用户名: 密码: 验证码:
改性聚丙烯酸钠的合成及其对水中重金属离子Pb~(2+)、Zn~(2+)、Ni~(2+)的去除研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
综述了聚丙烯酸钠的性质、用途及合成。将它用顺丁烯二酸酐加以改性,得到了改性的聚丙烯酸钠。用于无磷洗涤助剂,对水中Ca~(2+)、Mg~(2+)有良好的螯合(吸附)作用。同时,研究了它对废水中Pb~(2+)、Zn~(2+)、Ni~(2+)的螫合(吸附)性能。
     经过试验,优化了合成改性聚丙烯酸钠的工艺条件:丙烯酸与顺丁烯二酸酐的摩尔比为4:1,引发剂占单体量的4%-6%,还原剂占单体量的5%-7%,反应温度80-85℃,反应时间为3小时,固含量设计为35%-40%,在此工艺条件下,得到浅黄色的透明液体,经过IR谱图分析,工艺条件设计合理。
     将改性的聚丙烯酸钠用于对水中Ca~(2+)、Mg~(2+)的螯合,其最大吸附容量分别为425mgCaCO_3/g,360mgMgCO_3/g,其吸附性能优于未改性的聚丙烯酸钠367mgCaCO_3/g,302mgMgCO_3/g。
     将改性聚丙烯酸钠用于对废水中Pb~(2+)、Zn~(2+)、Ni~(2+)的吸附,经过正交试验,确定了其对各种离子的最佳吸附条件。通过做每种配比聚合物对Pb~(2+)、Zn~(2+)、Ni~(2+)的等温吸附线,得到各种离子的最大吸附容量,分别为Pb~(2+):922mg/g,Zn~(2+):246 mg/g,Ni~(2+):201.3 mg/g,据此可以得到最佳配比的改性聚丙烯酸钠。
     由于改性聚丙烯酸钠良好的生物降解性,较高的软化点及较好的热稳定性,将它与废水中重金属离子去除的其它方法相结合,预计可以取得满意的效果。
The paper summarizes properties, uses, and synthesis of acrylic-acid sodium salt(AA-Na). By putting up maleic anhydride(MA) into
    acrylic-acid--acrylic-acid copolymer(MA-CO-AA) is synthesized. This synthetic
    material could be applied in such respects as Phosphate-free,which owns excellent chelate ability and dispersibility to Ca2+, Mg2+. In addition, the chelate ability to Pb2+, Zn2+, Ni2+ in waste water is also studied in this paper.
    Through experience, the technological conditions of synthesising MA-CO-AA are optimized. The ratio of AA and MA is 4 to 1, initiation agent takes up 4-6%, reducer does 5-7%, reaction temperature 80-90C, reaction time 3 h.,and designed solid content of 35-40%. Under such technological conditions, the light yellow transparent liquid can be obtained. The analysis with infrared spectroscopy(IR) proves the rational conditions provided.
    When MA-CO-AA is applied to chelate Ca2+ Mg2+ in water, its biggest chelate ability is 425mgCaCO3 /g 360mgMgCO3/g. Which appears much better than that of AA, 367 mgCaCO3/g, 302 mgMgCO3/g.
    When MA-CO-AA is applied to chelate Pb2+, Zn2+, Ni2+ in waste water, the best chelate conditions of various ions can be defined through orthogonal experiments . By means of isothermal adsorption chelate of each proportional MA-CO-AA to Pb2+, Zn2+, Ni2+ , the biggest chelate ability of each ions can be obtained, Pb2+: 922mg/g, Zn2+: 264mg/g, Ni2+: 201.3mg/g. Hence the best proportional of MA-CO-AA can be obtained.
    With good biological degradation,higher softening nature and better heating stability. It is estimated that much more satisfactory results can be caused if the MA-CO-AA can be used in other methods to remove heavy metals- Pb2+, Zn2+, Ni2+ in waste water.
引文
[1] 严瑞瑄.水溶性高分子[M].北京:化学工业出版社,1998:196-209.
    [2] 路建美,朱秀林,万悠纯.反向聚合分散剂的合成及性能[J].应用化学,1999,16(1):87-91.
    [3] 周爱林.国内外超吸水性树脂现状与展望[J].化学时刊,1998.12(10):7-10
    [4] 公开特许.昭-50 15581.
    [5] 公开特许.昭50 14388.
    [6] 公开特许.昭-53 87309.
    [7] 公开特许.昭-53 51287
    [8] 大森英三.聚丙烯酸及其共聚物(日).1昭晃堂,1973.
    [9] EP. 97063, EP. 129329.
    [10] 公开特许.昭-54,21336.
    [11] 钟以诚,吴冯波,彭小平.涂料工业.1990,(1):1-7.
    [12] 清华同方化工公司精细化学品部.SP-Ⅱ日用化工高分子助洗剂技术资料.
    [13] 沈阳新奇日化公司.PAA高分子有机助洗剂产品资料.
    [14] Woff Winth.刘有才译.洗涤剂配方用的有机聚合物.日用化学工业,1988,6:11.
    [15] Crutch-field M. M. Organic. builder: an revien of world-wale efforts to find oganic replanements for detergent phosphates. J Am OL chem. Sci, 1978, 55(1)58.
    [16] 黄瑞光.21世纪电渡废水治理的发展趋势[J].电镀与精饰,2000,(3):1-2.
    [17] 国家环境保护总局.环境保护[R].1999年中国环境状况公报,2000,(7).
    
