用户名: 密码: 验证码:
单相高阻接地保护装置的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一般地,单相短路将产生很大的故障相电流和零序电流,相应的接地保护装置将能可靠动作从而将故障切除。然而,由火焰接地、毛竹接地或树梢接地等原因引起的单相高阻接地故障,由于电压降小、三相线间电压依然几乎对称,从而增加了高阻接地检测的难度。同时故障电流一般比较小,电流突变也很小,有时呈缓慢上升的变化趋势,对火焰接地来说,由于空气游离的缘故,接地阻抗变化很大,使现有保护反反复复启动、恢复,可能会导致相邻线路、设备的保护越级跳闸,使电力系统出现更严重的故障。所以及时探测发现并消除这类故障,具有重要的研究价值,而且有必要研究从原理到装置都具有高性能的保护方案。由于现有的保护方案无法快速有效地切除此类故障,本文在详细分析了单相高阻接地故障的稳态和暂态特性的基础上,从小波分析原理出发,利用小波变换检测突变信号的原理,以零序电流、模电流等为研究对象,结合方向高频保护的原理,设计了一套包含启动元件、选相元件、方向元件、主保护的保护新方案。MATLAB仿真分析证明了该方案耐受过渡电阻的能力强,在故障切除和重合闸时不会因出现的暂态信号而误启动,不受系统振荡、频率偏差的影响,克服了常规保护灵敏度不足的缺点,较好地解决了单相高阻接地故障的难题。为了满足本方案对采样率和运算速度的要求,本文还设计了一套具有高采样率、高运算速度的硬件。该硬件可以实现每秒120兆次浮点运算,采用一片LTC1608进行A/D转换,片内自带采样/保持器、分辨率为16位、转换率为500KSPS。
Generally, single phase grounding fault can cause both high phase current and zero sequence current. Proper grounding protection set can act reliably and cut off fault. However, some unique geographical characters, such as fire grounding, bamboo grounding and treetop grounding, can cause single phase high-impedance grounding fault frequently. Since the voltage drops down very little and the voltage among three phases keeps symmetric, this fault increases the difficulty of the check on this fault. For fire grounding, grounded impedance varies greatly because of air dissociation, and this causes protection set to startup and resume again and again. Therefore, the main protection of the fault line can't cut off the fault quickly and accurately, and may lead to overstep tripping of near lines' protection sets and eventually cause more serious faults on the power system. So, detecting and finding this fault in time is very important. It's very necessary to develop a new high-performance scheme, which involves both principle and hardware. Firstly, we analyze the transient and steady character of single phase high-impedance grounding fault. Secondly, based on wavelet analysis on checking mutational signal and direction high frequency protection theory, utilizing zero sequence current and module current, this paper provides a new scheme including fault starting element, fault phase selection element, directional element and main criterion. This scheme can bear high impedance and is immune to system surge and frequency warp, which gets over the shortcoming of the lack of sensitivity. When this fault is cutted off and the breaker is reclosed, this scheme can't start by mistake. The availability of this scheme is proved with MATLAB test. The single phase high-impedance grounding fault is settled properly. In order to meet with the rate of sampling and operation, we design a suit of hardware with high sampling and operation rate. This hardware can complete 120 million times float operation in one second. The rate of A/D conversion is up to 500KSPS and the precision is up to 16 bits.
引文
[1] 张哲. 一种能反应高阻接地故障的微机距离保护算法. 继电器,1991,4:
    19-26.
    [2]李清波,刘沛. 光纤纵差保护的应用及灵敏度的提高. 电力自动化设备,2002,22(4):21-24.
    [3] 孙恭南. 线路单相高祖接地故障保护装置运行分析. 华中电力,1999,12(3):37-38.
    [4] 蔡美杰. 微机保护对高阻接地故障的动作行为分析. 电网技术,2000,24(3):33-34.
    [5] Shyh-Jier Huang, Tsai-Ming Yang, Jiann-Tseng Huang. FPGA Realization of Wavelet Transform for Detection of Electric Power System Disturbance. IEEE Transactions on Power Delivery,2002,17(2):388-393.
    [6] Dong-Jiang Zhang, Q.Henry Wu, Zhiqian Q.Bo. Transient Positional Protection of Transmission Lines Using Complex Wavelet Analysis. IEEE Transactions on Power Delivery,2003,18(3): 705-710.
    [7] Oinis CHAARI, Michel MEUNIER. Wavelets: A New Tool for the Resonant Grounded Power Distrbution Systems Relaying. IEEE Transactions on Power Delivery,1993,11(3):1301-1308.
    [8] Surya Santoso,W.Mack Grady, Peter Hofmann. Power Quality Assessment Via Wavelet Transform Analysis. IEEE Transactions on Power Delivery,1996,11(2): 924-930.
    [9] 吴军基,吴秋伟等. 电力系统故障时刻提取的小波分析. 继电器,2000, 28(12): 1-4
    [10] 任震,黄群古等.小波理论在电力系统微机保护中的应用研究. 继电器,2001 29(1):1-4
    [11] 刘非凡. 基于小波理论的电力系统故障分析与检测:[硕士学位论文]. 山东:山东大学,2001.
    [12] 杨赢. 小波分析在配电网接地故障中的应用:[硕士学位论文]. 贵州:贵州工业大学,2002.
    [13] 刘皓明. 电力系统信号的小波检测方法研究:[硕士学位论文]. 江苏:南京理工大学,2000.
    [14] 杨凯丰. 小波分析在电力系统故障信号处理中的应用:[硕士学位论文]. 江苏:南京理工大学,2001.
