用户名: 密码: 验证码:
镁合金薄板焊接工艺及弧长控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金具有重量轻、比刚度比强度高、阻尼性好以及可回收利用等优点,被誉为21世纪绿色工程材料,在汽车、摩托车、航天航空等领域有广泛的应用前景。镁合金结构件的广泛应用,必将面临连结问题,焊接将是一种优选的连结方法。
     为深入认识变形镁合金TIG焊接头组织与性能,探索提高镁合金熔焊接头性能的有效途径。在AZ31镁合金TIG焊工艺试验的基础上,使用拉伸试验机、光学显微镜、扫描电镜、X射线衍射仪、电子探针、显微硬度仪等现代分析测试手段,对AZ31镁合金TIG焊接头的力学性能、组织特征、断口形态、相组成、接头区的成分分布等进行了深入的研究分析。结果发现,与母材组织相比,焊缝区晶粒明显细小,为细小的等轴晶组成;热影响区的晶粒明显粗大,是接头断裂的危险区。进一步研究发现焊接热输入是决定焊接接头组织和性能的主要原因之一,在保证焊透的基础上,随焊接热输入的降低,接头组织晶粒变细,热影响区宽度变窄,接头组织明显改善,力学性能得到了提高。
     为适应工件表面形状的变化,对镁合金薄壁件焊接过程进行有效的质量控制,在研究镁合金薄板TIG焊过程弧压-电流-弧长关系的基础上,提出了一种基于弧压、电流与弧长间的关系模型来准确控制弧长的技术,同时结合PID和Fuzzy控制的原理,设计了一种自适应ALC(Automatic Length Control)控制器,并建立了相应的弧长跟踪系统的软、硬件。焊接试验表明,设计的自适应ALC控制系统,突破了常规AVC(Automatic Voltage Control)系统不能在小电流和收弧期间工作的局限,成功实现了镁合金薄板和弓形件在TIG焊过程中的弧长跟踪控制问题,得到了成型较好的焊缝,且动态精度高、稳定性好。
     本文还对镁合金交流TIG焊过程中高频干扰问题进行了分析,采用隔离、频蔽、接地等措施对高频干扰进行抑制,取得了较好的效果;同时设计了以正半波电弧电压作为弧长反馈信息的弧压采样电路,试验结果表明该采样电路能够很好地反映出镁合金焊接过程中的弧长变化。
Because of the characteristics of low density, high ratio rigidity and ratio strength, good damping and recycle, magnesium alloys are praised of the green engineering material, which have a widely applied prospect in the fields of automobile industry, motorcycle industry and aviation. With the extensive application to magnesium alloy structural components, the join of magnesium alloys will be developed, moreover, welding is a good methods of join.
    To understand through the microstructure and properties in TIG welding joints of wrought alloys, the paper explored effective ways to improve the properties of fusion welding joints of magnesium alloy. Based on the experiments of AZ31 alloy by TIG, using tensile test machine, optical microscope, SEM, XRD, EPMA and micro-rigidity meter, the mechanical properties, microstructure, fracture morphology, phase composition, element distribution were investigated. The results showed the crystal grain was more fine in the fusion than that of the base metal, and the microstructure of heat affected zone became coarse obviously, which was the danger zone of crack. By Further analyzing, it was found the welding heat-input was the main cause effect on the microstructure and properties of joint. Under the condition of penetration, with the heat input decrease, the microstructure in fusion was improved, the width of HAZ becomes narrow, and the grains size in the weld zone become fine, and the mechanical properties were increased.
    To adapt the change of workpiece figure, the quality of thin workpiece was controlled efficiently. Based on the investigation of the relation among the current, arc voltage and arc length in magnesium alloy sheets TIG welding, a new model based on the relationship among the current, arc voltage and arc length have been put forward, which was used to control arc length exactly. Refer to the principle of PID and Fuzzy, this article designed a kind of adaptive ALC (automatic length control) control system, and the software and hardware of arc length tracing system were established. The test showed that the new designed system broke through the limit of tradition AVC (automatic voltage control) that could not work during the low current and termination, and it solved the problem of arc length control for the magnesium alloy sheets and arc-shape workpiece. By this means, good weld bead could be get, moreover it had high dynamic response accuracy and good operation reliability.
    In addition, the paper analyzes the problem of high-frequency interference in TIG welding, adopts the means of shield, insulate and connecting earth to prevent high-frequency interference and achieves the good results. The paper had designed the sampling circuit which take on the positive half-wave arc voltage to the feedback information of arc length, and the results showed the sampling circuit could response the change of arc length during the process of welding.
引文
[1] A.Munitz, C.Cotler, A.Stern, et al. Mechanical properties and microstructure of gas tungsten arc welded magnesium AZ91D plates[J] . Materials Science and Engineer, 2001, A302: 68-73.
    [2] 刘满平,马春江,王渠东等.工业态AZ31镁合金的超塑性变形行为[J] ,2002,12(4):797-801.
    [3] LIN Gao-yong, PENG Da-shu, ZHANG Hui, et al. Influence of chemical composition on corrosion resistance of AZ91D magnesium alloy ingots[J] . The Chinese Journal of Noferrous Metals, 2001, 11(1): 79-82.
