用户名: 密码: 验证码:
焦化废水水中氰化物和色度处理的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焦化废水成分复杂,含有焦油、苯、苯酚、氰化物、吡啶、喹啉、嘧啶等生物难降解物质。色度高,水量、水质变化大,是一种典型的含有大量有毒有害物质的工业废水。单独使用生物处理对焦化废水中的色度和氰化物的去除不够理想,难以使出水达到国家排放标准,给环境和人类带来严重危害。研究表明:生化处理后的焦化废水,采用混凝沉淀-氧化法能有效降低去除氰化物和色度。
     该试验研究以硫酸铝、聚合氯化铝、聚合硫酸铁和聚丙烯酰胺为混凝剂,次氯酸钠、二氧化氯为氧化剂单独及其组合为试验试剂,对焦化废水中色度和氰化物去除进行分析研究;并通过正交实验的方法找出最佳投药方案和最佳投药量。其研究结果如下:
     1.单独使用混凝沉淀法,将硫酸铝、聚合氯化铝、聚合硫酸铁分别与PAM混合,其中PAM投药量为4.0mg/L,其他药剂由5逐渐增加到50mg/L。试验结果表明采用聚铁加聚丙烯酰胺的处理效果相对较好,氰化物的去除率在60%左右,色度去除率在40%
    
    太原理工大学硕士研究生学位论文
    左右。单独使用混凝沉淀法,难以使焦化废水达到国家排放标准。
     2.单独使用氧化法时,在4~40mg/L加药量范围内,二氧
    化氯的处理效果较好,氰化物的去除率可以达到8570以上,色度
    达到60%以上。单独使用氧化法,采用氧化剂二氧化氯处理焦化
    废水,氰化物能够达到国家二级排放标准,而色度难以达标排放。
     3.在混凝剂中聚铁受pH值的影响相对较小,并能达到较好
    的处理效果。二氧化氯的氧化能力受pH值的影响很大。在pH值
    为8~10时,氰化物和色度的去除率比较理想。
     4.温度对氰化物和色度去除率的影响很大。当水温小于20℃
    时,混凝沉淀和氧化法对氰化物和色度的去除率的效果都很差;
    水温在25℃以上时,氰化物和色度去除效果比较明显。考虑生化
    处理后出水水温为30℃左右,混凝沉淀一氧化法的实验水温取
    30℃。
     5.运用正交实验的方法,找出了焦化废水中氰化物和色度处
    理的药剂最佳投药量为:p俘铁)一3omg/L,pH二9,p(e一。:)。ZomozL,
    P(vAM)·3.smg/L;其处理效果为:色度去除率为86.67%,氰化物的
    去除率为91.3%,CoDc,去除率达到了68.1%
Components were complex in coke plant wastewater,in which contains refractory organic compounds such as tar, benzene, phenol, cyanide, quinoline and pyridine etc.So chroma of that is high ,and great changes happened usually to water quality and water flow. It is a typical industrial wastewater,in which contains a number of toxic and nocuousness compounds. The biological treatment processes deal with coke plant waste water, which chroma and cyanide of removal rate are not favorable and the effluent concentration couldn't attain the wastewater drainage level,which brought severe harm to our environment and human body. It had been demonstrated that adopting flocculating and
    
    
    depositing-oxidation deal with cyanide and reduce chroma in coking-plant wastewater after bioglogical treatment process is a cost effective technology.
    In this research ,with the use of M3SO4, PAC, PFS, PAM ,
    NaClO, ClO2 ect.alone or combination ,dealing with cyanide and reducing chroma in coking-plant wastewater was analysed and researched. Besides with the way of experiment ,the best of throwing agents project and quantity of agents was suggested . The results are as follows:
    1.Using alone the way of flocculating and depositing, it was the best relatively method that adopt PFS and PAM as flocculation agents ,when quantity of PAM is 4.0 mg/L and others change from 5 mg/L to 50 mg/L. Removal rate of cyanide was about 60%;that of chroma was about 40%.This project couldn't make the effluent concentration of cyanide and chroma in coking wastewater attain the wastewater drainage level.
    2. Using alone the way of oxidation, it was the best relatively method that adopt C1O2 as oxidation agents when quantity of oxidation change from 4 mg/L to 40 mg/L. Removal rate of cyanide
    
