用户名: 密码: 验证码:
轻钢密立柱墙体的抗剪性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究目前正被推广使用的轻钢低层住宅体系墙体的抗剪性能。论文包括两大部分内容:墙体抗剪的试验研究和有限元模拟分析。
     试件的宽高分别是4m×3m、2m×3m,试件尺寸与工程实际墙体的比例为1:1。试件的立柱骨架为间距为500mm的C型卷边槽钢,两侧墙面板分别是12mm厚的石膏板和9mm厚的OSB定向刨花板,墙面板与立柱骨架用自钻自攻螺钉连接。同样尺寸的二个试件分别在顶端进行水平单调加载和水平方向低周往复加载抗剪试验一次,试验目的是测试墙体的不同高宽比对抗剪强度的影响以及墙体在单调加载及低周反复加载两种情况下的抗剪强度Pu并做出比较,从而对墙体构造及设计提出改进建议。
     试验结果发现:墙体试件的高宽比不同对延性系数μ、耗能系数E、抗剪系数等影响不大;相同尺寸、构造的墙体抗剪试件,进行往复加载试验时得到的抗剪强度比进行单调加载试验得到的结果低10%左右;通过试验得到本次抗剪试验墙体的延性系数μ在3.08~3.84之间,耗能系数E在1.0左右,墙体试件的抗剪强度在12~14kN/m之间。
     论文采用有限元分析软件ANSYS对进行单调加载试验的墙体试件进行了模拟分析。分析时分别采用考虑墙体试件细节的复杂有限元模型和简化模型两种方法进行。
     通过ANSYS分析计算,笔者画出了墙体模型的顶点荷载侧移曲线和变形图。其中根据考虑细节的复杂有限元模型的ANSYS分析结果,笔者还画出了各构件的应力云图。笔者将有限元分析结果与试验结果进行了对比分析:考虑细节的复杂有限元分析模型的模拟结果在一定范围内较接近试验结果,采用有限元分析简化模型计算得到的墙体试件抗剪强度和试验结果更为接近。
     通过试验和有限元分析论证,笔者认为:该墙体可满足工程实际应用,得出的有限元分析模型对以后的理论分析有一定的借鉴作用。
The shear behavior of light-guage steel stud walls in residential system is presented here. The thesis consists of two parts. One is experimental study on light-guage shear walls and the other is finite element analysis.
    The heigths of specimens are 3 meter, and the widths of specimens are 2 meter or 4 meter respectively. Sizes of specimens are the same as those in practical engineering project. The lipped channel section is used as wall studs and its space is 500 millimeter. The wall sheathings are screwed on cold-formed steel studs, with 12mm gypsum board on one side and 9 mm oriented strand board (OSB) on another side. Both static and cyclic load tests are conducted for a same size specimen. The purpose is to find the effect on shear strength from different height-width ratio, and to get the shear resistance limit by static and cyclic loading. According to test results, the improvement suggestions for the wall details and design are presented in this paper.
    Experiments results showed that height-width ratio is not a main influencing factor on wall shear behaviors. The wall shear strength by cyclic loading is lower 10% than that of static loading. Test results also showed that the ductility coefficients of walls is equal to 3.08 -3.84, consuming coefficient E is about 1.0 and shear strength of wall specimens is about 12kN to 14 kN.
    In the paper, two kinds of finite element analysis are used for modeling static loading on the specimens through software ANSYS. One is complex model which has considered the wall practical construct details, and the other is simplified model. Load deflection curves and deformed shapes are got by finite element analysis. Through complex model, we also get Von-Mises stress cloud diagram of specimen components. ANSYS results are compared with test results. By compared data, we learned that the complex model imitates close to experiment results, and the shear strength by simplified model of finite element analysis is quite closer with test results.
