukuma Minuto L, Mau RFL, Thompson GD, Shelton AM. Monitoring and characterization of diamondback moth(Lepidoptera: Plutellidae)resistance to spinosad. J. Econ. Entomol. 2002, 95: 2, 430-436.
    [205] Zhao XL, Salgado VL, Yeh JZ and Narahashi T. Differential Actions of Fipronil and Dieldrin Insecticides on GABA-Gated Chloride Channels in Cockroach. Neurons J. Pharmacol. Exp. Ther. Sep 2003, 306: 914-924.
    [206] Zhao XL, Salgado VL, Yeh JZ and Narahashi T. Fipronil and dieldrin on insect GABA receptors. J. Pharmacol. Exp. Ther. 2003 51839: 1-48.
    [207] Zhao XL, Yeh JZ, Salgado VL, and Narahashi T. Fipronil is a Potent Open Channel Blocker of Glutamate-Activated Chloride Channels in Cockroach. Neurons. J. Pharmacol. Exp. Ther., Mar 2004; 10.1124/jpet. 104.065516.
    [208] Zheng Y, Hirschberg B, Yuan J, W ang A P, Hunt D C, Ludmerer S W, Schmatz D M, and Cully D F. Identification of Two Novel Drosophila melanogaster Histamine-gated Chloride Channel Subunits Expressed in the Eye. J. Biol. Chem., 2002; 277: 2000-2005.
    [209] Zoebelein G. Twenty-three year surveillance of development of insecticide resistance in diamondback moth from Thailand(Plutella xylostella L, Lepidoptera,Plutellidae), Mededelingen van de Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent, 1990,55:2a,313-322.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700