用户名: 密码: 验证码:
热预处理诱导的HSP70对机体抗氧化及抗损伤能力的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热休克蛋白或应激蛋白能保护细胞免受应激损伤,修复和维持蛋白的折叠,提高细胞在恶劣环境下的生存率。热应激能使机体产生热耐受性,同时合成大量的HSP70。热耐受性会对运动应激产生耐力,从而使机体在运动应激中得到保护。运动过程中自由基的爆发是导致机体损伤的原因之一。许多实验已经表明运动可以诱导骨骼肌和其他组织中HSP70的表达,但是不同的运动方式使得实验结果不尽相同。
     本实验的目的是通过观察一次递增负荷的力竭运动对白细胞HSP70表达的影响,观察运动后恢复期HSP70的变化;给受试者热预处理,即发生热休克反应,观察HSP70在运动后的变化,同时检测机体的抗氧化能力及损伤情况,从而探讨在递增负荷运动中,热预处理诱导的HSP70高表达对机体的保护作用。
     10名受试者在跑台上采用Bruce方法进行递增负荷运动至力竭。安静、运动后即刻(即3min),运动后3h,运动后8h分别采肘静脉血,测试白细胞HSP70,血浆超氧化物歧化酶(SOD)、丙二醛(MDA),另外测运动后即刻的血乳酸及血浆CK。间隔一周,热预处理1h(桑拿,温度45℃,湿度90%),室温(温度25℃,湿度65%)恢复24h,采安静时肘静脉血测试。进行递增负荷运动至力竭后,采血测试各项指标。运动方式及采血时间同上。
     实验结果:
     (1)运动后即刻白细胞HSP70与基础值比较没有显著性差异,运动后3h白细胞HSP70表达显著增加(P<0.05),8h已基本恢复到基础值。热预处理24h后HSP70显著增加,运动后即刻HSP70与热预处理前运动后即刻相比显著降低,8h的HSP70比基础值显著降低(P<0.05)。
    
    华南师范大学体育科学学院2004届硕十学位论文
    石真玉
     (2)两次运动后即刻血浆SOD活性都显著上升(P<0.05),运动后3h与基础值
    比较无显著性差异,热预处理前各时刻SOD和热预处理后各时刻相比没有明显
    变化。运动后即刻血浆MDA含量显著上升,3h恢复到基础水平。热预处理运动
    后即刻MDA含量也明显上升,但是明显低于热预处理前运动后即刻(P<0.05)。
     (3)运动后即刻血浆CK活性显著升高。热预处理运动后即刻CK活性没有明
    显变化,但显著低于热预处理前运动后即刻(P<0.05)。
     (4)血乳酸,最大吸氧量,运动时间都没有显著性的变化。
    实验结果表明:
     (1)一次递增负荷的力竭运动能诱导机体白细胞HSP70的表达,且表达有延后
    J吐,既运动刺激结束后过一定的时间HSP70才表达增多;HSP70表达恢复至基
    础水平较快。热预处理运动后8h白细胞HSP70比基础值显著降低,提示HSP7O
    可能发生了适应性的变化。
     (2)一次递增负荷的力竭运动可引起血浆SOD活性的升高,MDA含量增多,
    说明该运动方案虽然可能使机体抗氧化能力有所提高,但不能有效清除自由基,
    提示可能发生氧化损伤。
    (3)一次递增负荷的力竭运动可引起血浆中CK活性的提高,说明机体可能发
    生了一定的组织损伤。
    (4)对受试者施以热预处理而造成HSP7O高表达后,发现力竭运动后即刻MDA
    含量比热预处理前运动后即刻的MDA降低,SOD的活性没有明显的变化,提示
    热预处理诱导HSP70高表达可能对减少运动中自由基的产生有一定的作用。
    (5)热预处理运动后的CK活性比热预处理前运动的CK活性明显降低,说明
    热预处理后再运动对机体造成的损伤比热预处理前运动小,提示热预处理造成的
    HSP7O的高表达可能对机体的抗损伤有一定的作用。
Heat shock proteins or stress proteins are considered to play an essential role in protecting cells from stress,repairing and maintaining protein folding and preparing them to survive new environmental challenges.HSP70 overexpression induced by heat stress is able to provide thermotolerance.This induces cellular adaptations which enable the organism to better deal with any future exercise challenge.Previous studies have demonstrated that a single exercise bout is capable of increasing HSP70 content.
