用户名: 密码: 验证码:
大豆植株干物质积累与氮素动态变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以大豆东农163为材料,为探明高油大豆氮素积累生理机制和优质高效栽培提
    供理论依据,系统地研究了大豆植株干物质与氮素变化动态,结果表明:
    大豆生长过程中,叶片、叶柄、茎在结荚至鼓粒期干物质积累出现峰值,前期生长
    中心是叶片,逐渐转向叶片、茎并行期,之后转向荚果。氮素积累与干物质积累有关,
    生长前期氮素积累量较少,以后随植株生长速度及干物质积累量的增长而逐渐增大。
    植株中不同营养器官氮素含量间存在差异,叶片氮素含量明显高于叶柄和茎,呈单
    峰曲线,盛荚期达最大值;叶柄、茎呈平缓的下降趋势;荚果在鼓粒期后迅速增加。大
    豆不同位置叶片、叶柄中氮素含量变化动态有一定差异,初生叶片在生长过程中氮素含
    量先增加以后下降,呈单峰曲线变化;叶柄氮素含量自上而下呈高-低-高变化趋势。
    氨态氮在大豆叶片、叶柄、茎、荚果的含量动态上有较大差异,叶片、荚果中含量
    随生育时期的推进而下降;茎中氨态氮含量呈单峰曲线变化,鼓粒初期含量最高;叶柄
    中氨态氮含量变化动态是苗期含量较低,至盛花期呈上升趋势,然后开始下降,荚期降
    到最低值,以后开始上升。大豆植株上各部位叶片氨态氮含量,在苗期、盛花期、鼓粒
    初期,中部叶片含量比较高,上部叶片和下部叶片相对较低;鼓粒期叶片中氨态氮含量
    自上而下依次下降;叶柄中氨态氮含量在盛花期上部叶和下部叶含量高,中部偏低;在
    鼓粒期叶柄中氨态氮含量依次下降。硝态氮主要积累于叶柄和茎中,其含量动态是随生
    育期呈现出逐渐下降的趋势,其中茎的硝态氮含量平缓下降;生育中前期叶柄中含量明
    显高于茎中含量,而至鼓粒初期以后含量急速下降,低于茎中含量。苗期上部叶片叶柄
    硝态氮含量比较低,下部叶片叶柄含量高;盛花期倒1叶至倒4叶的叶柄硝态氮含量呈
    现逐渐升高的趋势,自倒4叶以下开始有所下降;鼓粒初期倒1叶的叶柄硝态氮含量极
    低,倒5叶、6叶最高,倒2叶、3叶、4叶以及倒7叶至倒11叶的叶柄硝态氮含量接
    近,但较倒5叶、6叶为低。
    酰脲在大豆茎、叶片、叶柄、荚果中都有分布,茎部酰脲含量明显高于叶片和叶柄,
    叶片含量高于叶柄;生殖生长期酰脲含量变化呈单峰曲线,盛花期含量最高,其后开始
    快速下降,鼓粒初期至鼓粒期其特点是含量较低、变化小;大豆茎和叶柄中酰脲相对丰
    度自初花期明显增加,茎中酰脲丰度自盛花期稳定在62%~68%,叶柄中酰脲丰度范围在
    22%~34%,依此推断进入叶中同化的氮素主要是根系吸收的矿质态氮,而非根瘤固定的
    氮素,根瘤固定的氮素很可能在茎中直接同化或直接进入结实部位。
    东农163倒3叶、倒4叶的叶绿素含量随生育期的推进呈单峰曲线变化,最大值在
    鼓粒初期,在鼓粒后叶绿素含量急速下降。各部位叶片相比,中上部叶片叶绿素含量较
    高,与氮素含量呈正相关(R=0.6691)。
In this research, the dynamics of dry matter and nitrogen in soybean plant were systematically investigated, using DN163, an advanced high oil selection, as plant material in order to probe the physiological mechanism of nitrogen accumulation in high oil soybean, and to provide the theoretical basis of agronomic measures for high quality and high profit. The results are as follows.
    
    Dry matter accumulation in the leaf, petiole, and stem peaked in the period from fruiting to filling. In the early stage of growth, the growth center was in leaf, turned gradually to both leaf and stem, and then legume. Nitrogen accumulation was correlated to dry matter accumulation. In the early stage, less nitrogen was accumulated. Afterwards, nitrogen accumulation increased with increase in the growth rate of plant and dry matter accumulation.
