用户名: 密码: 验证码:
线加速度计在平台稳定系统中应用的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动机座光电稳定平台已被广泛应用。为有效克服载体运动以及其它环境因素对光电稳定平台带来的影响,一般使用陀螺仪实现光电稳定平台相对于惯性空间的角速度测量,从而构成陀螺平台稳定系统。本文以线加速度合成角速度、角加速度的理论为基础,探讨了加速度计在平台稳定系统中的应用,为加速度计替代陀螺构成无陀螺平台稳定系统奠定了基础。
     本文首先对线加速度合成角速度、角加速度的一般理论进行了研究,从理论上证明这一方法的正确性,为进一步深入研究奠定了理论基础;在此基础上,本文分析了角运动合成一般方法在平台稳定系统中应用存在的困难,在此基础上提出了一种改进方法;这种方法的特点是变空间结构的安装方式为平面结构,使角运动合成理论在工程实践中应用成为可能。
     介绍了线加速度计发展状况,着重讨论了几种适于平台稳定系统中应用的加速度计;根据角速度、角加速度合成公式,分析了平台稳定系统对线加速度测量精度的要求,并据此分别找出了适于实验室理论验证与工程应用的加速度计。
     在对双轴硅电容加速度计ADXL202介绍的基础上,详细讲述了利用ADXL202构成角运动测量装置的设计过程;并在测试转台上对角运动测量装置进行实验,验证了该装置对角运动测量的能力,从实验上证明角运动合成理论以及其改进方法的正确性。
     最后,本文在理论上分析角加速度环对隔离度的贡献;通过对含有非线性摩擦力矩的平台稳定系统仿真模型的研究,从理论上验证角加速度环具有克服摩擦力矩的能力;在实验转台上加入由线加速度计构成的角加速度测量装置,并与测速机构成角加速度环、角速度环双环结构,验证了角加速度环对电机换向误差的消除作用。
Mobile Opto-Electronic stabilized Platform (abbreviated to MOEP below) has been used widely. To conquer the influences including the carrier locomotion and the other factors impacted to MOEP, the system of stabilized platform is made up by using gyroscope to measure the angular velocity relative to inertia space. Based on the theory about synthesis of angular velocity and acceleration with liner accelerometers, this paper discusses the application of accelerometers and the non-gyroscope platform stabilized system uses accelerometer instead of gyroscope in MOEP.
    At first, the general theory of synthesis angular acceleration and velocity with linear accelerometers is researched and proved in this paper. On the foundation of analyzing the applied barrier in platform stabilized system of angular locomotion, a new method that changes the installation structure from alterable space into plane, is put forward to solve the problems, so that the application of this theory in MOEP becomes possible.
    The development of accelerometers in the world is summarized in this paper, and some kinds of them are discussed in detail. According to the formula of synthesis angular velocity and acceleration, this paper analyzes the desired measure precision of the acceleration and finds out the appropriate accelerometers for lab or engineering.
    By introducing the double-axis silicon accelerometers ADXL202 and its application in angular locomotion measure device, the design process of this device is emphasized. Through experiments on the testing rotation platform, performances indicate the validity about the synthesis of this theory and improving method.
    At last, this paper analyzes the function of angular acceleration loop. Through the study with non-linearity friction on simulation model of the stabilized system, in theory the analysis of the angular acceleration loop's contribution is given. In testing platform, the measure devices of angular acceleration and velocity constitute the double loops, they are angular acceleration loop and angular velocity loop. And this experiment gives the proof that the angular acceleration loop could eliminate the errors which are taken by the motor's reversing.
引文
[1] 陈世友,李春花,无陀螺捷联导航系统捷联方案研究,航空学报,1999.6.
    [2] 顾英,惯导加速度计技术综述,飞航导弹,2001.6.
    [3] 周衍柏,理论力学教程,高等教育出版社,1986.
    [4] 白韶红,加速度计的发展,自动化仪表,1999.9.
    [5] 熊永虎,马宝华,彭兴平,用线加速度计测量角加速度和线加速度,北理工大学学报(英文版),2000.3.
    [6] 刘向,王连明,葛文奇,用线性加速度计实现无陀螺平台稳定的理论研究,光学 精密工程,2004.1.