    The purpose of this study was to observe HSP70 change after an incremental exhaustive bout of exercise,and HSP70 change postexercise after previous hyperthermic treatment.At the same time we examined antioxidant capacity and damage of organism and analyzed protection of HSP70 overexpression induced by hyperthermic pretreatment.
    10 male subjects of physical education department ran on a treadmill until exhaustion .Blood was sampled from forearm vein at rest,immediately postexercise,3h and 8h after exercise.These samples were analyzed for leucocytes HSP70 with Western dot blotting.Malonaldehyde (MDA) as a marker of lipid peroxidantion and plasma superoxide dismutase (SOD) were measured at rest,immediately postexercise and 3h after exercise. In addition,plasma creatine kinase(CK)was measured at rest and immediately postexercise as a crude marker of tissue damage.After a week the hyperthermic pretreatment was performed for an hour ( Sauna,45 癈 ;relative humidity,90%) .And then the subjects were at rest under the normal temperature for 24 hours.The same bout of exercise took place after this.
    The results were as follows: ( 1 ) HSP70 content in human leucocytes remained unchanged immediately
    
    
    postexercise and increased respectively from rest at 3h after exercise. It indicated that a single short-term exhaustive bout of exercise was able to increase leucocyte HSP70 expression. And it returned to pre-exercise level until 8h after exercise. HSP70 expression increased significantly at 24h after hyperthermic pretreatment.Compared with the level immediately postexercise before hyperthermic treatment,HSP70 decreased significantly immediately postexercise.HSP70 content at 8h after hyperthermic pretreatment decreased respectively compared with the basal line.This demonstrated that probably the adaptive response of the basal HSP expression took place.
    (2) SOD activity in plasma elevated significantly immediately after exercise.There were no significant differences between before hyperthermic treatment and after hyerthermic pretreatment.It is concluded that HSP70 overexpression induced by hyperthermic treatment is not able to enhance SOD activity in plasma.
    (3) Plasma MDA content increased respectively immediately postexercise.MDA elevated significantly immediately postexercise after hyperthermic pretreatment and it was lower respectively than that immediately postexercise before hyperthermic treatment.We conclude that HSP70 is probably involved in eliminating free radicals .
    (4) There was significant change of CK activity in plasma immediately after exercise. Plasma CK activity remained unchanged immediately postexercise after hyperthermic pretreatment,but was lower respectively than that immediately postexercise before hyperthermic treatment.This result demonstrates that HSP70 overexpression induced by hyperthermic treatment probably enables the organism to enhance the capacity of resistance to damage induced by exercise .
    (5) There were no significant differences in blood lactate,VO2max and exercise time.This indicates that HSP70 is not able to increase tolerance to a single short-term exhaustive exercise.
引文
[1] Ritossa FM. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia. 1962, 13:571-573
    [2] Tissieres A. Proteins synthesis in salivary glands of Drosophila melanogaster: Relation to chromosome puffs. J Molec Biol. 1974, 85(3): 389-398
    [3] Hightower LE. Heat shock, stress proteins, chaperones, and proteotoxicity. Cell. 1991, 66(2): 191-197
    [4] Snoeckx LH, et al. Heat shock proteins and cardiovascular pathophysiology. Physiol Rev. 2001,81: 1461-1497