    
    [18] 化科技健康收藏网Q.谈谈铅的危害.
    [19] 境保护辞典.化学工业部化工设计公司编.
    [20] 树桂主编.环境化学[M].北京:高等教育出版社.
    [21] Perales-Perez, Oscar Tohji, Kazuyuki Vmetsu, etal. Theory and practice of the removal of heavy-metal ions by their precipitation as ferrite-type compounds from aqueous solution at ambit temperature[J]. Metallurgical Review of MMIJ, 2001, 17(2): 137-139.
    [22] Bolto B A, Pawlowski. waster water Treatment by Ion Exchange[M]. London: E and F. N. Spon Ltd, 1987: 263-279.
    [23] EI EI-Shafet, Cox M, Pichugin A, et al. Application of a Carbon sorbet for the removal of cadmium and other heavy metal ions from aqueous solution[J]. Journal of chemical Technology and Biotechnology, 2002, 77(4): 429-436.
    [24] 谈辉明,杨启文.重金属废水处理技术的现状与展望[J].环境科学与技术,1997,2(11):35-36.
    [25] 废弃物研究财团编.特别管理废弃物Ⅲ特别管理一般废弃物处理.东京:化学工业日报社,1993:103.
    [26] Butter T J, Evison L M, Hancock I C, etal. The removal and recovery of cadmiumform dilute aqueons solutions by biosorption and electrolysist at laboratory scale[J] Water Reseach, 1998, 32(2): 400.
    [27] Masri M S, Reuter F W, Friedman M. Binding of metal cations by natural substance[J]. J. Appl. Polymer Sci, 1974, 18(3): 400.
    [28] Srivastava S K, Singh A k, Sharma A. Studies on the uptake of Lead and Zinc by ligin obtained from black liquor-a paper industry waster materica[J]. Environ. Technol, 1994, 15(4): 353-
    
    361.
    [29] Peniche-Covas C, Alvarez LW, Arguelles-Monal W. The adsorption of mercuric ions by chitosan[J]. J. Appl. Polymer Sci, 1992, 46(7): 1147-1150.
    [30] Rorrer G L, Hsien T Y, Way J D. Synthesis of porous-magnetic chitosan beads for removal of cadmium from wastewater[J]. Ind. End. Chem. Res, 1993, 32(9): 2170-2178.
    [31] Roy D, Geenlaw P N, Shanc B S. Adsorption of heavy metals by green algac and ground rice hulls[J]. J. Environ. Sci. Health. A, 1993, 28(1): 37-50.
    [32] Niu H, Xu X S, Wang J H. Removal of lead from aqueous solutions by penicillium biomass[J]. Biotechnol. Bioeng. , 1993, 42: 785-787.
    [33] Leppert D. Heavy metal sorption with clinoptilolite zeolite: alternatives for treating contaminated soil and water[J]. Mining Eng. , 1990, 42 (6) : 604-608.
    [34] Khan S A, Riaz-ui-Rehman A, Khan M A. Adsorption of chromium(Ⅲ), chromium(Ⅳ)and silver(Ⅰ)on bentonite[J]. Waste Manage. , 1995, 15(4) : 271-282.
    [35] Yadava K P, Tyagi B S, Singh Y N. Effect of temperature on the removal of lead(Ⅱ)by adsorption on China clay and wollastonic[J]. J. Chen. Tech. Biotechnol. , 1991, 51(1): 41-60.
    [36] Sharma D C, Forster C F. Removal of hexavalent chromium using sphagnum moss peat[J]. Water Research, 1993, 27(7): 1201-1208.
    [37] Sharma D C, Forster C F. Continuous adsorption and desorption of chromium ions by sphagnum moss peat[J]. Process Biochemistry, 1995, 30(4): 293-298.
    [38] Shukla S R, Jawed M. Column studies on metal ion removal by dyed
    