    [7] Corey V B, Measuring Angular Acceleration with Linear Accelerometers, Control Engineering, 1962.3.
    [8] Merhav S J, A Nongyroscopic Inertial Measurement Unit, Journal of Guidance and Control, 1982.5.
    [9] Marcelo C Algrain, Accelerometer-Based Platform Stabilization, Acquisition Tracking and Pointing, SPIE, 1991, Vol.1482.
    [10] 张赛金编译,瞄准跟踪系统的无陀螺瞄准线稳定,舰船光学,1994.4.
    [11] 徐泽善,胡爱民,传感器与压电器件:信息装备的特种元件,国防工业出版社,2001.
    [12] 刘迎春,叶湘滨,传感器原理设计应用,国防科技大学出版社,1997.
    [13] 解旭辉,刘危,张明亮,李圣怡,微惯性测量组合关键技术与应用,光学精密工程,2002.10.
    [14] 北京中电诺金传感技术开发有限公司,加速度传感器,用户手册,1999.
    [15] 屈翠香,李刚,具有数字信号输出的双轴加速度传感器ADXL202,国外电子元器件,1999.8.
    [16] 李嵘,张海燕,ADXL50和ADXL05型加速度计的原理及应用,电子技术应用,1997.5.
    [17] 刘胜,现代伺服控制系统设计,哈尔滨工程大学出版社,2001.
    [18] 薛定宇,反馈控制系统设计与分析—MATLAB语音应用,清华大学出版社,2000.
    [19] 薛定宇,基于MATLAB/Simulink的系统仿真技术与应用,清华大学出版社,2002.
    [20] Larry A.Stockum, James Burge, Electro-mechanical Design for Precision Pointing and Tracking Systems, SPIE, 1987, VOL.779.
    
    
    [21] Larry A. Stockum, George R. Carroll, Precision Stabilized Platform for Shipboard Electro-optical Systems, SPIE , 1984, VOL.493.
    [22] Jayesh Amin, Implementation of a Friction Estimation and Compensation Technique, IEEE, TRANS ON CONTROL SYSTEMS August1997,.
    [23] Slobodan N. Vukosavic, Suppression of Torsional Oscillations in a High-Performance Speed servo Drive, IEEE, 1998, TRANS. ON IND. ELEC. VOL45 NO.1 FEBRUARY.
    [24] Willian J.Bigley, Steven P.Tsao, Optimal Motion Stabilization Control of an Electro-Optical Sight System, SPIE, 1989, VOL.1111.
    [25] John Murray Fitts, Aided Tracking as Applied to High Accuracy Pointing Systems, IEEE, 1973, Trans. On aerospace and electronic systems, VOL AES 9, NO.3 MAY.
    [26] A.K.RUE, Stabilization of Precision Electrooptical Pointing and Tracking Systems, IEEE, 1969, Trans. On aerospace and electronic systems VOL AES-5, NO.5 SEPT..
    [27] James Downs, Steve Smith, High Performance Gimbal Control for Self-Protection Weapon Systms , SPIE, 1998, VOL.3365 April.
    [28] Shreenath Shetty, A Multisensor Tracking System With an Image-Based Maneuver Detector, IEEE, 1996, Trans. On Aerospace and electronic systems VOL. 32 NO. 1 JANUARY.
    [29] 张迎新,雷道振,非电量测量技术基础,北京航空航天大学出版社,2002.
    [30] 周华,沈连官,尤辉,电容式微加速度计结构的建模及仿真,光学精密工程,1999.7.
    [31] 冯乙引,能检测x—Y方向冲击与倾角的高灵敏半导体传感器ADXL202,世界电子元器件,2001.10.
    [32] 石红生,卢广山,一种新型状态观测器在陀螺稳定平台中的应用,电光与控制,1999.1.
    [33] 高宏昌,机载电视瞄准线稳定系统仿真研究与实施,电光与控制,1992.3.
    [34] 马佳光,捕获跟踪与瞄准系统的基本技术问题,光学工程,1989.6.
    [35] 邓集成,张玉涛等,778光电经纬仪多微机控制系统,光学工程,1986.2.
    [36] 马佳光,尹义林,778光电经纬仪跟踪控制系统,光学工程,1986.2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700