用户名: 密码: 验证码:
大跨高桩承台深水墩梁桥施工控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国高速公路建设的蓬勃发展,需要修建更多的大跨度桥梁以跨越
    大江、大河和海湾,在众多桥型中,砼桥是比较经济合理的方案。现代大跨
    度砼桥如连续梁桥、拱桥和斜拉桥等,多采用自架设体系施工,即将桥梁的
    上部构造分节段或分层进行施工,后期节段或后层靠已浇节段或已浇层来支
    撑,逐步完成全桥的施工,也就是无支架而靠自身结构进行施工。砼桥除了
    本身材料是非匀质材料和材料特性不稳定外,还受温度、湿度、时间等因素
    的影响,加上采用自架设体系施工方法,各节段砼或各层砼相互影响,而且
    这种相互影响又有差异,由此,这些影响因素必然造成各节段或各层的内力
    和位移随着砼浇筑或块件拼装过程而偏离设计值。为了保证施工质量,必须
    要对施工的整个过程进行严格的施工控制。
    对大跨度预应力砼连续梁桥而言,桥梁的施工控制以梁体标高控制为
    主,设计单位一般根据悬臂长度、钢筋砼的力学性质、张拉力的大小及已竣
    工同类桥梁的实测挠度等因素,采用一些经验参数和各种假设下的数学模型
    计算出弹性总挠度和预拱度,根据试验得出施工挂篮产生的挠度,再采用公
    式“施工标高=设计标高+弹性总挠度+预拱度+挂篮挠度”计算施工标高。
    但是,经验参数和假设条件与实际情况存在着一定的差异,再加上施工方法
    的不同,以及施工过程中的许多误差,如砼块重误差、配筋误差、张拉力误
    差、测量放样误差以及其它未顾及的误差,都有可能使实际施工梁段的力学
    性质发生变化,从而出现与设计计算不符的挠度,此时若继续采用原设计数
    据进行施工,有可能使施工的梁段线形与设计线形偏差较大,造成合拢困难,
    从而影响成桥质量。
    本文研究近二十年来发展迅速的灰色系统理论作为大跨连续梁桥施工
    控制预测方法,对传统的等间距GM(1,1)灰色预测模型加以改进和创新。
    提出非等间距灰色预测模型NGM(1,1),并提出原始灰色序列的归一化映
    射规则。从而将灰色系统理论成功应用到大跨度预应力砼连续梁桥的施工控
    制中。
    结合丹江口二桥建设工程项目,研究大跨高桩承台深水墩预应力砼连续
    梁桥的施工工艺、施工技术;本文从理论上对大跨高桩承台深水墩预应力砼
    
    武汉理工大学硕士学位论文
    连续梁桥的施工控制做了全面地分析,将上述灰色系统理论作为控制方法应
    用到大跨高桩承台深水墩预应力硅连续梁桥中。
With the rapid development of highways in our country, long-span bridges are needed to span big rivers and bayous. And among the various bridge types, the concrete beam bridges with long spans are widely used for their advantages. The long span bridge such as continuous bridge, arch bridge and cable-stayed bridge, most of these use self-erection system to be constructed. That is, bridge span is cast by segment or by course, later fragment or later course is supported by former fragment or former course, i.e. the construction continue by self-structure of no formwork. Concrete bridge construction is influenced by temperature, moisture, time and concrete's nonhomogeneous quality and unstable property, besides the influence of between the fragments and the courses. All these infections influence each other. So these influences must make internal force and displacement of each fragment or each layer deflect the value of design following the argument of the casting concrete or the concrete fragment. To guarantee
    the quality of the construction, the whole process of the construction must take construction control.
    To the long span prestressed concrete continuous beam bridge, the main work of the construction control is the control of the beam elevation. Designer make use of some empirical parameters and several supported numerical model to calculate elastic total displacement and total precamber, generally based on the length of cantilever, mechanics property of the reinforce concrete, the magnitude of stretching force which is surveyed in practice. Displacement happened by hook-basket in the test is measured. Then construction elevation is calculated by the formula that is 'construction elevation= design elevation+ elastic total displacement+ precamber+ displacement by hook-basket'. Whereas, empirical parameters and supported condition always have some difference with factual condition, and some errors may happen in construction such as error of the weight of concrete fragment, error of reinforcement, error of stretching force,
    
    
    error of measurement and other errors that are considered, all which could make the mechanics property of the factual beam fragment change. Then displacement that is not agreed with design value may happen. So if it continues to construct with former design value, there will be deviation between the alignment in , construction and the design alignment. The deviation takes some difficulty in connection of the fragments, what's more, it influences the quality of the bridge that has been built.