    celluloic materials[J]. J. Appl. Polymer Sci. , 1992, 44(5): 903-910.
    [39] Freeland GN, Hoskiason R M, Mayfield R J. Adsorption of heavy metal aqueous solutions by polyethylenimine-modified wool fibers[J]. Envir. Sci. Technol. , 1974, 8(10): 943-944.
    [40] Markels John H, Lynn Scott, Radke Clayton J. Cross-flow ultrafiltration of micellar surfactant solutions[J]. Separations, 1995, 41(9): 2058-2066.
    [41] Wasan D T, Ginn M E, Shah D O. Surfactant science series: Vol. 28 surfactants in chemical/process engineering[M]. New York: Marcel Dekker, 1998, 152-362.
    [42] Kandori K, Schechter R S. Selection of surfactant for micellar-enhanced ultrafiltration[J]. Sep. Sci. and Tech. , 1990, 25(1-2): 83-108.
    [43] 崔正刚,朱立强.表面活性剂在废水处理中的应用[A].97日用化工学术研讨会论文集[C].无锡,1997.497-507.
    [44] Huang Yi-chu, Batchelor B. Crossflow surfactant-based ultrafiltration of heavy metals from waste streams[J]. Separation Science and Technology, 1994, 29(15): 1979-1998.
    [45] Ahmadi S, seng L K, actchelor B. icellar-enhanced ultrafiltration of heavy metal using lecithin[J]. Sep. Sci. and Tech. , 1994, 29(18): 2435-2450.
    [46] Kato T, Takeuchi H, Seimiya T. Change in size and composition of mixed micellars with concentration of anionic/cationic surfactant solutions[J]. J. Colloid and Interface Sci. , 1990, 140(1): 253-257.
    [47] Scamehorn J F, Harwell J H. Surfactant science series: Vol. 33 Surfactant based separation proccsses[M]. New York: Marcel
    
    Dekker, 1998. 142-284.
    [48] Strathmann H. Selective removal of heavy metal ions from aqueous solutions by ultrafiltration of macromolecular complexes[J]. Journal of Separation Science and Technology, 1980, 15(4): 1135-1152.
    [49] Spivakov B Ya, Geckeler K, Bayer E. Liquid-phase polymer-based retention the separation of metals by ultrafiltration on polychelatogens[J]. NATURE, 1985, 315(23): 313-315.
    [50] Smith B F, Robison T W. Water-soluble polymers for recovery of metal ions from aqueous streams[P]. US 5 776 478, 1998.
    [51] Smith B F, Robison T W. Process for the displacement of cyanide ions from metal-cyanide complexes[P]. US 5 643 456, 1997.
    [52] Buckley L P, Vijayan S, McConeghy G J, et al. Removal of soluble toxic metals from water[R]. Report of the atomic energy of Canada Led. : Chalk River, May 1990. AECL 10174.
    [53] Tokareva G, Tokarev N, Sukhov G. In Proceedings of the Fourth National Conference on Membrane Methods[C]. Moscow, 1987. 51-52.
    [54] Geckeler K, Weingartener K, Bayer E. In Polymeric Amines and Ammonium Salts[M]. New York: Pergamon Press, 1979. 277-286.
    [55] Zhang Yong-Feng, Xu Zhen-Liang. Study on the Treatment of Industrial Wastewater Containing Pb~(2+) Ion Using a Coupling Process of Polymer Complexation-Ultrafiltration[J]. Sep. Sci. and Tech. , 2003, 38(1): 1585-1596.
    [56] Yusuf Uludag, Hilmi Onder Ozbelge, Levent Yilmaz. Removal of mercury form aqueous solutions via polymer-enhanced ultrafiltration[J]. Journal of Membrane Science, 1997, 129(1): 93-99.
    [57] Muslehiddinoglu Jale, Uludag Yusuf, Ozbelge Hilmi Onder, et
    
    al. Effect of operationg parameters on selective separation of heavy metals from binary mixture via polymer enhanced ultrafiltration[J]. Journal of membrane science, 1998, 140(2): 251-266.
    [58] 王九思,陈学民等.水处理化学[M].北京:化学工业出版社,1995.
    [59] 祖仁.高分子化学[M].北京:化学工业出版社,1986:99-100.
    [60] 中村亦夫.增溶水溶性高分子[M].东京:化学工业社,1984.
    [61] 黄家董,宋华烈,宋景尧.辽宁化工,1986,(6):8-14.
    [62] J·A迪安.兰氏化学手册:5-73,5-74.
    [63] 兰斌明.化学计算与图形处理.
    [64] 蒋建国,王伟,甄晓月等。高分子螯合剂捕集重金属Pb~(2+)的机理研究[J].环境科学,1997,3:31-33.
    [65] 王伟.含镍废水处理试验研究及应用[J].医药工程设计杂志.2003,24(2):44-45.
    [66] 朱一民,魏德洲.Mycobacterium Phlei菌对重金属Pb~(2+)、Zn~(2+)、Ni~(2+)、 Cu~(2+)的吸附规律[J].东北大学学报(自然科学版),2003,1,24(1):91-93.
    [67] 尹平河,赵玲.海藻生物吸附废水中铅、铜和镉的研究[J].海洋环境科学,2000,8,19(3):11-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700