    was about 85%;that of chroma was about 60%.This project could make the effluent concentration of cyanide in coking wastewater attain the wastewater drainage level,but chroma of which couldn't.
    3. Among the flocculation agents ,PFS was affected by pH on the small side,and it counld attain better removal rate. ClO2 was affected by pH distinctly, Removal rate of cyanide and chroma were perfect, the pH of value among 8 and 10.
    4. Removal rate of cyanide and chroma were affected by temperature prodigious.When the water temperature was less than 20 degree Celsius , Removal rate of cyanide and chroma were not favorable. When the water temperature was more than 25 degree Celsius, Removal effect of cyanide and chroma were distinct.considering the temperature of effluent which was dealed with biological processes was 30 degree Celsius, so the experiment temperature was adopted as 30 degree Celsius.
    5.1 had find the best of quantity of throwing agents which deal with coke plant wastewater with method of perpendicularity experiment .The best of quantity of throwing agents are as follow:
    30mg/L, pH=10, p(C102)-20mg/L, p(PAM)-3.5mg/L .With the
    
    best of quantity of throwing agents, removal effects are as follows: removal rate of chroma was 86.67%; removal rate of cyanide was 91.3%; removal rate of CODCr was 68.1%.
引文
[1] MIN ZHANG, ect.Coke plant wastewater treatment by fixed biofilm system for COD and NH_3-N removal.Wat.Res. 1998,32(2):519~527
    [2] Bridle T.R, Bedford W.K.and Jank B.E.Biological nitrogen control of coke plant wastewaters.Wat.Sci.Technol. 13,667~680.
    [3] 文波,张辉明,钱易等.A-A/O法处理焦化废水中试研究.中国给水排水,1992,8(2):7~12
    [4] 51卢建杭,王红斌,刘维屏等.焦化废水专用混凝剂对污染物的去除效果与规律.环境科学,2000,21(4):65~68
    [5] Minak H.P, Lepke P.Cyanide treatment options in coke plants.Proceedings of the 1997 56th Ironmaking Conference. 1997.4: 13~16
    [6] 王德利,张成林,滕占才,王志军.含氰电镀废水氧化处理的研究.黑龙江八一农垦大学学报,2002,14(3):96~98
    [7] Qian Y, Wen YB,ect.Efficacy of pre-treatment methods in the activated sludge removal of refractory compounds in coke plant wastewater. Wat. Res. 1994,28(3):701~707.
    [8] EPRI(Electric Power Reserch lnstitute).Introduction to Limerstone flue gas desulphurization .Tech Tape CC87-01,1987.
    [9] 汪大翚,徐新华,宋爽.工业废水专项污染物处理手册.[M]]北京:化学工业出版社,2000.
    [10] 尹承龙等.焦化废水处理存在的问题及其解决对策.给水排水,2000,26(6):35~37
    [11] 何苗,张晓健,瞿福平,等.焦化废水中芳香族有机物及杂环化合
    