    [5] Locke M. The cellular stress response to exercise: role of stress proteins. Exer Sport Sci Rev. 1997, 25:105-136
    [6] Welch WJ. Mammalian stress response: cell physiology, structure/function of stress proteins, and implications for medicine and disease. Physiol Rev. 1992, 72(4): 1063-1077
    [7] 邱仞之主编.环境高温与热损伤.军事医学科学出版社.2000
    [8] Linquists, Craig EA. The heat shock proteins. Annu Rev Genet. 1998, 22: 631-637
    [9] Wischmeyer PE, et al. Glutamine induces heat shock protein and protects against endotoxin shock in the rat. J Appl Physiol. 2001, 90(6): 2403-2410
    [10] Sato S, et al. Isolation of complementary DNAs for heat shock protein (HSP)70 and heat shock cognate protein (HSC) 70 genes and the expressions in post-ischaemic gerbil brain. Neurol Res. 1992, 14(5): 375-380
    [11] Craig EA, Gross CA. Is hsp70 the cellular thermometer? Trends Biochem Sci. 1991, 16(4): 135-140
    [12] 郭兴中,吴炳义,徐仁宝.热休克蛋白的诱导机制及影响因素.生理科学进展.1995,26(3):263-266
    [13] Welch WJ. Mammalian stress response: cell physiology, structure/function of stress proteins, and implications for medicine and disease. Physiol Rev. 1992, 72: 1063-1081
    [14] Carper SW, et al. Heat shock protein 27 stimulates recovery of RNA and protein synthesis following a heat shock. J Cell Biochem. 1997, 66(2): 153-164
    [15] Ellis RJ. The molecular chaperone concept. Semin Cell Biol. 1990, 1(1): 1-9
    [16] Pelham HRB. Functions of the HSP70 protein family: an overview. Cold Spring Habor NY: CSHI Press. 1990:287-299
    [17] Hightower LE. Cultured animal cells exposed to amino acid analogues or puromycin rapidly synthesize several polypeptides. J Cell Physiol. 1980, 102(3): 407-427
    [18] 常蕴华,徐存栓.生物的热休克反应研究进展.动物学杂志.2001,36(3):72-77
    [19] Mosser DD, et al. Role of the human heat shock protein hsp70 in protection against stressinduced apoptosis. Mol Cell Biol. 1997, 17(9): 5317-5327
    [20] 沈翔非,方福德主编.真核基因表达调控.高等教育出版社.1996
    [21] Hall TJ. Role of hsp70 in cytokine production. Experientia. 1994, 50(11-12): 1048-1053
    [22] Scarim AL, Heitmeier MR, Corbett JA. Heat shock inhibits cytokine-induced nitric oxide synthase expression by rat and human islets. Endocrinology. 1998, 139(12): 5050-5057
    [23] Locke M, Noble EG, Atkinson BG. Exercising mammals synthesize stress proteins. Am J Physiol. 1990, 258(4 Pt 1): C723-729
    
    
    [24] Hernando R, Manso R. Muscle fibre stress in response to exercise: synthesis, accumulation and isoform transitions of 70-kDa heat shock proteins. Eur J Biochem. 1997, 243(1-2): 460-467
    [25] Smolka MB, et al. HSP72 as a complementary protection against oxidative stress induced by exercise in the soleus muscle of rats. Am J Physiol Regul Integr Comp Physiol. 2000, 279(5): R1539-1545
    [26] Khassaf M, et al. Effect of vitamin C supplements on antioxidant defence and stress proteins in human lymphocytes and skeletal muscle. J Physiol. 2003, 549(Pt 2): 645-652
    [27] Puntschart A, et al. Hsp70 expression in human skeletal muscle after exercise. Acta Physiol Scand. 1996, 157(4): 411-417
    [28] Febbraio MA, Koukoulas I. HSP72 gene expression progressively increases in human skeletal muscle during prolonged, exhaustive exercise. J Appl Physiol. 2000, 89(3): 1055-1060
    [29] Thomposon HS, et al. A single bout of eccentric exercise increases HSP27 and HSC/HSP70 in human skeletal muscle. Acta Physiol Scand. 2001, 171(2): 187-193
    [30] Thompson HS, Clarkson PM, Scordilis SP. The repeated bout effect and heat shock proteins intramuscular HSP27 and HSP70 expression following two bouts of eccentric exercise in humans. 2002, 174(1): 47-56