    
    
    Through the test results and finite element analysis, we can draw a conclusion that the wall we tested can satisfy engineering application. These finite element analysis models proposed here also can be referred for theoretical analysis in the further,
引文
[1]. Anton Polensek: Finite Element Analysis of Wood-Stud Walls, Journal of Structural Division, Vol.102, No.STT, July, 1317-1334, 1976;
    [2]. John T. Easley, Mehdi Foomani, and Robert H. Dodds: Formulas for Wood Shear Walls, Journal of Structural Division, Vol.108, No.ST11, November, 2460-2478, 1982;
    [3]. Rafik Y. Itali and Chung K. Cheung: Nonlinear Analysis of Sheathed Wood Diaphragms, Journal of Structural Engineering, Vol.110, No.9, September, 2137-2147, 1984;
    [4]. B.Kasal, and R.J. Leichti: Nonlinear Finite Element Model For Light-Frame Stud Walls, Journal of Structural Engineering, Vol, 118, No.11, November, 3122-3135, 1992;
    [5]. Thomas S. Tarpy and Joseph D. Girard: Shear Resistance of Steel-Stud Wall Panels, the Sixth International Conference on Cold-Formed Steel Structures, November 16-17, 449-465, 1982;
    [6]. Thomas H. Miller and Teoman. Pekz: Behavior of Gypsum-Sheathed Cold-Formed Steel Wall Studs, Journal of Structural Engineering, Vol.120, No.5, May, 1644-1650, 1994;
    [7]. Reynand L. Serrette and Kehinde Ogunfunmi: Shear Resistance of Gypsum-Sheathed Light-Gauge Steel Stud Walls, Journal of Structural Engineering, Vol. 123, No.4, April, 383-389,1996;
    [8]. Reynaud L. Serrette, José Encalada, Melissa Juadines, and Hoang Nguyen: Static Racking Behavior of Plywood, OSB, Gypsum, and Fiber-bond Walls with Metal Framing, Journal of Structural Engineering, Vol.123, No.8, August, 1079-1086, 1997;
    [9]. Wei-Wen Yu: Cold Fomaed Steel Design, John Wiley & Sons, 1985;
    [10]. Amir Simaan and Teoman. Pekz: Diaphragm Braced Members and Design of Wall Studs, Journal of Structural Division, Vol.102, No.ST1, January, 77-91, 1976;
    [11]. Young-ki Lee and Thomas H. Miller: Axial Strength Determination for Gypsum-Sheathed, Cold-Formed Steel Wall Stud Composite Panels, Journal of Structural Engineering, Vol,127, No.6, June, 608-815, 2001;
    [12]. R.A. LaBoube and M.A.Sokol: Behavior of Screw Connections in Oriented Residential Construction, Journal of Structural Engineering, Vol.128, No.ST1, January, 115-118, 2002;
    [13].日本铁鋼連盟编:薄板軽量形钢造建築物设计手册引,技报堂出版,2002;
    [14].朱勇军.张耀春:蒙皮支撑的钢构件静力工作性能研究综述,哈尔滨建筑大学学报,Vol.28,No.4,1995;
    [15].上海市建筑产品推荐性应用标准:MB-1轻钢龙骨体系低层装配式房屋技术规程
    
    (DBJ/C7011 2001) 上海,2001;
    [16].钟亚军:冷弯型钢低层住宅房屋体系墙体立柱的性能研究,西安建筑科技大学硕士毕业论文,2002;
    [17].刘前进,周天华,何保康等:北新集团轻钢密立柱墙板立柱承载力试验研究报告,西安建筑科技大学钢结构研究所,2003;
    [18].中华人民共和国行业标准:建筑抗震试验方法规程(JGJ101-96),中国建筑工业出版社,1997;
    [19]. AISI: Shear Wall Design Guide, Publication RG-9804, 1998;
    [20]. North American Steel Framing Alliance (NASFA): Prescriptive Method for Residential Cold-formed Steel Framing, Year 2000 Edition, Oct, 2000;
    [21]. Marcia Patton-Mallory, Steven M. Cramer, Frederick W. Smith, and Patrick J. Pellicane: Nonlinear Material Models for Analysis of Bolted Wood Connections, Journal of Structural Engineering, Vol.123, No.8, August, 1063-1070, 1997;
    [22]. W. H. Thomas: Concentrated Load Capacity and Stiffness of Oriented Strand Board: Calculation Versus Test, Journal of Structural Engineering, Vol. 128, No.ST7, July, 908-912, 2002;
    [23].中华人民共和国国家标准:GB/T3098.11-15,紧固件机械性能自钻自攻螺钉;
    [24].中华人民共和国国家标准:GB/T699—88,优质碳素钢技术条件;
    [25]. Giulio Ballio and Federico M. Mazzolani: Theory and Design of Steel Structures,Chapman and Hall, 311-318, 1983.;
    [26].刘涛,杨凤鹏主编:精通ANSYS,清华大学出版社,2001;
    [27].博嘉科技:有限元分析软件—ANSYS融会与贯通,中国水利水电出版社,2002;
    [28].王寿华等编著:实用建筑材料学,中国建筑工业出版社,1998;
    [29].岳文海,董若兰主编:石膏建筑材料,中国建材工业出版社,2003;
    [30].王勖成:有限单元法,清华大学出版社,2003;
    [31].王仁,熊祝华,黄文斌:塑性力学基础,科学出版社,1998;
    [32].冷弯薄壁型钢结构技术规范(GB50018-2002),中国计划出版社,2002;
    [33].F.柏拉希:金属结构的屈曲强度(中译文),科学出版社,1965;
    [34].陈绍蕃:钢结构设计原理(第二版),科学出版社,1998;
    [35].陈骥:钢结构稳定理论与应用,科学出版社,2001;
    [36].吕烈武等:钢结构构件稳定理沦,中国建筑工业出版社,1983;
    [37].丁成章:底层轻钢骨架住宅设计制造与装配,机械工业出版社,2003;
    [38].沈聚敏,周锡元,高小旺,刘晶波:抗震工程学,中国建筑工业出版社,2000;
    [39].邱法维,钱稼茹,陈志鹏:结构抗震实验方法,科学出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700