    The nitrogen content in soybean plant changed as a curve, with the maximal value being at flourishing fruiting period. There was difference in the nitrogen content among different organs, and leaf contained more nitrogen than petiole and stem did. The nitrogen content in leaf changed also as a curve, the maximum being at flourishing fruiting period, while the nitrogen in petiole and stem decreased slowly with the growth of plant. The nitrogen content in legume increased steadily after filling stage. The positions at which the leaf was borne on a plant had an effect on the nitrogen content. The nitrogen content in the leaf from top to lower part increased and then decreased, whereas in the petiole the reverse was true.
    The dynamics of ammonia nitrogen was different among leaf, petiole, stem, and legume. The ammonia nitrogen in leaf and legume decreased with the process of growth. The change of ammonia nitrogen in stem was as a curve, with the maximal value being at the early filling stage. The ammonia nitrogen content in petiole was low at seedling stage, increased until flowering stage and then decreased with minimal value being at fruiting stage, and finally increased again. The position of leaf on a plant had an influence on ammonia nitrogen content. At the stages, seedling, flourishing flowering, and early filling, the middle leaves contained more ammonia nitrogen, while top and low leave less. In the filling stage, the ammonia nitrogen content decreased in the leaves from top to low part. For petioles, the ammonia nitrogen content was high in the top and low leaves at flourishing flowering stage, and low in the middle. In the filling stage, ammonia nitrogen content decreased from top to low leaf. Nitrate nitrogen was
    mainly accumulated in petiole and stem, and it decreased with the growth of plant. In the early stage of growth, the petiole held a high level of nitrate nitrogen. In the early filling stage, it began to decrease sharply and was lower in petiole than in stem. For the
    
    
    distribution of nitrate nitrogen in different leaves on a plant, in the seedling stage up leaves were low in nitrate nitrogen content compared with low leaves. In flourishing flowering stage, the nitrate nitrogen content increased until the fourth leaf from the top, and then began to decrease. In early filling stage, the first leaf from the top contained a very low level of nitrate nitrogen. The fifth and sixth leaf contain a high level of nitrate nitrogen, and the content in the second to fourth and seventh to eleventh leaf was similar, but lower than in the fifth and sixth.
    Ureide was found in stem, leaf, petiole, and legume. The content of ureide was much higher in stem than in leaf and petiole. Leaf was higher in ureide than petiole. During the period of R1-R6, ureide changed as a curve with a single peak appearing at the flourishing flowering stage. The percentage of ureide in stem and petiole began to increase at the early flowering stage. From flourishing flowering stage onwards, the percentage of ureide ranged from 62% to 68% in stem, and 22% to 34% in petiole, suggesting that the nitrogen in leaf was from inorganic nitrogen absorbed from soil by roots, not from nitrogen fixed by rhizobium, t
引文
1 陈丽华,李杰,刘丽君,祖伟,马秀峰,大豆蛋白质的积累动态及其与产质量形成的关系,东北农业大学学报,2002,33(2):116—124.
    2 陈雯莉,李阜棣,周俊初,用叶绿素含量评价快生型大豆根瘤菌的共生有效性,华中农业大学学报,1996,15(1):46-51.
    3 陈新平,周金池,张福锁,应用不同土壤无机氮测试进行冬小麦氮肥推荐的研究,土壤学报,1997,(5):19-21.
    4 陈新平,李志宏,王兴仁,张福锁,土壤植株快速测试推荐施肥技术体系的建立与应用,土壤肥料,1999,(2):6-9.
    5 程素贞,罗孝荣,大豆对钼和氮、磷、钾的吸收分配动态及相互关系的初步研究,大豆科学,1990,9(3):241-246.
    6 程林海,孙毅,岳焕荣,大豆生物工程研究进展,大豆科学,2001.20(1):66-69.
    7 戴建军,程岩,黑龙江省南部黑土施氮对大豆氮肥利用率的影响,东北农业大学学报,2000,31(2):125-128.
    8 董钻,大豆株型育种若干生理问题,大豆科学,1988,7(1):69-74.
    9 杜维广,大豆生育期间中尿囊素和尿囊酸的分配和运输,植物生理学通迅,1987,6(3):197-202.
    10 丁洪,郭庆元,张学江,氮肥对大豆不同类型品种结瘤固氮影响的差异性研究,大豆科学,1994,13(3):274-278.