    物在活性污泥处理中的去除特性.中国给水排水,1997,13(1):14~17
    [12] Kai-chee Loh,et al.Immobilized-cell Membrane Bioreator for High-strength Phenol Wastewater.Journal of Environmental Engineering, 2000, 1:75~79
    [13] Wang Jianlong, Quan Xiangchun,ect. Bioaugmentation as a tool to enhance the removal of refractory compound in coke plant wastewater. Process Biochemist-ry .2002.38:777~781.
    [14] 李惕川.工业污染源控制.北京:化学工业出版社,1987
    [15] 钱易等.焦化废水中难降解有机物去除的研究.环境科学研究,1992,5(5):1~8
    [16] 辛国章,吴健,白玉兴.聚合硫酸铁在水处理工艺中的应用.冶金环境保护,2002(4):19~21
    [17] Delaat J,Gallard H .Ancelin S ,et al.Comparative study of oxidation of atrazine and acetone by H_2o_2 /UV, Fe(Ⅲ)/UV, Fe(Ⅲ)/H_2O_2/UV and Fe(Ⅱ)or Fe(Ⅲ)/H_2O_2[J].chemopere, 1999,39(15):2693~2706.
    [18] 马英歌,张清友,贾汉东等.不同絮凝剂处理焦化废水的研究.环境污染与防治,2002,24(1):16~18
    [19] 许海燕,李义久,刘亚菲.Fenton混凝催化氧化法处理焦化废水的影响因素.复旦学报(自然科学版),2003,42(3):440~444
    [20] 沈晓林.焦化废水处理全面达标的试验与探讨.冶金环境保护,2002(4):4~7
    [21] 卢建杭,王红斌,刘维屏.焦化废水中有机污染物的混凝去除作用机理探讨.工业水处理,2000,20(6):18~22
    [22] 李义久,钱君律,周伟,等.催化氧化法处理焦化废水.环境保护,2000,(13):4~8
    
    
    [23] 仇雁翎.A_1-A_2-O生物膜系统处理焦化废水试验研究.2000.1
    [24] 上海市公用事业研究所.ZWJ炭质吸附剂的实质及其在焦化废水深度治理中的应用.城市煤气学术委员会气源学组一九八五年年会,南昌,1985,9
    [25] 崔伟.焦炉炉头焦制碳质吸附剂及深度治理焦化废水的研究.炼焦化学学会1989年综合年会.湖南桃山,1989,10,20
    [26] 张昌鸣,等.焦化废水净化及回用技术研究.环境工程,1999,17(1):16~19,40
    [27] Borbwarddt,R.H.Paper Presented at The BPA flue gas desulphurization symposium .Atlanta,GA. 1984. 11:4~7
    [28] 夏畅斌,何湘柱,李德良.酸改性粉煤灰处理焦化废水的工艺研究.环境工程,2000,18(6):28~29
    [29] 张兆春,王海军,李风起,等.长焰煤吸附焦化废水污染物的研究.山东矿业学院学报,1996,15(2):205~209
    [30] 张许达,孙森林,丑明,等.炭-生物膜法处理焦化厂废水.燃料与化工,1988,19(3):51~54
    [31] 谢志建,黄钧等.焦化废水的微生物脱色.应用与环境生物学报,2001,7(6):600~603
    [32] 周霞萍,周芩,张英,等.焦化废水脱氟脱色的膜分离机制.华东理工大学学报,2001,27(4):427~430
    [33] 许保玖.给水处理理论.[M].北京:中国建筑工业出版社,2000.
    [34] 巩志坚,等.利用纷顿试剂处理焦化废水.工业水处理,1997,17(6):4~6
    [35] Boliden(1970):AVRFlocking.(AVRFlocculation).BolidenAB,Helsingb org.Sweden.
    
    
    [36] Rich,G..L.(1963)Unit processes of sanitary engineering.John wiley& Sons,New York,N.Y.
    [37] 陆柱等.水处理药剂.[M].北京:化学工业出版社,2002.
    [38] 雷乐成等.水处理高级氧化技术.[M].北京:化学工业出版社,2001.
    [39] 孙红、马效民、郝佳佳.次氯酸钠氧化含酚树脂废水中苯酚的实验研究.环境工程《化学工程师》1998,68(5):47~49.
    [40] 许保玖.给水工程.[M].北京:中国建筑工业出版社,2000.
    [41] 张自杰等.排水工程.[M].北京:中国建筑工业出版社,2000.
    [42] 黄君礼等.新型水处理剂—二氧化氯技术及其应用.[M].北京:化学工业出版社,2002.
    [43] 王松云.聚电解质在废物处理中的应用及合成.[M].北京:科学出版社,1983。
    [44] 卢建杭,王红斌,刘维屏.焦化废水专用混凝剂对污染物的去除效果与规律.环境科学,2000,21(4):65~68

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700