    [31] Thomposon HS, et al. Exercise-induced HSP27, HSP70 and MAPK responses in human skeletal muscle. Acta Physiol Scand. 2003, 178(1): 61-72
    [32] Khassaf M, et al. Time course of responses of human skeletal muscle to oxidative stress induced by nondamaging exercise. J Appl Physiol. 2001, 90(3): 1031-1035
    [33] Liu Y, et al. Human skeletal muscle HSP70 response to training in highly trained rowers. J Appl Physiol. 1999, 86(1): 101-104
    [34] Milne K.J, Noble EG. Exercise-induced elevation of HSP70 is intensity dependent. J Appl Physiol. 2002, 93(2): 561-568
    [35] Armstrong RB, Phelps RO. Muscle fiber type composition of the rat hindlimb. Am J Anat. 1984, 171(3): 259-272
    [36] Armstrong RB, et al. Glycogen depletion in rat skeletal muscle fibers at different intensities and durations of exercise. Pflugers Arch. 1974, 352(3): 243-256
    [37] Laughlin MH, Armstrong RB. Muscular blood flow distribution patterns as a function of running speed in rats. Am J Physiol. 1982, 243 (2): H296-306
    [38] Liu Y, et al. Human skeletal muscle HSP70 response to physical training depends on exercise intensity. Int J Sports Med. 2000, 21(5): 351-355
    [39] Liu Y, Steinacker JM. Changes in skeletal muscle heat shock proteins: pathological significance. Front Biosci. 2001, 6:D12-25
    [40] Fehrenbach E, et al. HSP expression in human leukocytes is modulated by endurance exercise. Med Sci Sports Exerc. 2000, 32(3): 592-600
    [41] Shastry S, Toft DO, Joyner MJ. HSP70 and HSP90 expression in leucocytes after exercise in moderately trained humans. Acta Physiol Scand. 2002, 175(2): 139-146
    [42] Walsh RC, et al. Exercise increases serum Hsp72 in humans. Cell Stress Chaperones. 2001, 6(4): 386-393
    [43] Salo DC, Donovan CM, Davies KJ. HSP70 and other possible heat shock or oxidative stress
    
    proteins are induced in skeletal muscle, heart, and liver during exercise. Free Radic Biol Med. 1991, 11(3): 239-246
    [44] Skidmore R, et al. HSP70 induction during exercise and heat stress in rats: role of internal temperature. Am J Physiol. 1995, 268(1 Pt 2): R92-97
    [45] Iwaki K, et al. Induction of HSP70in cultured rat neonatal cardiomyocytes by hypoxia and metabolic stress. Circulation. 1993, 87(6): 2023-2032
    [46] Ps AR, et al. Induction of heat shock protein 72 mRNA in skeletal muscle by exercise and training. Equine Vet J Suppl. 2002, 34:214-218
    [47] Whelan SA, Hightower LE. Differential induction of glucose-regulated and heat shock proteins: effects of pH and sulfhydryl-reducing agents on chicken embryo cells. J Cell Physiol. 1985, 125(2): 251-258
    [48] 贺涵贞,等.热应激蛋白在热适应和热耐受中作用的研究.中华劳动卫生职业病杂志.1998,16(2):70-73
    [49] Marber MS, et al. Myocardial protection after whole body heat stress in the rabit is dependent on metabolic substrate and is related to the amount of in ducible 70kD heat stress protein. J Clin Invest. 1994, 93(3): 1087
    [50] Chen HW, et al. Previous hyperthermic treatment increases mitochondria oxidative enzyme activity and exercise capacity in rats. Kaohsiung J Med Sci. 1999, 15(10): 572-580
    [51] Hamilton KL, et al. Exercise, antioxidants, and HSP72: protection against myocardial ischemia/reperfusion. Free Radic Biol Med. 2003, 34(7): 800-809
    [52] Powers SK, et al. Exercise training improves myocardial tolerance to in vivo ischemia-reperfusion in the rat. Am J Physiol. 1998, 275(5 Pt2): R1468-1477
    [53] Samelman TR. Heat shock protein expression is increased in cardiac and skeletal muscles of Fischer 344 rats after endurance training. Exp Physiol. 2000, 85(1): 92-102