    11 丁洪,郭庆元,刘昌智,不同熟期大豆品种吸收和利用氮肥的差异,中国油料,1994,16(2):7-10
    12 丁洪,郭庆元,氮肥对不同品种大豆氮积累和产量品质的影响,土壤通报,1995,26(1):18-21
    13 方照希,王明录,彭代平,NR活性与氮素营养的关系,植物生理生理学报,1979,5(2):123-128
    14 傅金民,张庚灵,史春余,颜环环,苏芳,大豆开花后叶片衰老规律的研究,西北植物学报,2000,20(5):796—801.
    15 符建荣,秦遂初,大豆铁素营养诊断适用指标的研究,大豆科学,1991,10(3):205—211.
    16 关兴照,李成泰,张朝清,石桂芳,大豆施氮肥接种根瘤菌效果研究,黑龙江农业科学,2000,(4):20-21.
    17 甘银波,陈静,Ineke Stulen,大豆不同生长阶段施用氮肥对生长结瘤及产量的影响,大豆科学,1997,16(2):125-130.
    18 顾志权,钱卫飞,曹洪生,王金虎,小麦分蘖期快速营养诊断技术的应用及改进,铁道师范学院,1994,11(4):56-59.
    19 黄高宝,张恩和,胡恒觉,不同玉米品种氮素营养效率差异的生态生理机制,植物营养与肥料学报,2001,7(3):293—297.
    
    
    20 胡明祥,李开明,田佩占,大豆高产株型育种研究,吉林农业科学,1980,(3):1-14.
    21 胡根海,章建新,唐长青,北疆春大豆生长动态及干物质积累与分配,新疆农业科学,2002,39(5):264~267.
    22 何建国,严华,贾金川,王井贵,张永亮,不同氮肥管理对大豆生长及产量的影响,大豆通报,1999,(1):24.
    23 刘晓冰,金剑,张秋英,杨恕平,王光华,李艳华,不同大豆基因型氮素积累运转研究简报,大豆科学,2001,20(4):298—301.
    24 刘晓洁,重迎茬大豆栽培施氮技术试验,大豆通报,2001(2):8-9.
    25 刘小兰,李世清,土壤中的氮素与环境,干旱地区农业研究,1998,16(4):36—43.
    26 刘鹏,杨玉爱,硼钼胁迫对大豆叶片硝酸还原酶与硝态氮的影响,浙江大学学报(农业与生命科学版),2000,26(2):151-154.
    27 罗赓彤,季良,北疆春大豆亩产300公斤高产栽培技术研究,大豆科学,1994,13(2):127-132.
    28 李豪吉,大豆叶片硝酸还原酶活力的研究,植物生理学通迅,1986,(4):30-32。
    29 李雪梅,朱长甫,苗以农,大豆植株发育过程中不同部位的硝态氮含量和硝酸还原酶活力变化,植物生理学通讯,1993,29(4):263—265.
    30 李雪梅,张利红,任娟,王森林,去叶对不同生长习性大豆固氮作用的影响,植物生理学通讯.2002,38(3):33—35.
    31 李雪梅,张利红,朱长甫,苗以农,大豆生育期中不同节位酰脲含量及尿囊素酶活性变化(简报),植物生理学通迅,1997,33(5):341-342
    32 李永孝,李佩珽,底肥量追肥期对夏大豆产量性状的影响,大豆科学,1995,14(2):119—125.
    33 李志宏,张福锁,王兴仁,我国北方地区几种主要作物氮营养诊断及追肥推荐研究Ⅱ.植株硝酸盐快速诊断方法的研究,植物营养与肥料学报,1997,3(3):268—274.
    34 李志宏,易小琳,王兴仁,应用植株快速诊断确定春小麦的追肥量,北京农业大学学报,1995,21(增刊):42-46.
    35 李志宏,张福锁,王兴仁,春小麦氮营养诊断及追肥推荐体系的研究,植物营养与肥料学报,1997,3(4):349-356.
    36 鲁如坤等 土壤-植物营养学原理和施肥北京:化学:化学工业出版社,1998,8,P114.
    37 林振武,陈敬祥,NR作为作物育种生理生化指标研究,河北农业大学学报,1987,10(3):104-110.
    38 廖晓勇,张杨珠,刘学军,陈新平,张福锁,农田生态系统中土壤氮素行为的研究现状与展望,西南农业学报,2001,14(3):94-98.
    39 吕晓波,鹿文成,刘英华,闫洪大豆保护性施氮技术及其应用前景,大豆科学,2001,20(2):138.