    Gray system theory is adopted as the predictive method of the construction control of continuous beam bridges with long-spans in this paper. Traditional equip gap gray predictive model GM(1,1) is amended. Non-equip gap gray prediction model NGM(1,1) is put forward. This paper also proposes a normalized mapping rule of raw gray series. Then the gray system theory is applied in the construction control of long-span prestressed concrete continuous beam bridge.
    In this paper, based on the study of the key engineering of Hubei province - Danjiangkou Er Qiao , construction technology and construction skill of long-span prestressed concrete continuous beam bridge with high-rise pile cap and deepwater pier are researched. Also this paper fully analyse construction control of big-span prestressed concrete continuous beam bridge with high-rise pile cap and deepwater pie in theory. Through the description of gray system theory, the gray system theory is applied in the construction control of long-span prestressed concrete continuous beam bridge.
引文
[1]交通部部标准《公路桥涵施工技术规范》(JTJ041-89),北京:人民交通出版社
    [2]交通部部标准《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTJO23-85),北京:人民交通出版社
    [3]向中富编著,桥梁施工控制技术,北京:人民交通出版社,2001.5
    [4]徐君兰、项海帆编著,大跨度桥梁施工控制,北京:人民交通出版社,2000。
    [5]梁志广,李华伟,张俊宏,大跨度预应力混凝土连续梁桥的线形控制,石家庄铁道学院学报,第15卷第1期,2002.3
    [6]邬晓光,李俊升,徐祖恩,多跨连续箱梁桥施工监测和控制,国外桥梁,2002.1
    [7]葛耀君编著,分段施工桥梁分析与控制,人民交通出版社,2003.6
    [8]张永水,大跨度预应力混凝土连续刚构桥施工误差调整的Kalman滤波法,重庆交通学院学报,2000.9
    [9]马文田,韩大建,混凝土斜拉桥施工控制的最佳成桥状态法,华南理工大学学报(自然科学版),1999.11
    [10]徐岳,王亚君,万振江编著,预应力混凝土连续梁桥设计,北京:人民交通出版社,2000.5
    [11]李传习,杨飞跃,张建仁,节段施工桥梁的徐变变形及应力重分布研究,中国公路学报,第13卷第4期,2000.10
    [12]韩大建,官万铁,颜全胜,王卫锋,斜拉桥施工过程的预测和控制,华南理工大学学报(自然科学版),2001.1
    [13]王锡岩,王文明,钢筋混凝土连续梁桥,辽宁交通科技,1998.6
    [14]郭鸿鹏,高墩大跨度连续梁桥施工中的抗风措施,科技情报开发与经济,2002.12
    [15]梁鹏,徐岳,桥梁施工监控数据管理系统的研究和开发,交通与计算机,2001年第2期
    [16]范立础,预应力混凝土连续梁桥,北京:人民交通出版社,1988
    [17]于传军,桥梁预应力混凝土连续梁桥设计的施工模拟,东北公路,第24卷第2期
    [18]凌知民,轨道交通预应力混凝土连续梁桥的徐变控制,桥梁建设,2002年第3期
    [19]章关永,光纤传感器技术在桥梁状态监测中的应用,世界桥梁,2002年第2期
    [20]戴公连,李德建著,桥梁结构空间分析设计方法与应用,北京:人民交通出版社,2001.10
    [22]伺雄君编著,桥梁结构实用电算,北京:科学出版社,1996.6
    [23]郑捷奋,郭锋,预应力钢筋混凝土连续箱形梁桥张拉应力分析,国外桥梁,2001.1
    
    
    [24]官万铁,韩大建,大跨度斜拉桥施工控制方法研究进展,华南理工大学学报(自然科学版),1999.11
    [25]王勖成等,有限单元法基本原理和数值方法,清华大学出版社,(第二版),1995
    [26]李运生,张彦玲编译,明石海峡大桥的监测,世界桥梁,2002.3
    [27]邓聚龙,灰色控制系统,武汉:华中理工大学,1993.3
    [28]常英,卡尔曼滤波法在预应力连续刚构桥施工控制中的应用,重庆交通学院硕士论文,1999,1
    [29]湖北交通规划设计院,丹江口二桥两阶段施工图设计,武汉,2002.11
    [30]薛光雄等,厦门海沧大桥悬索桥上部结构线性施工监控,中国公路学会桥梁和结构工程学会1999年桥梁学术讨论会论文集,北京:人民交通出版社,1999
    [31]Fujinkazu ASKAI,Akira ISOE and Akira UMEDDA,New development of COSCOA-control system of constrution accuracy for cable-supported bridges,PSSC 1992
    [32]Satoshi Kashima,Yukikazu Yanaka,Shuichi Suzuki,Monitoring the Akashi Kaikyo Bridge:first Experiences[J],Structure Engineering International,2001,(2)