    [4] 黄晓峰,周宏,何镇明.镁合金的防燃研究及进展[J] .中国有色金属学报,2000,10(S1):797-801.
    [5] S.F.SU, J.CHUANG, H.K.LIN, et al. Electron-beam welding behavior in Mg-Al-base alloys[J] . Metallurgical and Materials Transactions A, 2001, 33A(3): 1461-1473.
    [6] Guenther Schubert, Armando Joaquin. Electron beam process delivers consistent welds[J] . Welding Journal, 2001, 80(6): 53-57.
    [7] 刘静安.镁合金加工技术发展趋势与开发应用前景[J] .轻合金加工技术,2001,29(11):1-7.
    [8] 顾钰熹.特种工程材料焊接[M] .辽宁:辽宁科学技术出版社,1996.11.
    [9] 美国焊接学会编,黄静文等译.金属及其焊接性[M] ,焊接手册第七版第四卷.北京:机械工业出版社,1991.1。
    [10] 中国机械工程学会.材料的焊接[M] ,焊接手册,第2版第2卷.北京:机械工业出版社,2001,7.
    [11] Toshikatsu Asahina,Hiroshi Tokisue. Electron beam weldability of pure magnesium and AZ31 magnesium alloy[J] . Journal of Japan Institute of Light Metals, 2000, 50(10): 512-517.
    [12] Draugelates,Ulrich, et al. Welding of magnesium alloys by means non-vacuum electron-beam welding[J] . Welding and Cutting, 2000, 52(4): p62-67.
    [13] HIRAGA Hitoshi, INOUE Takashi, et al. Effect of shielding gas and laser wavelength in laser welding of magnesium alloy sheet[J] . Yosetsu Gakkai Ronbunshu, 2001, 19(4): 591-599.
    [14] M.Marya, G.R.Edwards. Factors controlling the magnesium weld morphology in deep penetration welding by a CO laser[J] . Journal of Materials Engineering and Performance, 2001, 10(4): 435-443.
    [15] H.Zhao, T.DebRoy. Pore formation during laser beam welding of die-cast magnesium alloy AM60B-Mechanism and remedy[J] . Welding Journal, 2001, 80(8): 204-210.
    [16] 张华,林三宝,吴林,冯吉才等.AZ31镁合金搅拌摩擦焊接头的力学性能[J] .焊接学报,2003,24(6):65-68.
    [17] 邢丽,柯黎明,孙得超等.镁合金薄板的搅拌摩擦焊工艺[J] .焊接学报,2001,22(6):18-20。
    [18] 銮国红,关桥。搅拌摩擦焊.革命性的宇航制造技术[J] .航天制造技术,2003(4):
    
    16-23.
    [19] 徐卫平.MB8镁合金薄板的搅拌摩擦焊[J].材料工程,2002(8):35-36.
    [20] J.A.Espaza. Friction welding of magnesium alloy AZ31B[J]. Journal of Materials Science Letters, 21 (12): 917-920.
    [21] Kuzuyoshi Katoh,Toshikatsu Asahina. Mechanical properties of friction welded joint ofAZ31 magnesium alloy[J]. International Social of Offshore and Polar Engineerns, 1997,4: 37-43.
    [22] K.Nakata, S.Inoki. Weldability of friction stir welding of AZ91D magnesium alloy thixomolded sheet[J]. Keikinzoku, 2001, 51 (10): 528-533.
    [23] Toshikatsu Asahina, Hiroshi Tokisue. Some characteristics of TIG welded joints of AZ31 magnesium alloy[J]. Keikinzoku, 1995, 45(2): 70-75.
    [24] Toshikatsu Asahina, Hiroshi Tokisue, Kazuyoshi Katoh. Soldification of crack sensitivity of TIG welded AZ31 magnesium alloy[J]. Keikinzoku, 1999, 49(12): 595-599.
    [25] M.Rethmeier, S.Wiesner. Besonderherheiten beim Mig-schweissen von magnesiumlegierungen[J]. Materials Research and Advanced Techniques, 2001, 92(3): 281-285.
    [26] 苗玉刚,刘黎明,赵杰等.变形镁合金熔焊接头组织特征分析[J]。焊接学报,2003,24(2):63-66.
    [27] Liu Li-ming, Miao Yu-gang, Song Gang, et al. Effect of Heat Input on Microstructure and Properties of Welded Joint in Magnesium Alloy[J]. The Chinese Journal of Noferrous Metals, 2004, 14(1): 1-5.
    [28] 刘黎明,苗玉刚.镁合金焊接技术探索[A].汽车焊接国际论坛[C],2003.11:232-236.
    [29] T.Watanabe, S.Yamashita, M.Hiraishi. Effect of surface treatment on the ultrasonic weldability of AZ31B magnesium alloy plate[J]. Keikinzoku, 2001, 51 (10): 521-527.
    [30] 吴林,陈善本等.智能化焊接技术[M].北京:国防工业出版社,2000.8.