    [54] Locke M, et al. Enhanced postischemic myocardial recovery following exercise induction of HSP72. Am J Physiol. 1995, 269(1 Pt 2): H320-325
    [55] Demirel HA, et al. Exercise training reduces myocardial lipid peroxidation following short-term ischemia-reperfusion. Med Sci Sports Excrc. 1998, 30(8): 1211-1216
    [56] Lennon SL, et al. Loss of exercise-induced cardioprotection after cessation of exercise. J Appl Physiol. 2004, 96(4): 1299-1305
    [57] Hutter MM, et al. Heat-shock protein induction in rat hearts. A direct correlation between the amount of heat-shock protein induced and the degree of myocardial protection. Circulation. 1994, 89(1): 355-360
    [58] Dillmann WH, Mestril R. Heat shock proteins in myocardial stress. Z Kardiol. 1995, 84: 87-90
    [59] 何骁生,等.耐热保健饮料对机体热应激蛋白诱导合成影响的研究.中华劳动卫生职业病杂志.1998,2:85-88
    [60] Fehrenbach E, et al. Transcriptional and translational regulation of heat shock proteins in leukocytes of endurance runners. J Appl Physiol. 2000, 89(2): 704-710
    [61] Maglara AA, et al. Damage to developing mouse skeletal muscle myotubes in culture: protective effect of heat shock proteins. J Physiol. 2003, 548 (Pt 3): 837-846
    [62] Lowry OH, et al. Protein measurements with the folin phenol reagent. J Biol Chem. 1951,
    
    193:265-275
    [63] 何骁生,等.Western斑点印迹法检测主要热应激蛋白.中华劳动卫生职业病杂志.1996,14(6):376-377
    [64] Karmazyn M, Mailer K, Currie RW. Acquisition and decay of heat-shock enhanced postischemic ventricular recovery. Am J Physiol. 1990, 259:H424-431
    [65] Kiang JG, Tsokos GC. Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol Ther. 1998, 80 (2): 183-201
    [66] 武桂新,冯炜权.热休克蛋白极其对运动的应答.北京体育大学学报.1997,20(3):20-24
    [67] 杨惠玲,潘景轩,吴伟康主编.高级病理生理学.北京,科学出版社,1998,175-188
    [68] 魏勇,陈佩杰,杨德洪.不同周期运动后大鼠心肌细胞热休克蛋白72mRNA的表达.中国运动医学杂志.2003,22(2):129-132
    [69] Liu Y, et al. Different skeletal muscle HSP70 responses to high-intensity strength training and low-intensity endurance training. Eur J Appl Physiol. 2004, 91 (2-3) 330-335
    [70] Chen HW, et al. Synthesis of Hsp72 induced by exercise in high temperature. Chin J Physiol. 1995, 38(4): 241-246
    [71] Neufer PD, Benjamin IJ. Differential expression of α, β-crystallin and Hsp27 in skeletal muscle during continuous contractile activity. Relationship to myogenic regulatory factors. J Biol Chem. 1996, 271:24089-24095
    [72] 张永亮,等.热休克蛋白的分类、基因调控极其功能.法医学杂志.1999,15(4):239-241
    [73] McCuily JD, et al. The rapid expression of myocardial hsp70 mRNA and the heat shock 70kDa protein can be achieved after only a brief period of retrograde hyperthermic perfusion. J Mol Cell Cardiol. 1995, 27(3): 873-882
    [74] 汤平涛,等.高温、烟碱及其联合作用对大鼠肝热应激蛋白70合成与分布的影响.中华劳动卫生职业病杂志.1998,16(2):81-84
    [75] Villar J, et al. Induction of the heat shock response reduces mortality rate and organ damage in a sepsis-induced acute lung injury model. Crit Care Med. 1994, 22(6): 914-921
    [76] Iliodromitis EK, et al. Enhanced protection of heat shock in myocardial infarction: inhibition of detrimental effect of systemic hyperthermia. Cardiovasc Drugs Ther. 1999, 13(3): 223-231
    [77] Mizushima Y, et al. Preinduction of heat shock protein protects cardiac and hepatic functions following trauma and hemorrhange. Am J Physiol Regul Integr Comp Physiol. 2000, 278(2): R352-359
    [78] Trautinger F, et al. Overexpression of the small heat shock protein, hsp27, confers resistance to hyperthermia, but not to oxidative stress and UV-induced cell death, in a stably transfected squamous cell carcinoma cell line. J Photochem Photobiol B. 1997, 39 (1): 90-95