    40 吕世华,罗秦,刘学军,张福锁,四川盆地小麦氮素营养的快速诊断方法的研究,中国农业大学学报,1997,3(3):268-274.
    41 美.沃尔什,周鸣铮译,《土壤测定与植物分析》,农业出版社,1982,5.
    
    
    42 苗以农,大豆不同节位叶绿素叶绿素的变异性,大豆科学,1987,6(1):21-25.
    43 毛达如,张承东,推荐施肥技术中施肥模型与试验设计的研究,士壤通报,1991,22(5):216-218.
    44 宋海星,王萍,申斯乐,闫石,陶丹,冉彦中,大豆共生固氮与叶片全氮含量之间关系的研究,吉林农业科学,2000,26(6):9-11.
    45 宋海星,申斯乐,马淑英,阎石,刘金萍,赵玉敏,硝态氮和铵态氮对大豆根瘤固氮的影响,大豆科学,1997,16(4):283-286.
    46 沈润平1,王中孚2,郭进耀3,丁堃1,连楚楚,氮磷钾营养对春大豆产量品质效应的研究,江西农业大学学报,1998,20(1):51-55.
    47 唐树延,孟继武,杨文杰,大豆光合作用叶绿素a、b间能量传递,大豆科学,1985,4(3):285—291.
    48 陶丹,王萍,宋海星,冉彦中,陈玉江,尹田夫,国外早熟大豆冠层粒重分布与产量的关系,大豆科学,2001,20(2):146—148
    49 吴魁斌,沈国清,对大豆氮素利用率及体内分配规律的研究,现代化农业,1998,(12):9-11.
    50 王敏等,大豆高产栽培途径的初步研究,安徽农业科学,1991,(2):136-141.
    51 汪洪,褚天铎,植物镁素营养诊断及镁肥施用,土壤肥料,2000,(4):4-7.
    52 解惠光,日本大豆氮素营养与施肥研究最新进展,大豆科学,1990,9(2):163-166.
    53 徐凤花,崔占利,刘永春,汤树德,保护性施氮对大豆氮素同化影响的研究,土壤报,1998,35(4),536—544.
    54 徐巧珍,满为群,杜维广,张桂茹,栾晓燕,陈怡,谷秀芝,大豆种质资源共生固氮特性评价及遗传初步研究,中国油料作物学报,2000,22(1):19—23.
    55 尹秀英1,许文良1,冯君,吉林省大豆种植区土壤主要营养元素与大豆产量的相互关系研究,土壤通报,2002,33(3):207—210.
    56 易小琳,曹一平,王敬国,作为氮素快速营养诊断方法的初探,北京农业大学学报,1995,21(增刊):36-41.
    57 张夫道,氮素营养研究中的几个热点问题,植物营养与肥料学报,1998,4(4):331-338.
    58 张福锁,环境胁迫与植物营养,北京:北京农业大学出版社,1996,86-109.
    59 张恒善,程砚喜,王大秋,项淑华,高敏,王雪飞,牛建光,大豆结荚期品种间叶绿素含量差异与产量相关分析,大豆科学,2001,20(4):275-279.
    60 张其德,卢从明,张群,白克智,匡廷云,不同氮素水平下二氧化碳倍增对大豆叶片荧光诱导动力学系数的影响,植物营养与肥料学报,1997,3(1):24—30.
    61 张军,王庆成,牛玉员,王忠孝,徐庆章,黄淮海平原玉米矿质营养综合诊断指标及决定因素,玉米科学,1993,1(4):57-61.
    62 郑淑琴,钾对大豆生理效应及产量和品质的影响,黑龙江农业科学,200l,(4):1-4.
    63 朱长甫,苗以农,大豆硝酸还原酶活力与硝态氮含量的关系,大豆科学,1990,9(3):35-38.
    
    
    64 朱长甫,苗以农,刘学军,许守民,野生大豆酰脲含量与根瘤固氮活力的关系,植物生理学报,1995,21(3):307—312.
    65 朱长甫,苗以农,徐貂等,大豆种子蛋白质含量与固氮酶活性和硝酸还原酶活性的关系,中国油料,1992,2:45.
    66 朱长甫,苗以农,徐貂,野生大豆植株中酰脲分布和嘌呤降解酶活性,大豆科学,1993,2:159.
    67 邹德乙,刘小虎,韩晓日,赵富杰,长期定位施肥对作物籽实氨基酸含量影响,沈阳农业大学学报,1997,28(2):120~124.