    [31] 孙乃文,于钦佩.TIG焊弧长调节器的研制[J].新工艺新技术新设备,1995(5):32-33.
    [32] 吴毅雄,黄坚,赵颖.GTA电弧弧长自动稳定单片机控制系统[J].焊接学报,1995,16(1):20-24.
    [33] 刘会杰,牟滨亭,刘立君等.交流TIG焊弧长控制系统的研究[J]。焊接,1995(4):7-10.
    [34] Pan Jiluan. Welding arc control system[A]. 4th International Symposium of JWS, Fundamental and Practical Approaches to the Reliability of Welded Structure[C], 1982, Vol.Ⅰ: 23-28.
    [35] 潘际銮等.焊接电弧的控制系统[J].机械工程学报,1983 NO.1:1-8.
    [36] 陈强,潘际銮,大岛健司.焊接过程的模糊控制[A].第七届全国焊接学术会议论文集[C],1993.6:61-65.
    [37] 潘际銮.现代弧焊控制[M]。机械工业出版社,2000.6.
    [38] 吴林等.焊接过程的微型机算机测试和控制[M].北京:新时代出版社,1986.
    [39] S.B.Chen, L.Wu. Fuzzy neural networks for control of uncertainty systems with time delays[A]. Fifth IEEE Int.Conf.on Fuzzy Systems[C], FUZZ'96, Proceedings VOL.2:
    
    1171-1176.
    [40] 陈善本,吴林,王其隆等.脉冲TIG焊熔宽动态过程自学习模糊神经网控制方法[J].机械工程学报,1997,33(4):79-86.
    [41] 陈善本,吴林,张铨等.不确定对象的人工神经网络自学习控制方法[J].自动化学报,1997,23(1):127-130.
    [42] S.B.Chen, L.Wu, Q.L.Wang, et al. Self-learning fuzzy neural networks and computer vision for control of the pulse GTAW[J]. Welding Journal, 1997, 76(5): 142-148.
    [43] 王维,朱六妹.焊接电弧模糊模型的建立及单片机控制[J].新技术·新工艺,1998(4):3-5。
    [44] 孙振国,陈念,陈强等.精密脉冲TIG焊接中的弧长跟踪技术[J].焊接学报,2001,22(1):45-48.
    [45] 刘立君,韩永馗,逑云龙.厚壁管全位置焊接可变增益PID弧长调节器的设计[J].焊接学报,2001,22(2):59-61.
    [46] G E.Cook. Robotic arc welding: research insensory feedback control[J]. IEEE Transactions on Industry Electron Electron, 1983,30(3): 252-268.
    [47] Liu Yizhang, G E.Cook. PC-based arc ignition and arc length control system for gas tungsten arc welding[J]. IEEE Industry Applications Social, 1990.10: 1835-1839.
    [48] Jon B.Bjorgvinsson, G E.Cook. Microprocessor-based arc voltage control for gas tungsten arc welding using gain scheduling[J]. IEEE Transactions on Industry Applications, 1993, 29(2): 250-256.
    [49] Kenichi Miyazaki, Makoto Takahashi. TIG welding robot system with AVC sensor[J]. National Technical report, 1990, 36(1): 56-63.
    [50] Poolsak Koseeyaporn, G E.Cook. Adaptive voltage control in fusion arc welding[J]. IEEE Transactions on Industry Applications, 2000, 36(5): 1300-1307.
    [51] 刘立君.铝合金薄板TIG焊控制系统的研制[P].哈尔滨工业大学硕士论文,1995.
    [52] Y.M.Zhang, R.Kovacevic, L.Wu. Dynamic analysis and identification of gas tungsten arc welding process for weld penetration control[J]. Journal of Engineering for Industry, Transactions of the ASME,1996, 118(1): 123-136.
    [53] P.Midleton, L.Quintino, J.Santos. Compensation factor for the resistive melting due to back-ground current when using constant current-pulsed synergic algorithms[J]. Joining Sciences 1992(2): 94-99.
    [54] 苗玉刚,刘黎明,王继锋等.镁合金薄板TIG焊自适应弧长控制[J].焊接学报,2003,24(6):33-36.
    [55] 殷树言,张九海.气体保护焊工艺[M].哈尔滨:哈尔滨工业大学出版社,1989.7.
    [56] R.Henn, Ph.D and Richard M.Cribb. Modeling the sheiding effectiveness of metallized fabrics[J]. IEEE International Symposium on Electromagnetic Compatibility, 1992: 283-286.
    [57] 刘立君,逯云龙,韩永馗.高频干扰下的计算机控制交流自动TIG焊布线系统研究[J].电焊机,2001,31(4):26-28.
    [58] 刘会杰,张九海,刘立君.交流TIG焊中的高频干扰及其防止[J].焊接学报,1996,
    
    17(3):198-203.
    [59] 秦曾煌.电工学[M].北京:高等教育出版社,1999.5.
    [60] 陈善本等编.焊接过程现代控制技术[M]。哈尔滨:哈尔滨工业大学出版社,2001.5.
    [61] 王欣,王得隽.离散信号的滤波[M].电子工业出版社,2002.6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700