    [33]铁道部大桥工程局,王序森,唐寰澄编著,桥梁工程,北京:中国铁道出版社,1995.12
    [34]程进,肖汝诚,项海帆,基于MS-Fortran Powerstation V4.0 的有限元分析系统BNAP,重庆交通学院学报,2000.9
    [35]李传习,聂淑贞,张建仁,节段施工全过程分析的通用程序设计,1997桥梁学术讨论会论文集[C],北京:人民交通出版社,1997
    [36]郑信光,韩振勇,项海帆,桥梁节段施工过程的徐变分析[J],同济大学学报,1990,19(3):21-25
    [37]何雄君,孙国正,传统灰预测方法的改进及在桥梁工程中的应用,交通科技,2001.4
    [38]邓聚拢著,灰色系统基本方法,华中工学院出版社,1987
    [39]刘思峰,郭天榜编著,灰色系统理论及其应用,郑州:河南大学出版社,1991.4
    [40]湖北省襄十高速公路建设指挥部,武汉理工大学,襄樊江汉四桥施工监测监控实施细则,2002.2
    [41]李坚,我国预应力混凝土连续梁桥的发展与工程实践,城市道桥与防洪,2001.3
    [42]周军生,楼庄鸿,大跨度预应力混凝士连续刚构桥的现状和发展趋势,中国公路学报,2000.1
    [43]陈德伟,许俊,周宗泽,李国志,预应力混凝土斜拉桥施工控制新进展,同济大学学报,2001.1
    [44]Japan Concrete Institute. Reports of Research Committee on Concrete Strengthening by Continuous Fiber[R]. July 1999.
    [45]Hota V S Ganga Rao, Vijay P V. Bending Behavior of Concretebeams Wrapped with Carbon Fabric[J]. Journal of Structural Engineering, 1998(1):3~10.
    
    
    [46]Thanasis C Triantafillou. Shear Strengthening of Reinforced Concrete Beams Using Epoxy Bonded FRP Composites[J].ACI Structural Journal, 1998, 95(2):107~115.
    [47]Amir M Malek, Harold Saadatmanesh. Ultimate Shear Capacity of Reinforced Concrete Beams Strengthened with Web-bonded Fiber Reinforced Plastic Plates[J]. ACI Structural Journal, 1998, 95(4):391~399.
    [48]Saadatmanesh H, Ehsani M R. Li M. W. Strength and Ductility of Concrete Columns Externally Reinforced with Fiber Composite Straps[J]. ACI Structural Engineering Journal, 2000,91 (4):434~447
    [49]Galano L.Gusella V Reinforcement of masonry walls subjected to seismic loading using steel X-bracing .ASCE Journal of Structural Engineering, 1998,124(8)
    [50]Triantafillou T C.Shear Strengthening of reinforeed concrete beams using epoxy-bonded FRP eomposites.ACI Structural Journal,March-April, 1998
    [51]Shim CS,Kim J H, Chang S P.The Behavior of Shear Connections in a Composite Beam with a Full-Depth Preceast Slab. Proc.Instn Civ.Engres ,2000,101
    [52]D Dark and D.A. Peeknold .Nonlinear Stress-Strain Law for Concrete, SCE, ngineering Mechanics Daivsion, SCE 103(2), 1977
    [53]Amir M Malek, Hamid Saadatmanesh. Ultimate Shear Capacity of Reinforced Concrete Beams Strengthened with Web-bonded Fiber Reinforced Plastic Plates[J]. ACI Structural Journal, 1999, 101(4).
    [54]向木生,田志刚,张开银等.预应力混凝土梁桥应力测试技术.武汉理工大学学报,2001(3)
    [55]何雄君,孙国正,邵吉林.基于归一化映射规则的灰预测模型NGM(1,1),华中师范大学学报,2002.3.
    [56]何雄君,邵吉林,何本万.桥梁结构钢混异种材料协作关系研究,武汉理工大学学报,2004.3.
    [57]M. Hoshiya and A. Suton. Structural Identification by Extended Kalman Filter. Journal of Engineering Mechanics, ASCE, 119(2), 197~210, 1993
    [58]Medith, J. S.. Stochastic Optimal Linear Estimation and Control. McGraw-HillInc., 1969
    [59]M .R. Hjelinstad, S. L. Wood & S. J. Clark. Mutual Residual Energy Method for Parameter Estimation in Structures. Journal of Structural Engineering, ASCE, 118(1), 1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700