    68 Adams,D.and Chapmar, S.H., 1984.monitoring wheat fertilization ang diseased levels as a management decision aid,20,Agronomy Sbstract ASA,Madison,WI.
    69 Buttry.B.R.,R.I.Buzzell,W.I.Finalay.Relation among photosynthetic rate,bean yield.and other characters infield growh cultivars of soybean .Can,J.Plant Sci.81,(61): 191-198.
    70 Beathgen,W.E.and Alley ,M.M.,1989b.Optimizing soi; and fertilizer nitrogen use by intersively managed winter wheat:critical level and optimums rates of nitrogen fetilizer, Agron.J.81:120-125.
    71 Boatwright,G.O.and Haas,1961 .Kevelopment and composition of spring wheat as influenced by N and P fertilization.Agron,J.53:33-36.
    72 Donohue,S.J.and Brown,D.E.,1984.Optimum N concentration in winter wheat grown in coastal region of Viginia, Commun. Soil SCI. plaint Anal. 15:651-661.
    73 Eichel.K.D.Berger, R.J.Lambert.F.Eef.af.Divergent phenotypic recurrent selection for nitrate leductase activty in maize. Ⅱ.Efficient use of fertilizer nitrogen.Crop Sci. 1989, 29(6): 1398-1402.
    74 Engel,R.E.and Zubriski,J.C.,1982.nitrogen concentration in spring wheat at several growth stages .Commun.Soil Sci.Plant Anal, 15(7):531-544.
    75 Fukita,K.T.Morita and H.Nobuyasu,Effect of pod removal on absorption and reduction of nitrate in soybean ,Soil Sci,Plxnt Nutr. 1997,43(1):63-73.
    76 Fujitak,Masudat,Ogatas.Dinitrogen fixation,ureide concen tration in xylem exudates and translocation of photosynthates in soybean as in fluenced by pod removal and defoliation.Soil Sci Plant Nutr, 1988,34(2):265-275.
    77 Follett,R.H,and Follett,R.F.,1992.Use of a cholorophyll memter to evalute N status of dryland winter wheat, Commun. Soil Sci.Plant Anal.23(7-8):687-697.
    78 Geraldson,C.M., 1990.plant analysis as an aid in fertilizing vegetable crops ,inL.M.Welsh et al.(ED)Soil testing and plant analysis ;365-379,Soil Sci.Amer.,Madison,Wisconsin, USA.
    79 Herridge D,F,1982,Relative abundance of ureldes and nitrate in plant tissues ofsoybean as a quantitative assay of nitrogen fixation.Plant Physicl,70:1.
    80 Leigh,R.A.and Johnson,A.E.,1985.nitrogen concentration in field grown Spring barely: An examination of the usefulness of expecting concentration on the basis of tissue water,
    
    J.Agric.Sci.Camb. 105:397-406.
    81 Patterson TG, Larue TA.N_2 fixation(C_2H_2)and ureide content of soybeans:Environment aleffect and source sink manipulations.Crop Sci, 1993,23:819-825.
    82 Prasad,M.and Spiers,T.M., 1984.Evalution of a rapid method lf plant sap nitrate analysis. Commun.Soil Sci.Plant Anal. 15:673-679.
    83 Patterson T.G.and Larue T.A. 1983,N_2 fixation(C_2H_2)and ureide content of soybean: Enviromental effects and source sink manipulations.Crop Sci.23(5):819.
    84 Peoples M. B. and Gibson A. H., Proceedings of world soybean Research Conferenct Ⅳ. B uneons Airs-Argentina. 1989:196-211.
    85 Roth,G.W.,and Fox,R.H.,1989.tissue test for predicting nitrogen fertilizer requirement of winter wheat ,Agron.J.,81:502-507.
    86 Schonbeck,M.W,,F,C.Hsu and T.M.Carlsen, Effect of pod number on dry matter and nitrogen accumulation and distribution in soybean,Crop Sci. 1986,26:7683-7688.
    87 Scaifr, M.A.and Stevens,K.L.,1983.Monitoring sap nitrate in vegetable crops: concentration of test strips with electrode,and effects of time of day and leaf position, Commun, Soil Sci.Plant Anal. 14(9):761-771.
    88 Tanaka A.Fujita K. and Okumura.M. 1982,Effect of partial removal of leaves,pod and nodules om dinitrogen-fixing activities in soybean.In Abstr.Jpn.Soc.Sci.Plant Nutr.28:88 (in Japanese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700