    [15] Chul-Hwan Kim, Hyun Kim,Young-Hun Ko,Sung-Hyun Byun, Raj K.Aggarwal. A Novel Fault-Detection Technique of High-Impedance Arcing Faults in Transmission Lines Using the Wavelet Transform. IEEE Transactions on Power Delivery, 2002,17(4):921-928.
    [16] 董新洲,耿中行,葛耀中,等. 小波变换应用于电力系统故障信号分析初探. 中国电机工程学报,1997,17(6):421-424.
    [17] 张传利,黄益庄,马晓旭,等. 改进递归小波变换在变压器保护中的应用研究.电力系统自动化,199,23(17):20-23.
    [18]焦邵华,刘万顺,刘建飞,等. 用小波理论区分变压器的励磁涌流和短路电流的新原理. 中国电机工程学报,1999,19(7):1-5.
    [19] 操丰梅,苏沛浦. 小波变换在变压器差动保护中的应用. 中国电力,1998,31(11):21-24.
    [20] 蔡超豪,李川. 利用小波变换区分振荡与短路. 华北电力技术,1999,(4):16-18.
    [21] 董新洲,葛耀中,徐丙垠. 利用暂态电流行波的输电线路故障测距研究. 中国电机工程学报,1999,19(4):76-81.
    
    
    [22] 操丰梅,苏沛浦. 小波变换在配电自动化接地故障检测中的应用研究. 电力系统自动化,1999,23(13):33-36.
    [23] 操丰梅,苏沛浦,夏瑞华. 小波变换在小电流接地故障检测中的应用. 电力自动化设备,1999,19(3):8-11.
    [24] 杨晓敏,李红艳,王艳丽. 用小波原理构成继电保护启动元件的研究. 电力自动化设备,1999,19(4):11-13.
    [25] 许正亚. 输电线新型距离保护. 北京:中国水利水电出版社,2002.
    [26] 刘万顺. 电力系统故障分析. 北京:中国电力出版社,1998.
    [27] 贺家李,葛耀中. 超高压输电线故障分析与继电保护. 北京:科学出版社,1987.
    [28] 杨福生. 小波变换的工程分析与应用. 北京:科学出版社.
    [29] 秦前清,杨宗凯.实用小波分析. 西安:西安电子科技大学出版社,1998.
    [30] 冉启文. 小波变换与分数傅立叶变换理论及应用. 黑龙江:哈尔滨工业大学出版社,2002.
    [31] 彭玉华. 小波变换与工程应用. 北京: 科学出版社,2000.
    [32] 徐长发,李国宽. 实用小波方法. 武汉:华中科技大学出版社,1999.
    [33] 何正友,王晓茹,钱清泉. 利用小波分析实现EHV输电线路单端量暂态保护的研究. 中国电机工程学报,2001,21(10):10-14.
    [34] 林湘宁,刘沛,杨春明,刘世铭. 基于小波分析的超高压输电线路无通信全线速动保护方案. 中国电机工程学报,2001,21(6):9-14.
    [35] Z Q Bo. A New Non-Communication Protection Technique for Transmission Lions. IEEE Transaction on Power Delivery, 1998,13(4):1073-1078.
    [36] Zhiqian Q.Bo, Xinzhou Z.Dong, Ben R. J.Caunce, Robin Millar. Adaptive Noncommunication Protection of Double-Circuit Line Systems. IEEE Transaction on Power Delivery, 2003,18(1):43-49.
    [37] 张哲,陈德树. 新型微机距离保护的研究. 中国电力,1995, 3:16-21.
    [38] Keng-Yu Lien, Shi-Lin-Chen, Ching-jung Liao,Tzong-Yih Guo,Tsair-Ming Lin,Jer-Sheng Shen. Energy Variance Criterion and Threshold Tuning Scheme for High Impedance Fault Detection. IEEE Transaction on Power Delivery, 1999,14(3):810-817.
    [39] David Chan Tat Wai, Xia Yibin. A Novel Technique for High Impedance Fault Identification. IEEE Transactions on Power Delivery,1998,13(3):738-744.
    [40] Chul-Hwan Kim, Hyun Kim,Young-Hun Ko,Sung-Hyun Byun, Raj K.Aggarwal. A Novel Fault-Detection Technique of High-Impedance Arcing Faults in Transmission Lines Using the Wavelet Transform. IEEE Transactions on Power Delivery, 2002,17(4):921-928.
    [41] Adly A. Girgis, Wenbin Chang, Elham B. Makram. Analysis of High-Impedance Fualt Generated Signals Using a Kalman Filtering Approach. IEEE Transaction on Power Delivery, 1990,5(4):1714-1724.
    [42] Toshihisa Funabashi, Hitomi Otoguro, Yoshishige Mizuma, Takaaki Kai. Digital Fault Location for High Resistance Grounded Transmission Lines. IEEE Transaction on Power Delivery,1998,(4):80-85.
    [43] 董新洲,贺家李,葛耀中,徐丙垠. 基于小波变换的行波故障选相研究 第一部分 理论基础. 电力系统自动化,1998, 22(12):24-26.
    [44] 吕延洁. 小波理论应用于超高压输电线路单端量暂态保护的启动与选相. [硕士学位论文].陕西:西安交通大学,2001.
    [45] 程传铃. 基于小波分析的小电流接地系统单相接地故障选线及暂态分量的提取. [硕士学位论文].福建:福州大学2002,12.
    [46] 罗士萍. 微机保护实现原理及装置. 中国电力出版社. 2001.
    [47] 杨新民,等. 电力系统微机保护培训教程.中国电力出版社. 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700