    [79] Neuhaus-Steinmetz, Rensing L. Heat shock protein induction by certain chemical stressors is correlated with their cytotoxicity, lipophilicity and protein-denaturing capacity. Toxicology. 1997, 123(3): 185-195
    [80] Theodorakis NG, Drujan D, De Maio A. Thermotolerant cells show an attenuated expression of Hsp70 after heat shock. J Biol Chem. 1999, 274(17): 12081-12086
    [81] Ji LL. Exercise and oxidative stress: role of the cellular antioxidant systems. Exerc Sport Sci Rev. 1995, 23:135-166
    
    
    [82] Kukreja RC, Hess ML. The oxygen free radical system: from equations through membrane-protein interactions to cardiovascular injury and protection. Cardiovasc Res. 1992, 26(7): 641-655
    [83] Davies KJ, et al. Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun. 1982, 107(4): 1198-1205
    [84] 许豪文,等.运动时大学生血浆脂质过氧化物和血液抗氧化系统的变化.体育科学.1992,12(4):16-18
    [85] 王安利,等.对有氧运动(游泳)抗衰老作用的研究.北京体育大学学报.2001,24(2):179-182
    [86] 李晖,等.递增负荷运动至力竭大鼠肾脏自由基产生及氧化抗氧化能力的研究.中国运动医学杂志.1999,18(1):31-33
    [87] 辛东,等.力竭性运动时大鼠脑组织自由基产生及氧化、抗氧化能力的动态观察.中国运动医学杂志.中国运动医学杂志.1999,18(4):321-323
    [88] Sean Lille, ching-yuan Su. Induction of heat shock protein 72 in rat skeletal muscle does not increase tolerance to ischemia-reperfusion injury. Muscle Nerve. 1999, 22:390-393
    [89] Qian YZ, et al. Dissociation of heat shock proteins expression with ischemic protection by heat stress in rabbit heart. Am J Physiol. 1997, 273 (5 Pt2): 2458-2464
    [90] Chong KY, et al. Stable overexpression of the constitutive form of heat shock protein 70 confers oxidative protection. J Mol Cell Cardiol. 1998, 30 (3): 599-08
    [91] Su CY, et al. Constitutive and inducible HSP70s are involved in oxidative resistance evoked by heat shock or ethanol. J Mol Cell Cardiol. 1998, 30 (3): 587-598
    [92] Pelham HRB. Functions of the HSP70 protein family: an overview. Cold Spring Harbar NY: CPHI Press. 1990, 287-299
    [93] 谭红梅.热休克反应对缺血—再通心肌保护作川的机制探讨.中国病理生理杂志.1999,15(10):868-870
    [94] Niedzwiecki A, Reveillaud I, Fleming JE. Changes in superoxide dismutase and catalase in aging heat-shocked Drosophila. Free Radic Res Commun. 1992, 17(6): 355-367
    [95] 杨晓云,等.热休克蛋白在心肌缺血再灌注损伤中的作用.西南国防医药.2003,13(1):101-103
    [96] 冯连世,李开刚.运动员机能评定常用生理生化指标测试方法及应用.人民体育出版社.2002第一版
    [97] Komulainen J, et al. Does increased serum creatine kinase activity reflect exercise-induced muscle damage in rats? Int J Sports Med. 1995, 16:150-154
    [98] 冯连世,等.运动与血清酶活性的变化.中国运动医学杂志.1991,10(2):88-94
    [99] 杨晓冰,等.延迟性肌肉酸痛.中国运动医学杂志.1994,13(4):221-224
    [100] Goldfarb AH. Nutritional antioxidants as therapeutic and preventive modalities in exercise-induced muscle damage. Can J Appl Physiol. 1999, 24 (3): 249-266
    [101] 徐波,许豪文.急性运动对大鼠骨骼肌中丙二醛和血清肌酸激酶的影响.中国应用生理学杂志.1996,12(1):65-66
    [102] La Gerche, et al. No evidence of sustained myocardial injury following an Ironman distance triathlon. Int J Sports Med. 2004, 25(1): 45-49
    [103] Knig D, et al. Myocardial stress after competitive exercise in professional road cyclists. Med
    
    Sci Sports Exerc. 2003, 35(10): 1679-1683
    [104] Sorichter S, et al. Release of muscle proteins after downhill running in male and female subjects. Scand J Med Sci Sports. 2001, 11: 28-32
    [105] 邵慧秋,等.自行车运动员大强度训练后CK、LDH的动态变化及评定.体育与科学.2000,21(6):33-35
    [106] Totsuka M, et al. Break point of serum creatine kinase release after endure exercise. J Appl Physiol. 2002, 93 (4): 1280-1286
    [107] Nosaka K, Newton M, Sacco P. Muscle damage and soreness after endurance exercise of the elbow flexors. Med Sci Sports Exerc. 2002, 34 (6): 920-927
    [108] 项汉平,等.武术运动员运动疲劳下的CK活性变化.湖北体育科技.2000,1:43-45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700